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Distribution of bacteriophages in food and environment samples 

Abstract

Foodborne pathogens have become a constant threat to the consumer and food industry. 
Reduce efficacy of antibiotics with emergence of resistant bacteria has limited the opportunities 
for controlling pathogenic bacteria in food commodities and treating foodborne infections. 
Bacteriophages can be a promising alternative for alleviate the risk of transmitting pathogenic 
bacteria via food commodities.  Therefore, this research was conducted to find distribution of 
bacteriophages in diverse niches in order to identify suitable sources for isolating bacteriophages 
to use controlling foodborne pathogens. Firstly bacterial strains were screened for lysogenic and 
selected suitable host bacterial strains were used for isolating and determining bacteriophage titer 
in fresh raw food and environmental samples. Eighteen different lytic bacteriophages effective 
against Campylobacter, S. aureus, L. monocytogenes and E. coli were isolated from this study. 
Bacteriophages titer was determined within range of 102 to 1010 PFU/mL and bacteriophages 
were most frequently isolated from chicken (60%) samples. The isolated bacteriophages could 
be potential candidates for controlling foodborne diseases. 

Introduction

Campylobacter, Staphylococcus aureus, Listeria 
monocytogenes and Escherichia coli are some of 
the leading foodborne pathogens that cause major 
public health issue around the world (Behravesh 
et al., 2012; Newell et al., 2010).  Food products, 
especially food of animal origin can be contaminated 
with these foodborne pathogens at any stage during 
the production process (Sillankorva et al., 2012; 
Carvalho et al., 2010). 

High Campylobacter contamination level 
was reported in chicken and vegetables sold in 
Malaysia (Tang et al., 2009; Chai et al., 2007; 
Wong et al., 2017). Dairy and milk products sold in 
Malaysian markets were contaminated with S. aureus 
(Sasidharan et al., 2011).  Neela et al. (2009) reported 
the isolation of MRSA from pigs and pig handlers in 

Malaysia. L. monocytogenes recovered from various 
food sources such as ready to eat foods (Marian et 
al., 2012), ducks (Adzitey et al., 2013), raw salad 
vegetables (Ponniah et al., 2010), burger patties 
(Wong et al., 2012), chicken (Goh et al., 2013) and 
chicken offal (Kuan et al., 2013). The E. coli O157: 
H7 occurred in beef samples (Son et al., 1998); milk 
(Lye et al., 2013); ready-to-eat food, popiah (Elexson 
et al., 2017) and chicken (Chang et al., 2013) sold 
in Malaysia. Also, E. coli was isolated from raw 
vegetables (Loo et al., 2013), pigs (Ho et al., 2013) 
and water samples (Alhaj et al., 2007) in the country. 
Also high antibiotic resistance was reported among 
the isolated foodborne pathogens (Tang et al., 2009; 
Chai et al., 2007). Though not significant, GMO that 
may carry the antibiotic resistant gene as marker has 
also been reported in Malaysia (Lisha et al., 2017).

Therefore, to combat foodborne illnesses 
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and antibiotic resistance, novel, and efficient 
strategies have become paramount in the current 
global context (Gálvez et al., 2010; García et al., 
2010).  Bacteriophages have been identified as a 
potential alternative to antibiotics (Haq  et al., 2012; 
Sillankorva et al., 2012). Bacteriophages also known 
as phages are bacterial viruses composed of nucleic 
acid genome enclosed within a protein or lipoprotein 
coat (Sillankorva et al., 2012). Phages are ubiquitous 
in the environment and all most all the bacteria 
possess their own bacteriophages that can be isolated 
from the environment where the host bacteria occur 
(Sillankorva et al., 2012; Kutter, 2005). 

More than 1031 bacteriophages contain in the 
earth biosphere (Endersen et al., 2014). Further, 
bacteriophages that infect various host bacteria were 
isolated from diverse sources such as human faeces, 
animal faeces, food, water, soil and sewage (Atterbury, 
2009). However, worldwide still an only limited 
number of bacteriophages were identified (Casjens, 
2008). Even in Malaysia, only a few bacteriophages 
such as that effective against Vibrio cholera (Al-Fendi 
et al., 2014) and colibacillosis (Lau et al., 2010) were 
investigated. Therefore, need to study and isolate 
prevailing bacteriophages in the country that could 
be used as a potential agent to control pathogenic 
and multidrug resistance bacteria. Therefore, the 
objectives of this study were to assess the distribution 
and concentration of Campylobacter, S. aureus, L. 
monocytogenes, and E. coli bacteriophages in food 
and environmental samples.

Materials and Methods

Host-bacterial cultures and growth conditions 
Foodborne pathogenic bacteria including 

Campylobacter jejuni, Campylobactere coli 
isolated from this study and Staphylococcus aureus, 
methicillin-resistant Staphylococcus aureus (MRSA), 
Listeria monocytogenes and E. coli obtained from the 
Food Safety Laboratory, Faculty of Food Science and 
Technology, Universiti Putra Malaysia were used as 
the target host bacteria. 

Campylobacter strains used in this study were 
maintained in 20% (v/v) glycerol supplemented 
with Brain Heart Infusion (BHI) broth (Merck, 
Germany) at −20˚C until use. When necessary, 
working cultures were prepared on Blood Agar plates 
(PB0114, Oxoid, UK). Campylobacter host strains 
were grown according to the method by Carvalho 
et al. (2010). Briefly, Campylobacter was grown in 
New Zealand Casamino Yeast Medium (NZCYM, 
Sigma-Aldrich, USA) supplemented with 400 μg/
mL CaCl2 and 400 μg/mL MgSO4 at 42˚C under 

microaerophilic conditions generated by Anaerocult 
C system (Merck, Germany) with shaking (150 
rpm) (MaxQ 4000; Barnstead International, USA). 
The broth reached the mid-log phase were used for 
bacteriophage enrichment.

The bacterial strains, S. aureus, L. monocytogenes 
and E. coli utilized in this study, were stored in 20% 
(v/v) glycerol at −20˚C. A 100 μL of the frozen 
stock culture was inoculated into Luria Bertani (LB) 
broth (Merck, Germany) and incubated overnight 
at 37°C with shaking. Secondary cultures were 
prepared on Tryptone Soy agar (TSA) (Merck, 
Germany) slants by transferring from the activated 
bacterial broth culture grown in Luria-Bertani (LB) 
broth (Merck, Germany). Then the agar slants were 
sealed and stored at 4˚C until use for the preparation 
of working cultures. When necessary a loop full of 
culture from agar slants was transferred onto TSA 
(Merck, Germany) (incubated overnight at 37°C), 
then checked for purity and transferred single colony 
into LB broth (Merck, Germany) to prepare working 
cultures. The bacterial host strains (S. aureus, L. 
monocytogenes, and E. coli) grown in LB broth 
(Merck, Germany) with shaking incubation (150 
rpm) at 37˚C until it reaches the mid-log phase were 
used for bacteriophage enrichment. 

Screening bacterial strains for lysogeny
Bacterial strains were screened for lysogeny by 

using mitomycin C as inducing agent. A 10 mL of fresh 
NZCYM broth growth media was inoculated with 
100 μL of an overnight culture of the Campylobacter 
strain to be tested for lysogeny. The Campylobacter 
cultures were incubated at 42°C under microaerobic 
conditions (Anaerocult C system (Merck, Germany). 
Once the bacteria reached the exponential growth 
phase, 5 μL of 1 mg/mL mitomycin C was added and 
for the negative control 5 μL of distilled water was 
added. Then absorbency was measured at 600 nm in 
each hour for 12 h. The strains that reduced turbidity 
were excluded from the study.

A 10 mL of fresh LB broth growth media was 
inoculated with 100 μL of an overnight culture of the 
S. aureus, L. monocytogenes or E. coli strain to be 
tested for lysogeny. Then cultures were incubated at 
37°C, and once they reached the exponential growth 
phase, 5 μL of 1 mg/mL mitomycin C was added and 
for the negative control 5 μL of distilled water was 
added. Then absorbency was measured at 600 nm in 
each hour for 8 h. The strains that reduced turbidity 
were excluded from the study.

Sample collection 
Fresh food samples including; dairy products, 
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poultry, seafood, vegetables, and beef were purchased 
from different wet markets in Selangor, Malaysia. 
Also, environmental samples such as water and 
sewage samples were collected from surrounding 
area of the wet markets in Selangor and Universiti 
Putra Malaysia, Malaysia. Samples were collected 
and stored inside an insulated cool box containing 
ice pack and immediately processes at the laboratory.

Enrichment of bacteriophages
Samples were mixed with 1:10 (w/v) SM buffer 

[50 mM Tris-HCl (pH 7.5)], 0.1 M NaCl, 8 mM 
MgSO4•7H2O and 0.01% (w/v) gelatine (Sigma-
Aldrich, USA) and the mixture was pummeled.  
Then the homogenised sample was inoculated with 
exponential phase Campylobacter culture at 9:1 (v/v) 
ratio. Then followed by overnight shaking incubation 
(150 rpm) at 42°C microaerobically (Anaerocult C 
system; Merck, Germany) for potential bacteriophages 
to amplify and dissociate. The homogenized sample 
was inoculated with exponential phase bacterial 
culture of S. aureus, MRSA, L. monocytogenes, and 
E. coli at 9:1 (v/v) ratio and followed by overnight 
shaking incubation (150 rpm) at 37ºC for potential 
bacteriophages to amplify and dissociate. 

Isolation of bacteriophages
After incubation, the mixture was centrifuged for 

10 min at 10,000 rpm to remove bulk debris from 
the sample. Bacterial cells were removed by filtering 
the supernatant through 0.2 μM membrane filter 
(Sartorius, Germany). Then, the filtrate was checked 
for phage activity using spot plate assay (Chang et 
al., 2005; Adam, 1959).  Briefly, an aliquot of 100 
μL of mid-log phase bacteria Campylobacter cultures 
were inoculated into 3 mL of molten NZCYM soft 
agar (NZCYM broth containing 0.6% (w/v) agar). 
This mixture was poured evenly onto NZCYM 
bottom agar (NZCYM broth containing 1.5% (w/v) 
agar). Once the top agar solidified, 10 μL of the 
filtrate was spotted onto the onto NZCYM bottom 
agar containing Campylobacter.  Then the plates 
were dried for 30 mins and incubated overnight at 
42°C under microaerobic conditions (Anaerocult C 
system; Merck, Germany). 

An aliquot of 100 μL of mid-log phase bacterial 
cultures of S. aureus, MRSA, L. monocytogenes and 
E. coli were separately inoculated into 3 mL of molten 
LB soft agar (LB broth containing 0.6% (w/v) agar). 
This mixture was poured evenly onto LB agar (Merck, 
Germany). Once the top agar solidified, 10 μL of the 
filtrate was spotted onto the LB agar containing host 
bacteria (S. aureus, MRSA, L. monocytogenes, and 
E. coli).  Then the plates were dried for 30 mins and 

all culture plates were incubated overnight at 37°C. 

Plaque morphology 
After incubation, the plates were observed for 

the presence of visible clear zones or plaques that are 
indicative of bacterial lysis by phage activity. Plaques 
were scored on a scale from 0 to 5 depending on the 
plaque morphology (Al-Fendi, 2014).  Plates with 
no interaction or minimal effect were given a score 
0 and 1 respectively. A Clear and complete bacterial 
lysis was scored as 2 while turbid plaques that were 
not able to clearly distinguish as lytic activity was 
given a score 3 or 4. Plaque with a clear margin and 
turbid centre that resembles a bulls-eye was given 
score 5. Initially, plaques scored 2-5 were considered 
as phage activity. 

Double layer assay
Samples that displayed phage activity were 

reconfirmed using double layer assay as described by 
Adams (1959). Briefly, a 100 μL of enriched sample 
filtrate and 100 μL mid-log phase Campylobacter 
bacterial culture was added to 3 mL of molten 
NZCYM soft agar (NZCYM broth containing 0.6% 
(w/v) agar). Then the mixture was mixed well and 
poured evenly onto NZCYM bottom agar (NZCYM 
broth containing 1.5% (w/v) agar). Once the top agar 
solidified, the plates were incubated overnight at 
42°C under microaerobic conditions (Anaerocult C 
system; Merck, Germany).  

Briefly, a 100 μL of enriched sample filtrate 
and 100 μL mid-log phase bacterial culture of S. 
aureus, MRSA, L. monocytogenes, and E. coli was 
separately added to 3 mL of molten LB soft agar (LB 
broth containing 0.6% (w/v) agar). The mixture was 
mixed well and poured evenly onto LB agar (Merck, 
Germany). Once the top agar solidified, the culture 
plates were incubated overnight at 37°C. 

After incubation, plates were observed for the 
presence of plaques. Samples indicated presences 
of plaques were confirmed as phages. Detected 
plaques were picked using a sterile pipette tip and 
resuspended in 100-500 μL of SM buffer and stored 
at 4°C for future use. 

Bacteriophages titration
Bacteriophages titration was conducted using the 

double layer assay as described by Adams (1959). 
A ten folds dilution of phage lysate was prepared 
by using SM buffer. Then double layer assay was 
conducted for each dilution in triplicates. 

After incubation, the plates were observed for the 
presence of visible clear zones of bacterial lysis. The 
dilution that formed 30 and 200 plaques were selected 



891  Premarathne et al./IFRJ 24(2): 888-896

and counted the number of plaques. The obtained 
data were used to calculate the plaque forming units 
(PFU/ mL) using standard formula (Adams, 1959).

Results and Discussion

Screening for lysogeny
Out of the 36 tested bacterial strains for prophage 

activity using mitomycin C, two of the S. aureus strains 
harboured prophages in the genome. Incubating 
with mitomycin C, the optical density reduced in 
the bacterial strains that harboured prophage. At the 
initial phase of phage isolation, selecting bacterial 
hosts that do not harbour prophages in the genome 
is important (Garcia et al., 2007). The prophages in 
the bacterial genome can be induced by application 
of mitomycin C, chloroform or ultraviolet (UV) light 
(Weinbauer, 2004; Garcia et al., 2007). In this study, 
mitomycin C was used to induce the prophages, 
and two S. aureus strains (FQ3 and FQ5) were 
identified to be lysogenize by containing prophages 
in the genome. Therefore, those two S. aureus strains 
excluded from phage isolation procedure. 

Plaque formation
First samples were screened using the spot 

plate assay, observed various plaque morphologies 
were given a score and recorded. Different scores 
given for plaque morphologies indicate in Figure 1. 
Initially, 131 experiments were able to produce clear 
to turbid plaques from the spot assay method. In the 
spot plate method, once the enriched sample applied 
to a lawn of host bacteria on agar medium, phages 
in the sample will be absorbed to the host bacterium 
and commence lysis. This bacterial lysis produces a 
visible clear zone on the bacterial lawn that named 
as a plaque (Adams, 1959; Kutter, 2005; Yoon et 
al., 2007). Samples demonstrated bacteriophage 
activities on spot plate method was then reconfirmed 
with double layer assay. In the food samples tested, 
highest phage activity was demonstrated in seafood 
samples however with confirmation by double 
layer assay identified as lysogenic phages (data not 
shown). However, following the double layer assay, 
only 18 samples were able to produce clear plaques 
characteristic of a lytic phage while the rest formed 
turbid, very small or hardly visible plaques typical for 
lysogenic phages (Adams, 1959; Yoon et al., 2007). 
The temperate phages lead to lysogenic infection in 
which transfers the phage genome into the bacterial 
progeny without lysis of the host bacterium. Phages 
that enter lysogenic growth cycle produce turbid 
plaques on susceptible bacterial lawns (Adams, 1959; 
Ai et al., 2008). The lytic nature of the phages  to be 

verified before using for phage therapy because often 
lysogenic phages may not be likely to inhibit bacterial 
pathogens and might become resistant to phage lysis 
(Skurnik et al., 2007; Sulakvelidze, 2011). The 
isolated phages produced around 1.0 to 3.0 mm lytic 
plaques in the double layer assay (Figure 2). The size 
and appearance of a plaque can be associated with the 
volume and density of agar, concentration and stage 
of growth of the host bacterium and constancy of the 
top agar (Adams, 1959; Cormier and Janes, 2014). 

Occurrence of phages
A total of 18 bacteriophages confirmed to 

demonstrate lytic activity for L. monocytogenes, E. 
coli, S. aureus, MRSA, and Campylobacter (Table 
1). From the tested samples, the highest frequency of 
isolating bacteriophages was reported in chicken (60%) 
whilst vegetables found to have the lowest frequency 
(9.4%) (Table 1). The occurrence of bacteriophages 
was closely related to the host bacterium (Akhtar 
et al., 2014). Therefore, bacteriophages could be 
isolated from natural environment of the targeted 
host bacterium (Adams, 1959; Endersen et al., 
2014).  However, none of the phage ativity showed 
by environmental samples was able to produce lytic 
activity (Table 1). Similarly, Bigwood and Hudson, 
(2009) were unable to isolate Campylobacter phage 
from water samples taken from various locations can 
be related to a low concentration of host bacterium 

Figure 1. Observed plaque morphologies
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present in the environmental samples (Bigwood and 
Hudson, 2009). 

In this study, six different phages effective 
for Campylobacter were isolated from chicken 
and vegetable samples. Similar to these findings, 
previously phages effective against Campylobacter 
were isolated from variety of samples including; 
chicken (Atterbury et al., 2003), chicken intestine 
(Carrillo et al., 2007; Hansen et al., 2007; Carvalho 
et al., 2010), duck intestine (Hansen et al., 2007), 
chicken ceca (Atterbury et al., 2005; El-Shibiny et 
al., 2005; Carrillo et al., 2007), chicken feces (Owens 
et al., 2013), and from abattoir wastewater (Hansen 
et al., 2007). However, phages for Campylobacter 
could not be isolated from water samples taken 
from rivers, streams, ponds and lakes (Bigwood and 
Hudson, 2009) and frozen chicken (Atterbury et al., 
2003). Interestingly, this study was able to isolate 
two phages effective against C. jejuni from vegetable 

samples. High level of Campylobacter contamination 
in vegetables was previously reported from Malaysia 
(Chai et al., 2007). Phages are naturally present 
in the environment in which the host bacterium 
inhabits (Brüssow, 2002). Therefore, an abundance 
of Campylobacter host in vegetables may have 
associated with the isolation of phages acting against 
C. jejuni. 

In the current study, the bacteriophages effective 
against E. coli were isolated each from chicken 
(n=1), beef (n=1) and vegetables (n=1). Previously 
E. coli phages were isolated from; sewage sludge 
(Fan et al., 2012), human stools (Tomat et al., 2013), 
chicken meat (Shousha et al., 2015), poultry feces 
(Bhensdadia et al., 2014) and industrial cucumber 
fermentation (Lu and Breidt, 2015). 

Three bacteriophages effective against S. aureus 
were isolated from chicken and beef samples and one 
of which was effective against MRSA. Previously, 
phages effective against S. aureus were isolated from 
a cow infected with mastitis (Kwiatek et al., 2012), 
sewage samples (Synnott et al., 2009; Alves et al., 
2014) and endotracheal tubes used by patients (Hsieh 
et al., 2011). The isolated phage ØMRSA1 lysed both 
S. aureus and MRSA strains. 

Listeria phages (5.4%) were the most frequently 
isolated pahes in this study, a total of six phages from 
chicken (n=4), beef (n=1) and vegetables (n=1) that 
effective against L. monocytogenes. Earlier Listeria 
phages were recovered from fish waste treatment 
seafood (Arachchi et al., 2013), turkey processing 
plant (Kim et al., 2008), sewage of a dairy processing 
facility (Carlton et al., 2005) and environmental 
samples (Loessner and Busse, 1990). Though more 
than 500 different phages effective for Listeria were 
isolated; only a few were studied at the genomic level 
(Zimmer et al., 2003; Carlton et al., 2005; Dorscht et 
al., 2009; Schmuki et al., 2012). 

Table 1. Isolation of phages from different samples

Figure 2. Morphology of lytic plaques. Phage active against 
A: L. monocytogenes; B: S. aureus; C: C. jejuni; D: E. coli.  
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Bacteriophage titers
The bacteriophage titer levels in samples ranged 

from 8.1 × 1010 ± 4.02 to 4.7 × 102 ± 1.04 (Table 
2). The highest bacteriophage titer at 1010 PFU/mL 
was detected for Campylobacter and E. coli specific 
bacteriophages that isolated from the chicken and 
beef.  While the lowest titer was recorded for phage 
isolated from vegetables that active against L. 
monocytogenes.  Comparatively vegetable samples 
carried low phages titer than meat samples. Atterbury 
et al., (2003) was able to isolate 1 x 102 to 4 x 106 

PFU/mL Campylobacter phages from chicken and 
later  Atterbury et al., (2005) and El-Shibiny et al., 
(2005) recovered 102 to 107 PFU/g Campylobacter 
phages from the cecal content of broiler chickens.  
Enrichemnt incoperated in the bacteriophage 
isolation step was reported to facilitaed isolation of 
phages (Carvalho et al., 2010) may be associated 
with the favourable titers reported in this study. 

Conclusion

In conclusion, phages specific for Camphylobacter 
jejuni, C. coli, Staphylococcus aureus, MRSA, 
Listeria monocytogenes, and Escherichia coli were 
isolated from various food commodities in Malaysia. 
Therefore, findings of this study indicate that phages 
can be readily isolated from food products, and 

people can be exposed to phages frequently via food. 
The high titers and lytic ability exhibited by these 
phages stipulate them as promising and potential 
candidates to use as effective biocontrol agents 
against pathogenic bacteria.
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