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JANUARY 2013 

 

Chairman                 : Professor Thomas Choong Shean Yaw, PhD, IR 
 
Faculty                     : Engineering 

 

Due to the greenhouse effect, the reduction and recovery technology of carbon dioxide has 

become an important research topic nowadays. In addition to the researches on the use of carbon 

dioxide as a reactant, the recovery and concentration of carbon dioxide from waste gas are the 

key issues. The adsorption method that is used to capture CO2, is in a packed-bed column.  

In this study, a monolithic column designed to separate and concentrate CO2 from He/CO2 

mixture, was used to study the feasibility for recovery of CO2 from gaseous mixture. The surface 

properties of carbon-coated monolith were modified by N-containing group of ammonia aqueous 

and potassium hydroxide to increase CO2 adsorption and then compare it with untreated Carbon-

Coated Monolith’s (CCM) capacity. BET, EDX, SEM, FT-IR, and Boehm titration methods 

were used to identify the physical and chemical properties of modified and un-treated CCM.  
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The adsorption capacity and characteristics of carbon dioxide on carbon-coated monolith have 

been measured out in a variety of temperatures (303, 313, and 323 K), pressure (100,150, and 

200 kPa), flow rate (15 to 480 mL/min), and  variety of concentration (5 to 35%) of CO2 in feed.   

Modification by ammonia aqueous and potassium hydroxide as an N-containing method were 

treated to enhance the basicity of carbon surface. Different concentrations of ammonia  were 

applied to introduce some functional groups such as (N-H) on surface so that it would increase 

adsorption capacity. Concentration of CO2 output from the carbon-coated monolith packed 

column is a function of time that was indicated by an analyzer.  

The adsorption capacity showed increase adsorption with increasing input flow rate, pressure, 

and concentration, and reduction of CO2 adsorption capacity with rising temperature up to 323 

K. Modified CCM (ACCM-75) showed an increased adsorption capacity of CO2 by around 12 % 

and PCCM showed an increase of almost 27 % compared to untreated CCM. 

 The Deactivation Model (DM) derived using the analogy between the adsorption of CO2 and the 

deactivation of catalyst particles. Observed adsorption rate constants (Ks) and first-order 

deactivation rate constant (Kd) were obtained from the model. It was found that the DM describes 

experimental breakthrough curves very well. The isotherm was fitted well with the Toth and 

Langmuir equations.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

 

PENJERAPAN KARBON DIOKSIDA KE ATAS AMMONIA-DIRAWAT 

CARBON-BERSALUT MONOLIT 

 

 

Oleh 

 

EHSAN MARAHEL 

 

JANUARY 2013 

 

Pengerusi                :  Profesor Thomas Choong Shean Yaw, PhD, IR 

Fakulti                      :  Kejuruteraan 

 
Disebabkan oleh kesan rumah hijau, teknologi pengurangan dan pemulihan karbon dioksida 

menjadi topik penyelidikan yang penting pada masa kini. Di samping kajian tentang 

menggunakan karbon dioksida sebagai reaktan, pemulihan dan kepekatan karbon dioksida 

daripada gas sisa adalah isu utama. Kaedah penjerapan yang digunakan untuk menangkap CO2, 

adalah dalam ruang-katil tetap. 

Dalam kajian ini, kolum monolitik direka untuk memisahkan dan menumpukan CO2 daripada 

He/CO2 campuran, telah digunakan untuk mengkaji kemungkinan CO2 pemulihan daripada 

campuran gas. Ini permukaan hartanah meningkatkan monolit bersalut karbon oleh diubah suai 

kumpulan N-mengandungi ammonia dan kalium hidroksida untuk meningkatkan CO2 penjerapan 

dan kemudian dibandingkan dengan kapasiti Karbon kapasiti Monolith (CCM) tidak dirawat.  
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BET, EDX, SEM, FT-IR, dan Boehm titratan telah digunakan untuk mengenal pasti ciri-ciri 

fizikal dan kimia diubahsuai CCM dan tidak dirawat. 

Kapasiti penyerapan dan ciri-ciri karbon dioksida pada bersalut karbon monolit telah diukur 

dalam suhu kepekatan (303, 313, dan 323 K), tekanan (100,150, dan 200 kPa), kadar aliran (15-

480 mL / min), dan kepekatan tumpuan (5 hingga 35%) CO2 dalam suapan. 

Pengubahsuaian oleh akueus ammonia dan kalium hidroksida sebagai satu kaedah yang 

mengandungi N-telah dirawat untuk meningkatkan kebesan permukaan karbon. Perbezaan 

kepekatan ammonia telah digunakan untuk memperkenalkan beberapa kumpulan berfungsi 

seperti (NH) pada permukaan bahawa ia akan meningkatkan kapasiti penjerapan. Kepekatan 

pengeluaran CO2 dari ruang bersalut karbon monolit dibungkus adalah satu fungsi masa seperti 

yang telah ditunjukkan oleh penganalisis. 

Kapasiti penjerapan menunjukkan meningkatkan penjerapan dengan input meningkatkan aliran 

kadar, tekanan, dan penumpuan, dan mengurangkan CO2 kapasiti penjerapan dengan 

peningkatan suhu sehingga kepada 323 K. Dirawat CCM (ACCM-75) menunjukkan peningkatan 

kapasiti penyerapan CO2 oleh sekitar 12% dan PCCM menunjukkan peningkatan hampir 27% 

berbanding kepada CCM tidak dirawat. 

Model Penyahaktifan (DM) diperolehi menggunakan analogi antara penjerapan CO2 dan 

penyahaktifan zarah pemangkin. Perfileman pemalar kadar penjerapan (Ks) dan kadar tertib 

pertama penyahaktifan berterusan (Kd) telah diperolehi daripada model. Ia telah mendapati 

bahawa DM menerangkan keluk kejayaan eksperimen sangat baik. Isoterma telah dipasang 

dengan baik dengan Toth dan persamaan Langmuir. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation 

 

Since the industrial revolution, the use of fossil fuels has considerably increased over the 

years. Nowadays, fossil fuels supply more than 98 % of the world’s demand (Siriwardane 

et al., 2001; Socolow et al., 2004). The rise in global temperature is widely attributed to an 

increase in greenhouse gases (GHG) in the atmosphere. The most abundant greenhouse gas 

–CO2– has risen from preindustrial levels of 280 parts per million (ppm) to present levels 

of over 385 ppm. Main emissions of CO2 come from the combustion of fossil fuels such as 

coal, natural gas or petroleum, and industrial processes such as oil refinement, the 

production of cement, iron, and steel as shown in Figure 1.1 (Pireset al., 2001; Behvandi 

and Tourani, 2011). 

 

 

 

 

 

 

 

Figure 1.1: Emissions of CO2 (Jung and Shiang, 2005) 
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Improving the energy efficiency of fossil-fired power generation is one of the  fundamental 

measures needed to reduce greenhouse gases emissions. Other techniques to reduce CO2 

emissions into the atmosphere include: (i) the replacement of fossil fuels with cleaner fuels 

or  fuels with lower carbon content or nuclear energy, (ii) increasing the use of fuels from 

renewable energy sources such as biomass, solar and wind energy, and (iii) capturing and 

storing CO2. The high costs of renewable energies associated with the abundance and 

availability of fossil fuels delay the introduction of these environmental friendly energy 

forms. All these methods  include the attractive feature of limiting the amount of carbon 

dioxide emitted into the atmosphere, but  not without economic, technical, or societal 

limitations (Burchell and Judkins, 1996; Lund, 2006; Allwar et al., 2008). 

 

 According to Herzog and Golomb ( 2004), from the economical point of view, capture and 

storage is an appropriate approach. A number of techniques could be used for the 

separation of carbon dioxide from fuel gas streams. The chemical absorption process can 

control carbon dioxide with higher removal efficiency, but it is a very energy intensive 

process  and is accompanied with the problem with corrosion. Other techniques considered, 

are cryogenic separation, membrane separation, and adsorption processes, including 

pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption and 

electric swing adsorption. The CO2 capture by adsorption is an attractive technique as a 

post-combustion treatment of flue gas (Gomes and Yee, 2002).  

 

Adsorption processes usually appear in the context of high selectivity towards CO2 with the  

tendency of reducing energy penalties and is a simple and inexpensive operation for 

removing process gases and vapors from the air, by passing them through an adsorption 

bed packed with a porous adsorbent (Arenillas et al., 2005; Bonenfant et al., 2008; Safaai et 

al., 2010).  
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Porous silica, alumina, zeolite, and activated carbon are used as adsorbents for a wide range 

of applications such as CO2 adsorption. The ideal sorbent would present high adsorption 

capacity and selectivity for carbon dioxide, and be easily regenerated in order to be 

economically feasible. The affinity of the adsorbent for carbon dioxide should not be too 

high; otherwise, the regeneration step will negatively affect the economy of the process 

(Drage et al., 2009). 

 

In traditional adsorption processes, packed beds are used due to the inexpensive and 

adaptable adsorbent. However, it created high mass transfer resistance and a pressure drop 

at high flow rate. In air pollution control processes, large volumes of gases have to be 

treated, which require the reactor to have small pressure drops, in these cases, the use of 

activated carbon monoliths is very favorable (Chen et al., 2002; Chang et al., 2003). 

Activated carbon monolith has been fabricated by coating carbonaceous materials onto 

cordierite monolith or  with full-body extrusion. The monolith shaped structured adsorbent 

carbon monoliths, are characterized by straight parallel channels separated by thin walls, 

high void fraction and large geometric surface area, resulting in a low pressure drop under 

high flow rate and large contact area. These properties make carbon monoliths attractive 

(Ruthven and Thaeron, 1996; Menard et al., 2005; Thiruvenkatachari et al., 2009). 

 

The monolith has an open structure, which, allows for higher flow of fluids through them 

with a lower drop in pressure so that CO2 can occupy the micropores where they may be 

selectively adsorbed. These monoliths present the advantages of superior contact efficiency 

and a higher adsorption capacity with respect to granular activated carbons (Liu et al., 

2007; Boonpoke et al., 2011).  
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The basicity of the carbon comes from basic groups or basic nitrogen containing groups on 

the surface of carbon. They would produce more adsorption sites for CO2 adsorption if 

there were more basic nitrogen-containing groups on the surfaces. Thus, it was inferred that 

the surface of basic chemical groups on the carbon-coated monolith sample played a key 

role in the enhancement of CO2 adsorption. So, in order to improve the adsorption 

performance of the Carbon-Coated Monolith (CCM) for CO2, the application of surface 

modification is used effectively to increase the surface of basic groups and decrease the 

acidic oxygen-containing groups’ surfaces (Chen et al., 2005). 

 

1.2  Problem Statement 

 

In the adsorption application, activated carbon is generally used in powder and granular 

forms. The use of carbon in these forms for column is associated with high-pressure drops, 

potential channeling, and other disadvantages. The problem encountered can be overcome 

by the use of carbon monoliths. Compared to the conventional fixed bed column, 

monolithic columns provide the advantages of low-pressure drop, larger external surface 

area, and short diffusion lengths (Edwards and Riggs, 2003; Moreno-Castilla, 2010).  

 

It can also be located in a vertical and horizontal position or in mobile system without 

losing shape and is easier to be scaled up due to its simple design and uniform flow-

distribution  

(Allwar et al., 2008; Khalil et al., 2011). The surface of carbon can be improved by so 

many chemicals and methods. N-containing is an effective method, which can increase the 

amount of CO2 adsorption (Figueiredo et al., 1999; Przepiorski, 2006; Shafeeyan et al., 

2011). 
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1.3 Objective 

 

The main objective of this project is to develop a carbon-coated monolith using Furfuryl 

Alcohol (FA) as carbon source, PEG as pore former, pyrrole as binder and HNO3 as 

catalyst and the utilization of carbon-coated monolith in CO2 adsorption system. A 

monolithic column system is used to study the amount of CO2 removal. Both experimental 

and modeling work is carried out. Several objectives are listed below: 

a) To prepare carbon-coated monolith by using furfuryl alcohol via dip-coating 

method.  

b) To investigate the efficiency of carbon dioxide adsorption by carbon-coated 

monolith samples and, modification with NH3 and KOH. 

 

1.4 Scope of work 

 

The main scopes in this investigation, is to achieve the specified objectives comprises of 

research activities such as preparation of Carbon-coated Monolith and modification, the 

characterization of the adsorbents and the adsorption capacity study in different operation 

conditions for carbon dioxide on the carbon-coated monolith. 

Carbon-coated monolith are modified with different amount of ammonia aqueous (from 25 

to 100 mL per gram carbon), to see the effect of modification on the breakthrough curve 

and the adsorption capacity. 

 

The carbon-coated monolith and its modified were characterized by different techniques. 

Boehm’s titration was used to calculate the concentration of functional groups on carbon-

coated monolith. Scanning electron microscopy (SEM) was used to determine surface 

morphology of the carbon-coated monolith and treatment with NH3 and KOH. The 
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characterization of chemical structure of carbon samples were performed using FT-IR 

spectroscopy method. The specific surface area and pore volume of activated carbon 

samples were estimated by BET analysis. In addition, the amounts of new elements on 

samples from preparation and modification process were characterized by EDX analysis.  

 

Other than adsorption capacity study on carbon-coated monolith, the operation condition 

that have the best adsorption capacity is used as the standard condition to investigate of 

series of NH3 and KOH modification on the carbon-coated monolith. 

 

1.5 Outline 

 

The present work  has been categorized into five chapters. A concise note of the hazardous 

effects of greenhouse gases (CO2), the aims of the study and complete schematics of the 

research is  contained in chapter I. A literature review of CO2 adsorption in a packed-bed of 

different adsorbents, theoretical method of breakthrough, isotherm models and 

characterization methods are presented in chapter II. 

The experiments as well as theoretical techniques used and characterization methods have 

been studied thoroughly in chapter III. While chapter IV, addresses the adsorption of CO2 

on untreated and treated carbon-coated monolith. The results regarding the characterization 

of samples, breakthrough curves at different conditions and comparison between the 

equilibrium data with theoretical isotherm models were also discussed. Moreover, finally, 

conclusions and recommendations for further work are summarized in chapter V.  
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