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The main aim of this study is to enhance the cooling performance of MCHS by using 

conventional fluid, nanofluids and different cross-section shapes including hexagon, 

circular and rhombus MCHS.  Microchannel heat sink (MCHS) has the most common 

and cost-effective hardware employed for the thermal management of Micro-Electro-

Mechanical systems (MEMS) devices.  The small channels of the Microchannel heat 

sink hydraulic diameter provided a high heat transfer coefficients.  Geometry parameters 

of the channels like width and height are supposedly to have a significant effect on the 

laminar heat transfer and liquid flow in MCHS (Gunnasegaran et al. 2009).  In this 

study, a numerical investigation of liquid laminar flow and heat transfer in different 

cross-section shapes microchannel heat sink using water and different types of 

nanofluids was studied.  The upper wall is heated while the bottom wall and sides are 

adiabatic.  Four types of nanofluids (Al2O3, CuO, SiO2 and ZnO with pure water) with 
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different nanoparticles volume fraction (1%, 2%, 3% and 4%) and various nanoparticles 

diameter (25, 40, 55 and 70 nm) were used.  In addition, the effect of using different 

types of base fluid which are ethylene glycol (C2H4(OH)2), Engine oil , glycerin 

(C3H5(OH)3) and water in MCHS with the nanofluids was also analyzed. This 

investigation cover Reynolds number and heat flux ranged from 100 – 1000 and 100 – 

1000 kW/m
2
, respectively.  The three-dimensional (3D) MCHS governing equations for 

both heat transfer and liquid flow were resolved by using Finite Volume Method (FVM).  

Model geometries have been drawn and meshed in GAMBIT 2.3 and simulations have 

been performed in commercial CFD cods FLUENT 13.  The results show that the 

MCHS cooling performance was greatly influenced by the shapes of the channels cross-

section and nanofluids.  The best heat transfer performance was obtained in the rhombus 

cross-section MCHS by using Al2O3-H2O nanofluids as a working fluid at 4% particle 

volume fraction and 25 nm nanoparticles diameter. 
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Julai 2013 

 

Pengerusi: Profesor Madya Nor Mariah Adam, PhD, PE 

Fakulti: Kejuruteraan 

 

Dalam kajian ini, kaedah berangka bagi bendalir aliran laminar dan pemindahan haba di 

dalam sink haba saluran mikro yang menggunakan berbagai jenis bendalir nano telah 

dikaji.  Sink haba saluran mikro (MCHS) merupakan perkakasan paling lazim dan jimat 

kos untuk pengurusan haba dalam sistem peranti micro-electro-mekanikal (MEMS).  

Saluran mikro MCHS mempunyai diameter hidraulik yang kecil dan dapat menyediakan  

pekali pemindahan haba yang tinggi.  Parameter geometri salur sepeti lebar dan 

ketinggian dikaitkan dapat memberi kesan signifikan terhadap pemindahan haba laminar 

dan aliran bendalir dalem MCHS.   Dinding bahagian atas dipanaskan manakala dinding 

bahagian bawah dan kedua – dua sisi adalah  adiabatik.  Empat jenis bendalir nano 

(Al2O3, CuO, SiO2 dan ZnO bercampur air tulen) dengan pecahan isipadu zarah (1%, 

2%, 3% and 4%) dan diameter zarah nano (25, 40, 55 and 70 nm) telah digunakan.  

Tambahan lagi kesan menggunakan berbagai jenis bendalir asas iaitu ethylene glycol 
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(C2H4(OH)2), glycerin (C3H5(OH)3), minyak enjin dan air tulen dalam  MCHS untuk 

mendapatkan bendalir nano ulung telah dianalisis. Siasatan ini merangkumi masing-

masing nilai nombor Reynolds dan nilai fluks haba dalam julat 100 – 1000 dan 100 – 

1000 kW/m
2
.  Persamaan menakluk MCHS dalam tiga dimensi (3D) untuk kedua-dua 

pemindahan haba dan aliram bendalir telah diselesaikan menggunakan kaedah Isipadu 

Terhingga (FVM).  Tujuan utama kajian adalah untuk meningkatkan prestasi penyejukan 

MCHS yang menggunakan bendalir lazim dan bendalir   nano dengan berbagai bentuk 

termasuk  heksagon, bulat  dan  rombus.  Model jejaring geometri telah disurih dan 

dijaringkan menggunakan GAMBIT 2.3 dan simulasi telah dijalankan dengan 

menggunakan perisian komersil CFD kod FLUENT 13.  Keputusan menunjukkan 

prestasi penyejukan MCHS telah meningkat dengan menggunakan bendalir nano dan 

parameter geometri untuk bentuk khusus.  Prestasi pemindahan haba terbaik telah 

diperolehi dengan menggunakan bentuk rentang rombus bersamaan bendalir Al2O3-H2O 

pada 4% isipadu pecahan zarah dengan saiz  zarah diameter 25 nm.  
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CHAPTER 1 

INTRODUCTION 

1.1    Background of the Study 

The expansion of manufacturing of small devises demanded a better understanding of 

fluid flow and heat transfer in microgeometries.  An important part of research have 

been made on heat transfer and fluid flow, as a new way been paved for research by the 

introduction of Micro-Electro-Mechanical Systems (MEMS) to establish the continuum 

is not an option anymore.  The various uses of MEMS include the usage in the medical 

and biomedical fields, in chemical separations, technology field of computer chips and 

much more.  The MEMS are developed not just for scientific research purposes, but also 

for commercially used applications.  The technology in micro machines advancements 

has allowed the development design of miniature size systems which is used in many 

confident fields of applications, especially in the fields of electronic-bioengineering and 

medical sciences.   The small scale fluid channels are embedded often in the systems to 

the surrounding solids with heating sources.  A mini-channel (depending on its height) is 

described at a characteristic dimension of about one mm for a microchannel as the 

characteristics dimension of a several microns to several hundred microns.  MEMS 

devices performance is related directly to the temperature and it is therefore major 

concern to maintaining the electronics at acceptable levels of the temperature.  The 

effective cooling techniques have become known as microchannel heat sinks.  



© C
OPYRIG

HT U
PM

2 
 

The focus point of this research is to size miniaturization and increase the efficiency of 

the micro-chips which leads with the generation of heat that at the level of 500 kW/m
2
. 

as the temperature removal is a vital issue for security and reliability of the electronic 

devices (Kumar, 2009).  Figure 1.1 illustrates a MCHS which is a multiple 

microchannels stacked together.  Thus, the total contact surface area is increased to 

enhance heat transfer and so decreasing the total pressure that is dropped with the flow 

among the many channels.  Heat generation is an irreversible process so in order to 

maintain a continuous operation by extracted heat (Gunnasegaran et al., 2010).  The first 

to place the technology of Micro-channel cooling is Tuckerman and Pease (1981).  They 

managed to circulate water in microchannels that were fabricated in silicon chips.  The 

heat flux flexibly reached 790W/cm
2
 without a penalty on phase change in pressure to 

drop of 1.94 bar.  The developed thermal energy during the continuous operation of the 

electronic chip is dissipated by simple incorporation efficient heat sink on the chips.  

Previous experience showed that failure of electronic chips was cause due to the rise of 

temperature in the circuits which accumulated by the generated heat.  Therefore, the 

chips included with micro-channels to heat sink are the ultimate solution in ultra-

compact electronic gadgets. 

 

  

Figure 1.1: Schematic diagram of the MCHS (Gunnasegaran et al., 2010). 
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In the developed countries, the major priority is to secure clean energy.  Energy 

conversion and transportation that takes place at atomic or molecular levels, with Nano-

science and nanotechnology are expectedly playing an important role to revitalize the 

traditional energy industries and revolutionize the renewable energy industries 

emergence.  Today’s various forms of energy that are used more than 70% is produced 

through or in the form of heat.  As many of the systems in the industrial fields, the 

transfer of heat is either into input energy to operate a system or removed from a heat 

producing system.  Considering the rapid increase in energy demand worldwide, 

intensifying heat transfer process and reducing energy loss because of ineffective use 

have become a task of great importance. Heat removal and control are the exacting 

challenges in some high heat flux systems such as micro/nanoelectronics mechanical 

systems (MEMS/NEMS), process intensification, nuclear fission, fusion and micro 

chemical reactions.   

The main target of Nanofluids is the enhancement of the thermal conductive abilities of 

the few of the typical heat transfer fluids, like water, mineral oils and ethylene glycol, as 

the nanoparticles influence is found to be more than just the profound enhancing of the 

thermal conductivity effect.  The recent researches are concentrated on thermal 

conductivity, overlooking nanofluids properties alteration specifically the viscosity and 

surface properties.  Nemours inconsistent experiments of nanofluids application under 

flow conditions with or without phase change have been reported.  Therefore, the 

conclusion that nanofluids do have the potential to becoming the new solution for the 
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MCHS cooling mechanism for the future that lies ahead the enhancement of heat 

transfer in the MCHS.  

1.2    Problem Statement  

Functional component rose rapidly in density and speed in microprocessors use, which 

in turn led to the significant rise in the generation of heat sink in electronic chips.  The 

heat sink requires the heat fluxes to be dissipated in order to mating the chip temperature 

at the maximum allowable level.  MCHS has a lot of advantage such as compact size, 

dense package, large amount of heat removal from a small area and larger dense surface 

area per unit volume.  Therefore, many investigations of theoretical and experimental 

done by several researchers exploring the single phase and two phase microchannel heat 

transfer in duration of recent decade that would be capable of dissipating high heat flux 

per unit area.  Geometry parameters of the channels like width and height are supposedly 

to have a significant effect on the laminar heat transfer and liquid flow in MCHS 

(Gunnasegaran et al. 2009).   

There are a few of papers that studied the different shapes of MCHS such as 

Gunnasegaran et al. (2010) who studied numerically the heat transfer and fluid flow 

characteristic in the rectangular, trapezoidal and triangular cross-sections shapes MCHS 

using water as a working fluid.  The hydraulic diameters for all shapes of MCHS ranged 

from 259  m to 385 µm.  The Reynolds number varying between 100 to 1000.  It can be 

noticed from the results that the rectangle cross-section microchannel indicates the lower 
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temperature profile and higher heat transfer coefficient than other shapes. Hexagon, 

rhombus and circular cross-sections areas are possible to obtain better enhancement than 

Gunnasegaran at al. (2010), this is due to their lower cross-sections which may reduce 

the distribution temperature and increase the heat transfer coefficient. Furthermore, 

Khan et al. (2011) investigated experimentally the performance of the water flow 

friction factor behavior in a single-phase through circular microchannels.  The hydraulic 

diameter of the microchannel was 279 μm and 45 mm long.  Moreover, an investigation 

carried out by Shams et al. (2009) numerically on the characteristics of fully developed 

laminar flow and heat transfer in the slip flow regime for rhombus microchannels with 

the gas working fluid.   

Nanofluids, in the recent years focused on cooling in various industrial applications.  

This new generation of heat transfer fluids consists of suspended nanoparticles, as they 

possess better stable suspension when compared to sizes of milli-meter to micro-meter 

(Gunnasegaran et al. 2010).  Ho et al. (2010) investigated experimentally the heat 

transfer performance in rectangular cross-section MCHS.  They used water and Al2O3 

nanoparticles at Reynolds number rated from 100 – 1600.  The volume fraction of Al2O3 

is ranged from 0% to 2%.  The hydraulic diameter for the rectangular cross-section is 

418  m. 

Extending with the previous part, it can be noticed that limited work has been done with 

hydraulic diameters ranged from 170 to 300 µm for hexagon, rhombus and circular 

shaped MCHS using water and nanofluids as a working fluids.  The results of the heat 
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transfer enhancement using different MCHS shapes (circular, rhombus and hexagon 

cross-section MCHS), different type of nanofluids (Al2O3, CuO, ZnO and SiO2 with 

H2O), different nanoparticles diameter ( 25, 40, 55 and70 nm), volume friction of 

nanoparticles (0%, 1%, 2%, 3% and 4 %), different base fluids (water, glycerin, engine 

oil and Ethylene Glycol) and Reynolds number vary between 100 to 1000, are examined 

in this study. 

1.3    Aim of the Study 

This study mainly focuses on 3D computational simulation of heat transfer and laminar 

nanofluids flow characteristics in MCHS.  In this study, various effects such as 

geometrical parameters with various shapes, different nanoparticles volume fractions, 

different nanofluids types, different nanoparticles diameter and nanoparticles in different 

base fluids will be numerically investigated. 

1.4    Objective of the Study 

The overall objective of this thesis is heat transfer and nanofluids flow characteristics in 

microchannel heat sink with different shapes.  Based on the problem statement the 

specific objectives of the present study are as follows: 
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1. To analyze the heat transfer and liquid flow characteristics in different cross-sections 

MCHS shapes by using water as working fluid.   

 

2. To optimize the cooling performance of the MCHS using different types of 

nanofluids such as zinc oxide (ZnO), aluminum oxide (Al2O3), copper oxide (CuO) 

and silicon oxide (SiO2) with base fluid pure water. 

 

3. To examine the potential influences of different nanoparticles volume fraction (1%, 

2%, 3%, and 4%) and different size of nanoparticles diameter (25, 40, 55, and 70 

nm) of aluminum oxide (Al2O3-H2O) on heat transfer and liquid flow characteristics 

in the MCHS.  

 

4. To validate the effect of suspended nanoparticles in different conventional base fluid 

such as glycerin (C3H5 (OH)3), engine oil, ethylene glycol (C2H4 (OH)2) and as well 

as Al2O3 - water on heat transfer and liquid flow characteristics in the MCHS.  

1.5    Scope and Limitations 

In this thesis, a multidisciplinary optimal design approach is employed to 

computationally and efficiently optimize the heat transfer capabilities of microchannel 

heat sink using CFD and numerical optimization.  The flow is limited to the laminar 

flow regime.  The thickness of the cross-section for the three different channels (circular, 

rhombus and hexagon cross-section MCHS) are 200, 250 and 300 µm and the length is 
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fixed as 10 mm for all channels.  This study also takes in-depth look at the optimization 

of heat transfer objective such as temperature profile, heat transfer coefficient, pressure 

drop, friction factor and thermal resistance by using water and nanofluids as a working 

fluid.   

In this work, hexagon, circular and rhombus cross-section MCHS have the same volume 

but the hydraulic diameter for circular shape (200,250 and 300  m) is bigger by 15% 

than corresponding hexagon and rhombus shapes (170, 216 and 260  m).  The working 

fluids of the MCHS are water and different types of nanofluids such as Al2O3 - H2O, 

CuO- H2O, ZnO- H2O and SiO2- H2O.  The Reynolds number is ranged from 100 to 

1000.  Appendix A shows the top wall temperature of three channels shapes MCHS 

which are rhombus, hexagon and circular cross-sections for Reynolds number vary 

between 100 to 2000.  It can be observed from the appendix A that the trends of the 

temperature for the three shapes have reduced and approached to each other until Re = 

1000, then the temperature shows stable behavior when the Reynolds number ranged 

between 1000 ≤Re ≤ 2000.  Hence, there is no advantage deliberating of using Reynolds 

number more than 1000.  The Reynolds number also plays an important role in 

specifying the transition region from laminar to turbulent.  Thus, the transition Reynolds 

number to turbulence was found to be at 1100. 
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1.6    Application of the Study  

MCHS configuration is widely studied on flow and heat transfer in microchannel heat 

sink for the problems that associate with thermo-fluids area.  The reason is that it is used 

in many industrial applications such as high-energy laser mirrors, microelectronics and 

diode laser arrays (Phillips, 1988).  Coefficient value of heat transfer in MCHS unit 

greatly depends on the difference of geometrical parameters in MCHS.  In this study, 

increasing the heat transfer coefficient and reduce the temperature were considered. 

Achievement of an enhanced heat transfer is by the introduction of high thermal 

conductivity nanoparticles into the base fluid within the channel.  This concept is 

expected when the use of the nanoparticles in nanofluids increases the thermal 

conductivity and therefore it will substantially improve the characteristics of heat 

transfer (Eiamsa-ard and Promvonge, 2008).  

Ongoing research on nanofluids varieties have found that most the application in 

commercial and industrial products thermal management.  In which recently studies 

demonstrated the nanofluids ability of the performance to excel and improve for the 

systems of the real world and devices like the automatic transmission.  The development 

of advanced cooling technology as on the mostly used application used in nanofluids to 

cool crystal silicon mirrors, vehicle cooling, electronics cooling, transformer cooling, 

nuclear cooling and space cooling.  Nanofluids technology also can help develop better 

oils and lubrications (Das, 2008).  The enhancement of lubricants by the use of 

nanofluids aid the tribological properties of the lubricants, this is demonstrated in the 
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reduction of friction properties and load carrying capacity between moving mechanical 

components (Shen, 2008).  Formulated Nanofluids in medical applications use are being 

implicated, that includes cancer therapy.  It also can be used in heating buildings and 

reducing pollution (Kulkarni, 2009).  Furthermore, in future the use of nanofluids will be 

able to maintain a gradient of high temperature in thermoelectric which in turn allow the 

use of the heat to become utilize energy (Das, 2008).  Nanofluids could increase the 

energy efficiency in building without the need to use a more powerful pump. 

1.7    Thesis Outline 

 

Chapter 1 has provided the general background of MCHS, problem statement, aim of 

study, objective of study, the scope of work and application of study. 

Chapter 2 reviews the details of the MCHS.  This chapter discussed the microchannel 

cross sectional shapes and working fluid which are used to investigate the heat transfer 

and liquid flow characteristics in MCHS.  The last part reviews is the fundamentals of 

the nanofluids such as production of nanofluids, thermophysical properties of nanofluid, 

industrial application of nanofluids and challenges.  

Chapter 3 presented an introduction of numerical methodology of this study and 

physical model and assumption which is consist of physical model, governing equations, 

code validation, boundary condition and geometry mesh.  CFD and CFD modeling 
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process are also studied.  The thermophysical properties of nanofluids using different 

nanoparticles volume fraction, different nanoparticles diameter and different base fluid 

are presented.  Finally, the finite volume numerical implementation method for solving 

3D general convection-diffusion problems and fluid flow computation by SIMPLE 

algorithm is also briefly described in this chapter. 

Chapter 4 presents the result and discussion of the current study.  This chapter is divided 

into four sections.   The first three sections are introduction, grid independence test and 

code validation.  The forth section is divided into five sections to show the effect of 

geometrical parameters with various shapes of MCHS using water, to show the 

performance of MCHS using different types of nanofluids, different types of 

nanoparticles volume fractions (ɸ), different nanoparticles diameters (dp) and different 

types of base fluids. 

Finally, chapter 5 summarizes the conclusions that have arisen from this entire research 

study and suggestions for future work to improve the current research. 
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