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ABSTRACT

This work proposes an output feedback controller for stabilization of the quadrotor underactuated 
system in the presence of time varying disturbances and model uncertainties. The proposed control is 
an improvement to the sliding mode control (SMC). An extended high-gain observer (EHGO) when 
combined with sliding mode control (SMC) able to give feasible performance beyond the performance 
of the standard sliding mode. It is able to bring the state trajectories of the closed-loop system close to 
the target system with a smaller ultimate bound of error and smaller control magnitude. The proposed 
method is illustrated by simulation.
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INTRODUCTION

The vertical take-off and landing (VTOL) 
vehicle such as quadrotor is perceived to 
have good potential in various applications 
such as monitoring, surveillance, and search 

and rescue (SAR) mission. The quadrotor 
hovering capability makes it the best choice 
for near monitoring applications within 
confined areas. The quadrotor unmanned 
aerial vehicle (UAV) is in the group of 
underactuated system because of  its four-
input actuator that allows to control six degree 
of freedom outputs. It is classified as a second 
order nonholonomic, thus the controller 
design and stability analysis are complicated. 
The control problem of quadrotors has been 
confronted using several different approaches 
from leading research teams worldwide. 
Earlier works focuses on stabilization of the 
vehicle using linear approach (Bouabdallah 
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et al., 2004) and nonlinear approach (Hoffmann et al., 2007; Bouabdallah & Siegwart, 2007; 
Benallegue et al., 2006).However, the stability is not guaranteed when the vehicle is flying in 
the presence of model uncertainties and external disturbances. 

The controller design that includes uncertainties and disturbances and capable of 
disturbance rejection generally focuses on two direction, either adaptive method such as the 
work by Chen et al. (2014) or disturbance-observer (DOB) method. DOB has advantage as 
opposed to the adaptive technique in terms of flexibility and design simplicity (Dong et al., 
2014). In DOB-based controller, the nominal model is retained while an observer is designed 
and added into the control to estimate and cancel the disturbance. 

The study on robust control for trajectory tracking in real time is still new. A robust sliding-
mode or high-gain observer can be used as the DOB-based controller to perform this mission. 
The use of sliding-mode observer had been reported by several authors (Benallegue et.al., 
2008; Besnard et al., 2012). However, the use of high-gain observer as DOB-based for robust 
trajectory control of a quadrotor is still lacking so far. According to (Freidovich & Khalil, 2008) 
the high-gain observer is  simpler  compared to the sliding-mode approach.

The backstepping technique combined with DOB for robust trajectory tracking of the 
quadrotor proposed by (Dong et al., 2014) is  promising. However, the backstepping method 
is not suitable for a complex system because the controlling  algorithm is based on a recursive 
method involving complex mathematics. In complex mission, the backstepping controller 
will involve heavy mathematical coding and computation which is time consuming and error 
prone  during start up. 

Sliding mode control is one of the well-known approaches for  handling nonlinear systems 
that are under presence of uncertainties and external disturbances (Mokhtari & Cherki, 2015). 
The advantage of sliding mode control lies in  its robustness and simplicity of  implementation. 
However, the drawback of the sliding mode control is the chattering effect arising from  high 
frequency switching. The chattering effect is usually solved by replacing the discontinuous 
switching to continuous switching. However, the drawback of using continuous switching is 
the error convergence of the states is uniformly ultimately bounded, instead of converging to 
zero in finite time. 

A controller based on sliding mode control proposed by Xu and Özgüner (2008) for 
stabilizing  a class of underactuated systems has an attractive  sliding surface. The sliding surface 
presented is able to globally stabilize all degrees of freedom including those which are indirectly 
actuated through the nonlinear coupling. However, the ultimate bound of the steady state error 
it produces is large. In this paper, we propose an improvement to the controller proposed by (Xu 
& Özgüner, 2008) . We use an extended high-gain observer (EHGO) as estimator to estimate the 
unknown states and the uncertainties and disturbances. The estimated states will be used in the 
controller and at the same time the estimated uncertainties and disturbances are continuously 
cancelled in the control. In simulation, we are able to show that our proposed method able to 
improve the performance of the standard sliding mode controller.  The proposed control able 
to give smaller ultimate bound of error at a smaller magnitude of control signal.

This paper begins with a presentation of the dynamic model of the quadrotor vehicle and 
the transformation of the model to a cascade form for control design. This is followed with 
a presentation  of proposed controller in a state feedback form. We assume that all states, 
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uncertainties and disturbances are known and available for the controller. An analysis between 
the proposed controller and standard SMC approach is undertaken and the proposed design of 
EHGO and  output feedback control is presented. The efficiency of the proposed controller is 
illustrated through simulation using Matlab and Simulink. 

PRELIMINARIES

Dynamic Model and Transformation

A simplified nominal model of a quadrotor UAV as shown in Figure 1 can be represented as 
follows. More detail of its configuration can be found in (Bouabdallah, 2007;Altug, Ostrowski, 
& Mahony, 2002)
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The controller design for the fully actuated subsystem is constructed using sliding mode and 
PID-based control following (Xu & Özgüner, 2008). In this paper, we will focus on the design 
of disturbance rejection mechanism to optimize the control performance for the underactuated 
subsystem Eq. (2) in the presence of time-varying disturbances and uncertainties. The control 
of underactuated system is important for stabilizing the vehicle in the longitudinal and lateral 
motion during trajectory.
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Design of EHGO and Output Feedback Control

The EHGOs for the position and rotational dynamics are designed as two different observer  
(Khalil, 2014):
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The saturation value M2 is determined such that the saturation functions will not be invoked 
under state feedback. 
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 The state feedback controller described by Eq. (6) was 
implemented using the following parameter values: c1=20, c2=22,c3=8, M1=6, µ=0.1, η=0.1.

The proposed output feedback controller which is described by Eq. (13) was implemented 
using the same parameter values as the state feedback mentioned above. The saturation limits   
are chosen to be slightly greater than the maximum absolute values of the states, respectively, 
observed in state feedback control simulations. Meanwhile, the following parameter value 
were used for EHGO Eq. (10) -(11): α11 = α12 = α21= α22 = 3, and α13 = α23= 1. The initial states 
of state feedback and output feedback are x1(0) = 2, 2,x2(0) = 0,x3(0) = 0.5, and x4(0) = 0. The 
initial conditions set for EHGO are     and  

To investigate the performance of the proposed control with regard to the standard SMC, 

we simulate the closed-loop system using proposed control Eq.(13) at three cases : EHGO at 

   and  .The results are shown in Figure 2 and 3. The transient 

response of the trajectories as shown in Figs.(2a)(2c) and Figs.(3a)(3c) has significant 

deviation in the overshoot and settling time as compared to the standard SMC. However, as 

reduces, the overshoot and settling time improves slightly. However, it is expected that the 

proposed method will produce slight deviation transient response from the standard SMC. 

This is because the proposed control is an output feedback form while it is compared to the 

standard SMC that is in a state feedback form. In the standard SMC Eq. (6), we assumed all 

states are known and available to be used in the control. However, this assumption is not 

valid in practical settings due to limitation of sensors. Contrary to that, the proposed method 

is more practical because it assumes limited sensors are available and uses robust observer to 

estimate other unknown states.  

The efficiency of our proposal is obvious at the steady state as shown in Figure(2b) (2d) 

and Figure(3b) (3d). The proposed technique and standard SMC able to bring the trajectory 

of x and y to converge to ultimate bound around zero. However, inside the boundary layer the 

proposed technique able to bring the trajectory to smaller ultimate bound which means closer 

to the desired position as shown in Figure (2b) and Figure(3b). The performance of the 

proposed method also depends on the gain , ,  from the EHGO. As the gains increases 

as shown in Figure 4, the overshoot and the settling time are getting smaller and the transient 

response is closely following the standard SMC.  The proposed technique can be 

implemented at smaller control magnitude as presented in Figure 5. The result justifies t 

using disturbance estimator for the purpose of  estimating the disturbance and then cancel it 

in the control gives smaller ultimate bound in the position trajectory with smaller control 
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.
To investigate the performance of the proposed control with regard to the standard SMC, 

we simulate the closed-loop system using proposed control Eq.(13) at three cases : EHGO 
at ε = 0.01, ε = 0.002 and ε = 0.001.The results are shown in Figure 2 and 3. Although the 
transient response trajectories as shown in Figures (2a)(2c) and Figures (3a)(3c) are showing 
large deviation in the overshoot and settling time as compared to the standard SMC, however 
as ε reduces, the overshoot and settling time improves slightly. It is expected that the proposed 
controller to produce slight deviation in the transient response from the standard SMC. This is 
because the proposed control is an output feedback form while it is compared to the standard 
SMC that is in a state feedback form. In the standard SMC Eq. (6), we assumed all states 
are known and available to be used in the control. However, this assumption is not valid in 
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practical settings due to limitation of sensors. Contrary to that, the proposed method is more 
practical because it assumes limited sensors are available and uses robust observer to estimate 
other unknown states. 

The efficiency of our proposal is obvious at the steady state as shown in Figure 2(b) and 
2(d) and Figure 3(b) and 3(d). The proposed technique and standard SMC able to bring the 
trajectory of x and y to converge to ultimate bound around zero. However, inside the boundary 
layer the proposed technique able to bring the trajectory to smaller ultimate bound which means 
closer to the desired position as shown in Figure 2(b) and Figure 3(b). The performance of the 
proposed method also depends on the gain  α1, α2, α3 from the EHGO. As the gains increases 
as shown in Figure 4, the overshoot and the settling time are getting smaller and the transient 
response is closely following the standard SMC.  The proposed technique can be implemented 
at smaller control magnitude as presented in Figure 5. The result justifies t using disturbance 
estimator for the purpose of  estimating the disturbance and then cancel it in the control gives 
smaller ultimate bound in the position trajectory with smaller control effort needed to produce 
that performance, as compared to dominating the disturbance. 

Figure 2. Trajectories of x and θ 

proposed technique able to bring the trajectory to smaller ultimate bound which means closer 

to the desired position as shown in Figure (2b) and Figure(3b). The performance of the 

proposed method also depends on the gain , ,  from the EHGO. As the gains increases 

as shown in Figure 4, the overshoot and the settling time are getting smaller and the transient 

response is closely following the standard SMC.  The proposed technique can be 

implemented at smaller control magnitude as presented in Figure 5. The result justifies t 

using disturbance estimator for the purpose of  estimating the disturbance and then cancel it 

in the control gives smaller ultimate bound in the position trajectory with smaller control 

effort needed to produce that performance, as compared to dominating the disturbance.  
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CONCLUSION 

 We presented a more robust output feedback controller for stabilization of the under-

actuated part of the quadrotor system  which is continuous and time-varying. An EHGO is 

used to estimate the unmeasured states and to compensate for the disturbances and 

uncertainties that appear in the positional and rotational link of the quadrotor.  The efficiency 

of the proposed technique was compared over the standard sliding mode control. Numerical 

simulation carried out shows that the proposed output feedback control produces the same 

output response as the state feedback sliding mode control, with the exception  of some short 

overshoot and higher settling time. However, the proposed output feedback is able to improve 
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Figure 3. Trajectories of y and ψ 

Figure 4. x trajectories at  0.001 and varying α1, 
α2, α3 

the steady state error utilizing smaller magnitude of control signal.   
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CONCLUSION

We presented a more robust output feedback controller for stabilization of the under-actuated 
part of the quadrotor system  which is continuous and time-varying. An EHGO is used to 
estimate the unmeasured states and to compensate for the disturbances and uncertainties that 
appear in the positional and rotational link of the quadrotor.  The efficiency of the proposed 
technique was compared over the standard sliding mode control. Numerical simulation carried 
out shows that the proposed output feedback control produces the same output response as the 
state feedback sliding mode control, with the exception  of some short overshoot and higher 
settling time. However, the proposed output feedback is able to improve the steady state error 
utilizing smaller magnitude of control signal.  
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