EFFECT OF TIME OF HARVEST AND SEED SIZE ON SEED QUALITY OF SOYBEAN

By

DIDIK HARNOWO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2004

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Doctor of Philosophy

EFFECT OF TIME OF HARVEST AND SEED SIZE ON SEED QUALITY OF SOYBEAN

By

DIDIK HARNOWO

October 2004

Chairman : Uma Rani Sinniah, Ph.D.

Faculty : Agriculture

Soybean is one of the most important legume crop in Indonesia. It is widely cultivated in several agro-ecosystems to meet the local needs. The availability of high quality seeds is essential for increased productivity but is often neglected. Farmers use seeds from the previous planting irrespective of season, harvest time and bulk seeds of varying size together. This study was undertaken in three step wise experiments in order to study the effect of the current practices on seed quality, namely (1) to understand the effect of production environment (wet and dry seasons) and time of harvest on seed quality, (2) to study the effect of seed size within cultivar on seed quality, and (3) to determine the agronomic performance of seed lots within cultivar differing in seed size. Seed quality was assessed using the value of its potential longevity (K_i , in probit scale), the intercept of the transformed seed survival curve into probit scale. Production environment affected seed quality, whereby seeds produced in wet season had lower quality than those in dry season, as indicated by lower seed potential

longevity (K_i). The response of six soybean cultivars to production environment on seed size and crop duration was similar. Physiological maturity or mass maturity occurred at around developmental stage R6 + 15 days while maximum seed quality occurred five days later. Since farmers generally harvest soybean at around developmental stage R6 + 15 days, delaying harvest until some time after mass maturity will ensure better seed quality. Seed quality as indicated by K_i value positively correlated with oligosaccharides, especially raffinose but negatively correlated with monosaccharides as noted between seasons, among cultivars and harvest times. On the other hand, the relative amount of pectin methyl esterase (PME) negatively correlated with seed potential longevity. This suggests that oligosaccharides and PME play a role in determining quality of seed.

Small sized seeds within cultivar comprised 13.8 - 16.5% of total seed produced and they exhibited lower quality than large seeds. This is largely attributed to late pollination and thus resulting in shorter grain filling period. Large and medium sized seeds within a cultivar did not differ much in quality but large seeded cultivars had much lower K_i value, indicating poorer storability. If such seeds are to be stored, more attention in relation to storage condition should be given as compared to small seeded cultivars. Differences in seed quality as shown by the K_i value correlated positively with oligosaccharides and negatively with pectin methyl esterase (PME). Interestingly, when the data of soluble sugars and PME from the first and the second experiments were pooled, and a simple linear model relating seed potential longevity with soluble sugars and PME was constructed, the content of raffinose in seeds had strong contribution to seed potential longevity, whereas PME had smaller contribution. These two biochemical substances could explain 75% of the variation in seed potential longevity. Thus, the changes in both the content of raffinose and the relative amount of PME in seed may partly explain the changes in seed potential longevity due to the difference in production environment, time of harvest, and seed size. Cultivars responded differently in its agronomic performance when planted under optimal condition. Plants from large sized seeds had better growth parameters as compared to those from small sized seeds. Therefore, bulking should not be practiced, rather the 15% of small sized seeds should be removed from the seed lot.

Since soybean cultivation is a big industry in Indonesia, the establishment of a seed program should be initiated. Based on the results of the present study, this thesis provides a strong basic knowledge to help in establishment of a seed production plan, namely (1) seed production should be carried out in dry condition (dry season) *i.e.* during early dry season (EDS) or late dry season (LDS), (2) harvesting seeds should be done when the quality is at its maximal *i.e.* about five days after physiological maturity, (3) post harvest seed handling should be carried out properly especially for large seeded cultivars due to their faster deterioration rate and (4) grading should be done to exclude around 15% of small sized seeds. The above mentioned factors will ensure more uniform seed lot in terms of seed size, quality and stand establishment.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN MASA PENUAIAN DAN SAIZ BIJI BENIH TERHADAP KUALITI BIJI BENIH KACANG SOYA

Oleh

DIDIK HARNOWO

Oktober 2004

Pengerusi : Uma Rani Sinniah, Ph.D.

Fakulti : Pertanian

Kacang soya merupakan tanaman kekacang terpenting di Indonesia. Ianya ditanam secara meluas di persekitaran yang berbeza agro-ekosistemnya. Biji benih yang berkualiti tinggi adalah penting bagi meningkatkan produktiviti, tetapi ianya sering diabaikan. Petani di Indonesia sering menggunakan biji benih daripada tanaman musim sebelumnya tanpa mengambilkira faktor persekitaran, masa penuaian dan saiz biji benih. Bagi memperbaiki sistem pengeluaran biji benih yang sedia ada, satu kajian telah dijalankan dan dibahagikan kepada tiga, iaitu (1) kesan persekitaran dan masa penuaian terhadap kualiti biji benih, (2) kesan perbezaan saiz biji benih terhadap kualiti, dan (3) tumbesaran serta hasil daripada biji benih yang berbeza saiz. Kualiti biji benih diukur berasaskan nilai potensi penyimpanan (K_i), iaitu nilai pangkasan pada paksi y pada graf percambahan biji benih terhadap masa setelah transformasi kepada skala probit dilakukan. Keadaan persekitaran semasa tumbesaran dan perkembangan biji benih

mempengaruhi kualiti biji benih, dimana biji benih yang dihasilkan dalam musim hujan adalah lebih rendah berbanding dalam musim kering, berikutan nilai potensi penyimpanan (K_i) yang rendah. Keenam-enam kultivar memberikan respon yang sama terhadap saiz biji benih dan jangkamasa kematangan walaupun persekitaran penanaman adalah berbeza. Kematangan fisiologi berlakukan sekitar fasa tumbesaran R6 + 15 hari manakala kualiti biji benih mencapai nilai maksimum lima hari selepas kematangan fisiologi. Oleh kerana petani menuai kacang soya sekitar fasa perkembangan R6 + 15 hari, menunda penuaian biji benih sehingga selepas kematangan fisiologi akan menghasilkan biji benih dengan kualiti yang lebih tinggi. Terdapat korelasi positif diantara oligosakarida terutamanya raffinosa dengan kualiti biji benih manakala monosakarida memberikan korelasi negatif dengan potensi penyimpanan. Sebaliknya, jumlah relatif pectin methyl esterase (PME) dalam biji benih juga mempunyai korelasi negatif dengan potensi penyimpanan biji benih. Ini menunjukkan bahawa kedua dua jenis bahan di atas mempunyai peranan dalam menentukan kualiti biji benih.

Biji benih kecil didalam satu cultivar berjumlah sekitar 13.8 - 16.5% daripada berat keseluruhan dan menunjukkan kualiti yang lebih rendah berbanding dengan yang berbiji besar. Biji benih kecil adalah biji benih daripada pembuahan yang akhir, oleh itu jangkamasa pengisian biji adalah lebih pendek. Biji benih besar dan sederhana tidak menunjukkan perbezaan yang besar dari segi nilai K_i (kualiti) tetapi kultivar berbiji besar mempunyai nilai K_i yang lebih rendah, melambangkan keupayaan penyimpanan yang rendah. Sekiranya biji benih kultivar besar hendak disimpan maka lebih perhatian harus diberikan terhadap persekitaran penyimpanan berbanding dengan biji benih dari kultivar berbiji kecil. Perbezaan nilai *K*i akibat saiz biji benih menunjukkan korelasi positif dengan oligosaccharida dan korelasi negatif dengan PME. Apabila semua data gula terlarut dan PME daripada kajian pertama dan kedua dikumpulkan dan suatu model yang menghubungkan potensi penyimpanan dengan gula terlarut dan PME dibuat, maka raffinosa didapati memberikan sumbangan yang besar terhadap potensi penyimpanan manakala sumbangan PME lebih kecil. Kedua-dua bahan ini dapat menerangkan lebih kurang 75% daripada variasi pada potensi penyimpanan. Maka perubahan pada nilai gula raffinosa dengan PME dapat menerangkan sebahagian daripada perubahan nilai potensi penyimpanan yang diperolehi akibat persekitaran, masa penuaian dan perbezaan saiz biji benih.

Tindak balas cultivar terhadap tumbesaran serta ciri agronomi bagi biji benih berbeza saiz adalah berbeza walaupun ditanam pada keadaan optima. Pokok kacang soya yang berasal daripada biji benih besar menunjukkan pertumbuhan yang lebih baik berbanding dengan yang berasal daripada biji benih kecil. Oleh itu, bagi mendapatkan keseragaman, biji benih perlu digredkan dan kurang lebih 15% daripada biji benih bersaiz kecil harus dikeluarkan daripada lot biji benih.

Oleh kerana penanaman kacang soya di Indonesia merupakan industri yang besar, program industri biji benih yang maju harus diwujudkan. Berasaskan keputusan yang diperoleh daripada kajian yang dilakukan, tesis ini dapat memberikan sumbangan bagi mendirikan industri biji benih kacang soya, iaitu : (1) pengeluaran biji benih kacang soya harus dilaksanakan dalam musim kering, sama ada dalam musim kering awal atau musim kering akhir, (2) penuaian biji benih harus dilakukan pada masa kualiti yang maksimum iaitu sekitar lima hari selepas kemasakan fisiologi, (3) pengendalian pasca tuai biji benih perlu dilakukan secara tepat terutamanya untuk kultivar bersaiz biji besar kerana ianya mempunyai kadar deteriorasi yang lebih cepat berbanding dengan biji benih dari cultivar bersaiz kecil, (4) semasa pemprosesan, biji benih perlu digredkan untuk mengeluarkan biji benih bersaiz kecil yang berjumlah sekitar 15% daripada berat biji benih keseluruhan. Faktor-faktor di atas akan menjamin keseragaman saiz biji benih dalam lot, kualiti serta kemampuan percambahan.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Uma Rani Sinniah for her supervision, constructive criticisms, and her invaluable guidance and encouragement throughout my study and preparation of this manuscript.

My sincere thanks are also addressed to my supervisory committee members, Prof. Dr. Mohd. Khanif Yusop, Assoc. Prof. Dr. Mohd. Said Saad and Prof. Dr. Bambang Guritno, for their invaluable advice and encouragement during my study and preparation of this manuscript.

I am grateful to Ketua Komisi Pembinaan Tenaga, the Project Director of Participatory Development of Agricultural Technology Project (PAATP), Agency for Agriculture Research and Development (AARD), and also the Ministry of Agriculture of the Government of Indonesia for the opportunity and scholarship to pursue a postgraduate program for doctoral degree at Universiti Putra Malaysia.

I would also like to express my deepest thanks to my wife Koesniah and my sons Irfan Hartanto and Yusuf Adi Nugroho for their encouragement, patience, moral support and endless praying during the period of study. Also to my mother (in memory) who taught me to look for the good in the worst of us, and to my father who warned me to beware of the bad in the best of us. Personal appreciation and thanks are go to Dr. Aulani 'Am, Dra. Sri Widyarti, Msi. and Ir. Nur Hadi MSc. for their invaluable support on electrophoresis, to Mr. Danu for sugar analysis, to Nuraedy for his assistance during the field work, and to Ir. Suprapto for his providing conducive atmosphere for the author to carry out laboratory research activity. My sincere appreciations and thanks are also directed to my friends and colleagues.

Above all, Alhamdulillah, be praised to ALLAH SWT, the most beneficent, the most gracious and merciful who give me physical and psychological strength and comfort to successfully complete my studies. I certify that an Examination Committee met on October 27, 2004 to conduct the final examination of Didik Harnowo on his Doctor of Philosophy thesis entitled "Effect of Time of Harvest and Seed Size on Seed Quality of Soybean" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members for the Examination Committee are as follows:

Mohammad Mohd. Lassim, Ph.D.

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Mohd. Ridzwan Abd. Halim, Ph.D.

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Adam Puteh, Ph.D.

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

Izham Ahmad, Ph.D.

Seed Technologist Malaysian Agriculture Research and Development Institute (MARDI) (Independent Examiner)

ZAKARIAH ABD. RASHID, Ph.D.

Professor / Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 28 Januari 2005

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the Degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Uma Rani Sinniah, Ph.D. Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Mohd. Khanif Yusop, Ph.D. Professor

Faculty of Agriculture Universiti Putra Malaysia (Member)

Mohd. Said Saad, Ph.D.

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Bambang Guritno, Ph.D. Professor Faculty of Agriculture Brawijaya University, Malang, Indonesia (Member)

AINI IDERIS, PhD.

Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date :

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

DIDIK HARNOWO

Date: 6 Januari 2005

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	ix
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF PLATES	xxi
LIST OF ABBREVIATIONS/NOTATIONS	xxii

CHAPTER

1	GEN	ERAL INTRODUCTION	1
	1.1	Background	1
	1.2	Research Objectives	5
2	LITE	CRATURE REVIEW	6
	2.1.	Seed Quality	6
		2.1.1. Definition and Components of Seed Quality	6
		2.1.2. The Concept of Seed Germination and Vigor	8
		2.1.3. Seed Potential Longevity	10
	2.2.	Seed Development and Maturation in Relation to Seed	
		Quality	14
		2.2.1. Moisture Content and Dry Weight	16
		2.2.2. Nutrients and Food Reserves	20
		2.2.3. Soluble Sugars	23
		2.2.4. Pectin Methyl Esterase (PME) Enzyme	27
	2.3.		33
		2.3.1. Temperature and Light	33
		2.3.2. Rainfall and Soil Moisture	35
		2.3.3. Nutrients	37
	2.4.		37
	2.5.	The Agro-ecosystem for Soybean Seed Production in	
		Indonesia	42
3	THE	EFFECT OF PRODUCTION ENVIRONMENT AND	
	TIM	E OF HARVEST ON SEED QUALITY OF SOYBEAN	46
	3.1	Introduction	46
	3.2	Materials and Methods	47
		3.2.1 Location	47
		3.2.2 Crop Establishment	47

	3.2.3	Treatment and Experimental Design	48
	3.2.4	Handling at Harvest	49
	3.2.5	Parameters	50
		3.2.5.1 Seed Moisture Content and Dry Weight	50
		3.2.5.2 Germination of Fresh and Desiccated	
		Seeds	50
		3.2.5.3 Seed Potential Longevity	51
		3.2.5.4 Conductivity of Seed Leachates	52
		3.2.5.5 Seed Coat to Seed Ratio	52
		3.2.5.6 Soluble Sugars	52
		3.2.5.7 Pectin Methyl Esterase (PME) Enzyme	53
	3.2.6	Statistical Analysis	55
3.3	Result	ts and Discussion	56
	3.3.1	Seed Moisture and Dry Weight	56
	3.3.2	Germination of Fresh and Desiccated Seeds	60
	3.3.3	Conductivity of Seed Leachates	65
	3.3.4	Seed Coat to Seed Ratio	69
	3.3.5	Seed Potential Longevity	70
	3.3.6	Soluble Sugars	76
		3.3.6.1 Changes in Soluble Sugars Due to	
		Production Environment	77
		3.3.6.2 Changes in Soluble Sugars Due to Time	
		of Harvest	82
		3.3.6.3 The Relation between Sugar Content	0.5
		and Seed Potential Longevity	85
	3.3.7	The Relative Amount of PME Due to Production	
		Environment and Time of Harvest	88
3.8	Conclu	isions	94
THE			
		T OF SEED SIZE WITHIN CULTIVAR ON	
	-	ITY PRODUCED IN DIFFERENT	98
	IRONM Introdu		98
4.1 4.2		als and Methods	98 100
4.2			100
	4.2.1	Location Crop Establishment, Harvest and Seed Processing	100
	4.2.2	Treatment and Experimental Design	100
	4.2.3	Parameters	103
	4.2.4	4.2.4.1 Seed Size Proportion by Weight	103
		4.2.4.2 Standard Germination	103
		4.2.4.3 Seed Potential Longevity	104
		4.2.4.4 Seed Coat to Seed Ratio	104
		4.2.4.5 Speed of Seed Imbibition	104
		4.2.4.6 Soluble Sugars	105
		4.2.4.7 Pectin Methyl Esterase (PME) Enzyme	105
4.3	Results	s and Discussion	105
1.5	4.3.1	Seed Size Proportion by Weight	100
	4.3.2	Standard Germination	100
			107

4

xvi

		4.3.3	Survival Curves and Seed Potential Longevity	109
		4.3.4	Seed Coat to Seed Ratio	112
		4.3.5	Speed of Seed Imbibition	115
		4.3.6	Soluble Sugar Content	119
			4.3.6.1 The Content of Soluble Sugars Due to	
			Production Environment	120
			4.3.6.2 The Content of Soluble Sugars Due to	
			Seed Size	122
			4.3.6.3 The Relation between Soluble Sugar	
			Content and Seed Potential Longevity	126
		4.3.7	The Relative Amount of PME Due to Production	
			Environment and Seed Size	130
	4.4	Conclu	isions	133
5	AGR	ONOMI	C PERFORMANCE OF SEED LOTS WITHIN	
-			DIFFERING IN SEED SIZE	136
	5.1	Introdu		136
	5.2	Materia	als and Methods	137
		5.2.1	Location and Crop Establishment	137
		5.2.2	Treatment and Experimental Design	138
		5.2.3	Crop Management	138
		5.2.4	Parameters	139
			5.2.4.1 Plant height, Leaf Area and Plant Dry	
			Matter	139
			5.2.4.2 Plant Growth Rate (PGR)	139
			5.2.4.3 Yield Components and Grain Yield	139
	5.3	Results	s and Discussion	140
		5.3.1	Plant Height and Leaf Area	140
		5.3.2	Plant Dry Weight (Biomass) and Plant Growth	
			Rate	142
		5.3.3	Yield Components and Grain Yield	144
	5.4	Conclu	isions	146
6	GEN	ERAL D	DISCUSSION AND CONCLUSIONS	148
RE	FERE	NCES		163
AP	PENDI	CES		182
			E AUTHOR	205
-				

LIST OF TABLES

Table		Page
2.1	Development Stage Description for Soybean	15
3.1	Germination Percentage of Fresh Soybean Seeds Produced in Dry and Wet Season Harvested at Different Time of Harvest	60
3.2	Germination Percentage of Fresh Seeds of Six Soybean Cultivars Harvested at Different Time of Harvest	62
3.3	Germination Percentage of Desiccated Soybean Seeds Produced in Dry and Wet Seasons Harvested at Different Time of Harvest	63
3.4	Germination Percentage of Desiccated Seeds of Six Soybean Cultivars (Over Seasons) Harvested Different Time of Harvest	65
3.5	Conductivity of Seed Leachates of Six Soybean Cultivars Produced in Dry and Wet Seasons	66
3.6	Conductivity of Seed Leachates of Six Selected Soybean Cultivars Produced in Dry and Wet Seasons Harvested at Different Time of Harvest	68
3.7	Seed Coat to Seed Ratio of Six Soybean Cultivars Produced in Dry and Wet Seasons and, Season and Cultivar Average	70
3.8	The Estimates of Potential Longevity (K_i) of Seed Lots of Six Soybean Cultivars Produced in Dry and Wet Seasons Harvested at Four Developmental Stages (Four Harvest Times)	76
3.9	Simple Correlation Coefficient between Sugars and Seed Potential Longevity and Among Sugars	87
3.10	The Relative Content of Pectin Methyl Esterase (PME) in Six Selected Soybean Cultivars Produced in Dry and Wet Seasons Harvested at Four Developmental Stages	92
4.1	Mean Seed Dry Weight of Nine Seed Lots Used in this Study	102
4.2	Seed Size Proportion by Weight for Three Soybean Cultivars Produced During Dry and Wet Seasons and Separated into Three Seed Size Classes	107

4.3	Standard Germination of Seeds of Three Soybean Cultivars Produced in Dry and Wet Seasons Separated into Three Seed Size Classes	108
4.4	Potential Longevity (K_i) and $1/\sigma$ (in bracket) of Seed Lots of Three Soybean Cultivars Produced in Dry and Wet Seasons Separated into Three Seed Size Classes	111
4.5	Seed Coat to Seed Ratio (%) of Three Soybean Cultivars Produced in Dry and Wet Seasons Separated into Three Seed Size Classes	113
4.6	Simple Correlation Coefficient (r) between Sugars and Seed Potential Longevity and Among Sugars	129
4.7	The Relative Content of PME in Seed Lots Differing in Seed Size in Three Soybean Cultivars Produced in Dry and Wet Seasons	132
5.1	Single Effect of Season on Plant Height and Leaf Area at Two and Five Weeks After Sowing	140
5.2	Plant Height and Leaf Area of Soybean at Two and Five Weeks After Sowing (WAS) from Seed Lots Differing in Seed Size of Three Soybean Cultivars Originating from Dry and Wet Seasons	141
5.3	Plant Biomass at Two and Five Weeks After Planting (WAS) and Plant Growth Rate between Two to Five WAS in Three Soybean Cultivars Planted in Screen House	143
5.4	Single Factor Effect of Cultivar and Seed Size on Yield Components and Grain Yield of Soybeans	145

LIST OF FIGURES

Figure		Page
2.1	An Illustration of the Relation between Seed Survival Curve (A) and Seed Viability Line (B)	12
2.2	The General Pattern of Seed Development With Three Conceptual Phases Showing Temporal Changes in FW (Fresh Weight), DW (Dry Weight) and MC (Moisture Content)	15
2.3	The Amino Acids Sequence of the Primery Structure of PME. Histidine and Tyrosine are the Only Two Residue Types that have been Ascribed Fuctional Importance in the Enzyme Activity	29
2.4	Diagram Showing the Existing Cropping System of Soybean Based on Agro-ecological Condition in Indonesia and Soybean Seed Flow	44
3.1	Changes in Seed Moisture Content (%) and Mean Seed Dry Weight (mg) of Soybean cv. Dieng (A), Tidar (B) and Wilis (C) Produced in Dry and Wet Seasons Harvested at Four Developmental Stages	57
3.2	Changes in Seed Moisture Content (%) and Mean Seed Dry Weight (mg) of Soybean cv. Cikurai (A), Argomulyo (B) and Burangrang (C) Produced in Dry and Wet Seasons Harvested at Four Developmental Stages	58
3.3	Survival Curves of Soybean Seed cv Dieng (A), Tidar (B), Wilis (C), Cikurai (D), Argomulyo (E) and Burangrang (F) Produced in Dry Season	72
3.4	Survival Curves of Soybean Seed cv. Dieng (A), Tidar (B), Wilis (C), Cikurai (D), Argomulyo (E) and Burangrang (F) Produced in Wet Season	73
3.5	The Content of Stachyose, Raffinose and Oligosaccharides of Soybean Seeds (Over Seasons and Time of Harvests) Produced in Dry and Wet Seasons	78
3.6	The Content of Galactose, Glucose, Fructose and Monosaccharides in Seed of Soybeans (Over Cultivars and Time of Harvests) Produced in Dry and Wet Seasons	79

3.7	The Content of Galactose, Glucose and Fructose of Seeds in Six Soybean Cultivars Over Seasons and Time of Harvests	80
3.8	The Effect of Time of Harvests on Sugar Content in Seed of Soybeans Produced in Dry and Wet Seasons	84
4.1	Survival Curves of Three Seed Lots Differing in Seed Size of Soybean cv. Dieng (A), Wilis (B) and Argomulyo (C) Produced in Dry and Wet Seasons	110
4.2	Rate of Seed Imbibition of Seed Lots Differing in Seed Size in Three Soybean Cultivars <i>i.e.</i> A: Dieng, B: Wilis, and C: Argomulyo Produced in Dry and Wet Seasons	116
4.3	The Content of Fructose, Galactose, Monosaccharides and Sucrose in Seed of Three Soybean Cultivars Produced in Dry and Wet Seasons	121
4.4	The Content of Stachyose, Raffinose and Oligosaccharides in Seeds of Three Soybean Cultivars Produced in Dry and Wet Seasons	122
4.5	The Content of Galactose and Glucose in Seed of Three Soybean Cultivars Differing in Seed Size Within Cultivar (Large, Medium and Small) Produced in Dry and Wet Season	124
4.6	The Content of Stachyose and Oligosaccharides in Seed of Three Soybean Cultivars Differing in Seed Size Within Cultivar (Large, Medium and Small) Produced in Dry and Wet Season	125
4.7	The Content of Raffinose in Seed of Three Soybean Cultivars Differing in Seed Size Within Cultivar Produced in Dry and Wet Seasons	127
6.1	The Diagram Showing the Involvement of PME on Seed Deterioration and Seed Quality	159

LIST OF PLATES

Plate		Page
3.1	The Physical Appearance of Harvested Crop (cv. Wilis) Coinciding With the Four Developmental Stages of Soybean.	49
3.2	Electrophoretic Profile of Seed Protein of Soybean cv. Dieng (A) and Tidar (B), Produced in Dry Season (Lane 1-4, Each Indicates H1-H4) and Wet Season (Lane 5-8, Each Indicates H1-H4)	89
3.3	Electrophoretic Profile of Seed Protein of Soybean cv. Wilis (A) and Cikurai (B), Produced in Dry Season (Lane 1-4, Each Indicates H1-H4), and Wet Season (Lane 5-8, Each Indicates H1-H4)	90
3.4	.Electrophoretic Profile of Seed Protein of Soybean cv. Argomulyo (A) and Burangrang (B), Produced in Dry Season (Lane 1-4, Each Indicates H1-H4) and Wet Season (Lane 5-8, Each Indicates H1-H4)	91
4.1	Seeds of Soybean cv. Dieng, Wilis and Argomulyo Separated into Three Seed Size Classes	102
4.2	Electrophoretic Profile of Seed Protein of Soybean cv. Argomulyo, Wilis and Dieng Produced in Dry (A) and Wet (B) Seasons, Each Consists of Three Seed Size Classes <i>i.e</i> Large, Medium and Small	131

LIST OF ABBRIVIATIONS / NOTATIONS

°C	: Degree Celcius
AA	: Accelerated Aging
Anova	: Analysis of Variance
AOSA	: Association of Official Seed Analysts
APS	: Ammonium Peroxydisulphate
BIS	: N. N'-Methylenbisacrylamide
BPB	: Bromophenol Blue
BSA	: Bovine Serum Albumin
cm	: centimeter
D	: Day
DAS	: Day(s) After Sowing
DMRT	: Duncan's Multiple Range Test
EC	: Enzymes Catalog
et al.	: et alia
g	: gram
На	: Hectare
ISTA	: International Seed Testing Association
<i>i.e</i> .	: id est L.
KDa	: Kilodalton
Kg	: Kilogram
L	: Liter
mg	: milligram
ma	: milliampere
mL	: milliliter
mm	: millimeter
М	: Molar
nm	: nanometer
PAGE	: Polyacrylamide Gel Electrophoresis
PME	: Pectin Methyl Esterase
ppm	: part per million

rpm	: rotary per minute
SAS	: Statistical Analysis System
SDS	: Sodium Dodecyl Sulfate
t	: tonnes
TEMED	: N, N, N, N, - Tetramethylethylendiamine
Tris-HCl	: Tris-(hydroxymethyl)-aminomethane Hydrochloric Acid
mg	: microgram
Wb	: Wet basis