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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the Degree of Master of Science 

 

OPTIMIZING NANO-SOLUTION COATING METHOD AND BALL MILLING  

METHOD TO ACHIEVE MAXIMUM NON-LINEARITY PROPERTY FOR 

ZnO- BASED LOW-VOLTAGE VARISTOR CERAMICS 

 

By 

 

MASOUMEH DORRAJ 

 

July 2014 

 

Chairman : Professor Azmi Zakaria, PhD 

 Institute        :  Advance Technology 

 

In ZnO based low voltage varistor ceramics, the microstructure development is depends 

on Bi2O3, TiO2 and Sb2O3 molar ratio. Thus, the selection of a composition with an 

appropriate molar ratio is completely important. In this study, the optimal levels of these 

dopants to achieve maximized nonlinear electrical property (alpha) were quantified by the 

response surface methodology (RSM) for the nano-solution coating (NSC) and ball 

milling (BM) methods. Secondly, the electrical and physical properties of optimized 

samples obtained by both methods were compared with each other. The central composite 

rotatable design consisting of three variables and alpha as a response, with 20 runs was 

used to conduct the experiments in each method. To obtain actual responses, the design 

was performed in laboratory by the NSC and BM methods. For both methods, the actual 

responses were fitted into a valid second order polynomial model. Then the analysis of 

variance (ANOVA) showed that the actual responses could be adequately fitted to 

quadratic polynomial model by several evidences.  For the NSC method, these evidences 

included the high F-value (77.56), very low P-value (<0.0001), R-squared (0.986), 

adjusted R-squared (0.973) and predicted R-squared (0.950), while for the BM method 

consisted of the F-value (28.79), very low P-value (<0.0001), R-squared (0.963), adjusted 

R-squared (0.930) and predicted R-squared (0.780). The optimum values of additives were 

investigated by graphical and numerical optimization methods for both techniques. Based 

on these optimization methods, for NSC technique, the optimum values of Bi2O3, TiO2 

and Sb2O3 in maximum alpha (14.52) were predicted 0.52, 0.50 and 0.30, respectively, 

while for BM technique in maximum alpha (9.47) were predicted 0.44, 0.40 and 0.29, 

respectively. Experiments were then carried out under the recommended conditions and 

resulting responses were compared to the predicted values. The results for both methods 

were quite close to the alpha values by the equation models. In conclusion, RSM has been 

successful for modeling and optimizing the additives such as Bi2O3, TiO2 and Sb2O3 of 

ZnO-based low voltage varistor ceramic to achieve maximized non-linearity properties in 

both methods. The highest value of alpha was obtained by NSC method (14.55) in 

compare the BM method (9.43).  Moreover, the improvement in electrical properties of 

varistors made by NSC method could be explained by the homogeneous distribution of 

various dopant in the mixed powder and the more chemically uniform in structures.  



© C
OPYRIG

HT U
PM

ii 
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PENGOPTIMUMAN KAEDAH- KAEDAH PENYADURAN LARUTAN-NANO 

DAN PENGISARAN-BOLA UNTUK MENCAPAI SIFAT TAK-LINEAR 

MAKSIMA UNTUK SERAMIK VARISTOR BERVOLTAN RENDAH 

BERASASKAN ZnO 

 

 

Oleh 

 

MASOUMEH DORRAJ 

 

Julai 2014 

 

Pengerusi : Profesor Azmi Zakaria, PhD 

Institut            :Teknologi Maju 

 

Dalam seramik varistor bervoltan rendah berasaskan ZnO, pembangunan mikrostruktur 

adalah lebih bersandarkan kepada nisbah molar Bi2O3, TiO2 dan Sb2O3. Oleh itu, 

pemilihan suatu komposisi dengan nisbah molar yang bersesuaian adalah sangat penting. 

Di dalam kajian ini, paras optimum bagi pendopan-pendopan ini untuk mencapai sifat 

elektrik tak-linear (alfa) maksimum telah dikira menggunakan kaedah permukaan 

sambutan (RSM) untuk kaedah penyaduran larutan-nano (NSC) dan pengisaran-bola 

(BM). Keduanya, sifat-sifat fizikal dan elektrikal bagi sampel-sampel teroptimum dari 

kedua-dua kaedah ini telah dibandingkan antara satu sama lain. Reka-bentuk berputar 

komposit pusat terdiri daripada tiga pembolehubah dan alfa sebagai respons, dengan 20 

larian telah digunakan untuk menjalankan eksperimen bagi setiap kaedah. Untuk 

mendapat respons sebenar, reka-bentuk telah dilakukan di dalam makmal menggunakan 

kaedah NSC dan BM. Bagi kedua-dua kaedah, respons sebenar telah disesuaikan ke dalam 

model polinomial peringkat kedua yang sah. Kemudian analisis varians (ANOVA) 

menunjukkan bahawa respons sebenar boleh disesuaikan secukupnya dengan model 

polinomial kuadratik oleh beberapa bukti. Bagi kaedah NSC, bukti-bukti ini termasuk 

nilai-F yang tinggi (77.56), nilai-P yang sangat rendah (<0.0001), kuasa-dua-R (0.986), 

kuasa-dua-R terlaras (0.973) dan R-kuasa dua ramalan (0.950), manakala bagi kaedah BM 

terdiri daripada nilai-F (28.79), nilai-P yang sangat rendah (<0.0001), kuasa-dua-R 

(0.963), R-kuasa-dua-R larasan (0.930) dan kuasa dua-R ramalan (0.780).  Nilai optimum 

bahan-bahan penambah telah disiasat menggunakan kaedah grafik dan pengoptimuman 

angkaan bagi kedua-dua teknik. Berdasarkan kaedah pengoptimuman, untuk teknik NSC, 

nilai optimum bagi Bi2O3, TiO2 dan Sb2O3 untuk alfa maksimum (14.52) telah diramalkan 

0.52, 0.50 dan 0.30, masing-masing, manakala untuk teknik BM, untuk alfa maksimum 

(9.47) telah diramalkan 0.44, 0.40 dan 0.29, masing-masing. Eksperimen seterusnya 

diteruskan dengan keadaan-keadaan yang telah dicadangkan dan keputusan-keputusan 

respons telah dibandingkan dengan nilai ramalan. Keputusan-keputusan bagi kedua-dua 

kaedah adalah hampir sama dengan nilai alfa menggunakan model-model persamaan. 
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Kesimpulannya, RSM telah berjaya bagi pengoptimuman dan permodelan bahan-bahan 

penambah seperti Bi2O3, TiO2 dan Sb2O3 bagi seramik varistor bervoltan rendah 

berasaskan ZnO untuk mencapai sifat-sifat ketaklinearan maksimum bagi kedua-dua 

kaedah.  Nilai tertinggi bagi alfa adalah diperolehi menggunakan kaedah NSC (14.55) 

berbanding dengan kaedah BM (9.43).  Selain itu, penambah-baikan dalam sifat-sifat 

elektrik varistor diperbuat daripada kaedah NSC boleh dijelaskan dengan taburan 

homogen pelbagai pendopan di dalam serbuk tercampur dan keseragaman kimia yang 

lebih dalam struktur.  
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CHAPTER 1 

 

1 INTRODUCTION  

 

1.1 Background 

Zinc oxide based varistors exhibit highly nonlinear current–voltage characteristics which 

have been widely applied in the field of protection against transient voltage surges in 

electronic devices (Abdollahi et al., 2013). Along with the growing demands on very-

large-scale integration electronics, application of low-voltage ZnO varistors are now being 

attracted more attention (Abdullah et al., 2012). The non-linearity properties of ZnO 

varistor  is expressed by I = KVα where K is a constant, and ‘α’ is nonlinear coefficient 

(Balzer et al., 2004). The non-linear characteristic is a  phenomenon  attributed to the 

formation of double Schottky barriers at the ZnO grain boundaries (Wang et al., 2008). 

ZnO based varistors are made by sintering mixture of ZnO grains with small amounts of 

other metal oxides, such as Bi2O3, TiO2 and Sb2O3, at a given temperature (Peiteado et al., 

2007). Microstructurally, the sintered material is made of highly conductive ZnO grains 

with two major secondary phases: a spinal-type phase and a Bi-rich phase which are 

located at the grain boundaries which have strictly effect on nonlinear current-voltage 

characteristic (Zhang et al., 2002). The microstructure of an ideal varistor has uniform 

grain size, shape and composition; minimal porosity and a uniform distribution of 

secondary phases (Puyane et al., 1996). These properties and in particular compositional 

homogeneity, are difficult to achieve by conventional routes. Thus, enhanced electrical 

properties could be achieved by using a more advanced processing technique such as 

nano-technology to approach the ideal ceramic detailed above. Nano-origin varistor 

powders with high degree of  homogeneity in dopant distribution have been attempted 

through a variety of chemical techniques like coprecipitation, sol–gel , microemulsion  

and polymerized complex method (Anas et al., 2010; Wang et al., 2008). However most 

of these methods are complicated and costly, or not suitable to the production of low-

voltage ZnO varistors (Wang et al., 2008). In the present work, the low-voltage ZnO 

varistors were prepared by a novel solution nano-coating technique. 

 

Furthermore, in the microstructure, each of the dopants have a distinctive role in forming 

the electrical characteristics of the varistor ceramics. The Bi2O3 is the basic dopant, which 

creates the nonohmic behavior of ZnO-based varistor ceramics by forming the 

electrostatic barriers at the grain boundaries. Other dopants are added to enhance the 

nonlinear characteristics and control the microstructure development. During the firing 

process, dopants  react with the ZnO and the microstructure of the varistor is formed in 

the presence of a Bi2O3-rich liquid phase (Bernik et al., 2011).  The usual classical 

approach of making low-voltage varistors is through grain coarsening techniques by 

adding grain-growth-enhancing additive such as TiO2 (Daneu et al., 2013). Sb2O3 is a 

standard spinel-forming dopant to produce fine-grained high-voltage varistor ceramics. It 
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enhances the nonlinearity of varistor ceramics and reduces the evaporation of Bi2O3 during 

sintering. However, the major role of Sb2O3 is to control the growth of the ZnO grains. 

The inhibition of  ZnO grain growth in Sb2O3-doped samples is generally explained by a 

reduction in the mobility of grain boundaries by a pinning effect, caused either by 

secondary spinel particles or a fine Sb-rich film on the surface of the ZnO grains (Bernik 

et al., 2004). As a multivariate case, Bernik et al. (2004) have demonstrated that the 

microstructure development is strongly influenced by the TiO2/Bi2O3 in low-voltage 

varstor ceramics and  the  Sb2O3/Bi2O3 ratio in high-voltage varistor ceramics. This report 

reveals the synergistic interaction of dopant in order to achieve a desired microstructure 

with specific electrical properties. On the other hand, the traditional one-factor-at-a-time 

method to optimization is taking a long time and unable to find an accurate optimum due 

to having no concern for interaction between factors. To determine the influence of the 

interactions of doppend on the electrical characteristics of varistors, the molar ratios of the 

additives have to simultaneously be considered. Opposite of what has been stated, 

statistical methods can take into account the interaction of variables in creating the process 

response. Consequently, a statistically designed experiment with minimum experimental 

runs is greatly desired. Response surface methods (RSM) contain a group of empirical 

methods specified for the development of relations existing between a cluster of controlled 

experimental factors and the measured responses, suitable for improving, developing, and 

optimizing processes by carrying out a limited number of experiments based on 

experimental design (Li et al., 2013). In this work, the experiments were designed by 

central composite design (CCD). The composition of the additives such as Bi2O3, TiO2 

and Sb2O3 were considered as effective variables. The design was performed in laboratory 

to obtain the non-linearity coefficient (alpha) as actual response. The responses were used  

for fitting process by using least squares regression analysis. The process proposed a 

provisional model. Adequacy of a proposed model is revealed by diagnostic checking 

provided by analysis of variance (ANOVA). The validated model was used to determine 

the optimum values of the variables. 

 

1.2 The Electrical Properties of ZnO Varistor 

Zinc oxide varistor are ceramic semiconductors devices that have great nonlinearity in 

their current–voltage behavior, and therefore, are broadly utilized for electronic devices 

(Wang et al., 2008). In doped ZnO varistor the nonlinear current-voltage properties can 

can be defined by the experimental relationship J=KEα, where J is the current density, E 

is the applied electric field and α is the coefficient of nonlinearity and K is the persistent 

of proportionality. Good varistors are described by high α in the non-ohmic region 

(Banerjee et al., 2001). The non-linear response originates on its polycrystalline 

microstructure and more precisely in detail thorough procedures happening at the 

grain/grain interfaces (Peiteado et al., 2007). Varistors are manufactured by mixing a 

number of different metal oxides in powder form and the mixture is treated by liquid phase 

sintering to form the final varistor. ZnO is the major ingredient in the oxide mix and Bi2O3 

and Sb2O3 are common additives which enhance the performance of the varistors. The 

process is called liquid phase sintering because the metal oxide mixture is heated at 

temperatures in the series of 1000-1300 oC for a long time in a furnace. The additives melt 
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at these temperatures while the ZnO grains stay crystalline which means that the ZnO 

grains are floating in a melt of metal oxides during the sintering. It is believed that 

conduction electrons close to the grain boundaries are attracted towards, and trapped in 

particular electron states (Leach, 2005; Peiteado et al., 2007). These are called interface 

states and are located in the grain boundaries as is indicated in Figure 1.1. 

 

 
 

Figure 1.1. Sketch of the charge distribution in the vicinity of a grain boundary. Q 

is the charge trapped in the localized states in the grain boundary and the shaded 

area is the depletion region. (Carlsson, 2002) 

This creates a depletion region on both parts of the grain boundaries. The depletion region 

acts as a barrier for the electron current across the grain boundaries according to the 

Double Schottky Barrier (DSB) model, because there are no free conduction electrons 

which can sustain the electron flow from one grain to the next. The trapping of electrons 

at the grain boundary is voltage dependent since the electrons start to get enough energy 

from the applied field to leave the interface states at a critical voltage. The barrier 

disappears and the conduction electrons can maintain an electron  flow also in the grain 

boundary region (Carlsson, 2002). The existence of potential barriers in turn creates 

critical voltages for breakdown per boundary and the total breakdown voltage of the 

device becomes proportionate to the number of such grain boundaries in between two 

electrodes (Banerjee et al., 2001). From the schematic of  Figure 1.2, it is obvious that the 

electrical features of ZnO varistors are associated to the bulk of material. This inherently 

multijunction feature of varistor cause its action shared between the different ZnO grain 

boundaries (Levinson and Philipp, 1986).  
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Figure 1.2. Schematic of the microstructure of ZnO varistor 

(Meshkatoddini, 2011) 

 

 

This then suggests that the breakdown voltage, VB is a matter of constructing a varistor 

related to the number of grains, n, in sequence between the electrodes through the relation:  

                                                  VB = n vg =D vg /d                                                    (1.1) 

where d  is the ZnO grain size D the electrode spacing and vg is the breakdown voltage per 

grain boundary. Therefore, to attain a given breakdown voltage one could alter the varistor 

thickness (for fixed grain size) or another one could change the grain size (for the device 

thickness constant). 

 

1.2.1 ZnO Low-voltage Varistor 

Applying of  low-voltage varistors for circuit supporting are progressively important 

owing to rising requests on low-voltage electronics. For example, mobile appliances and 

battery powered necessitate support from transient dc voltage of between               4 to 20 

V. (Abdullah et al., 2012). The electrical features of low-voltage ZnO varistors are 

thoroughly connected to their microstructure  and composition, specially the ZnO grain 

size and the construction at the grain boundaries. As the breakdown voltage (VB) of the 

varistor is proportional to the number of ZnO grains in sequence between the electrodes, 

two major procedures have been utilized for production of low-voltage ZnO varistors . 

One method is thinning the devices. This may either be from a screen printed paste of 

dopants (Schwing and Hoffmann, 1981) or a solid dopant layer sandwiched between two 

ZnO substrates (Selim et al., 1980). However, the thin ZnO varistors are challenging to 

make and suitable for breaking. The other is the classical method of choosing additives 

that motivate grain growth. The most significant additives are TiO2, which can 
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significantly increase the grain growth of ZnO, therefore is frequently utilized as a grain 

growth enhancing additive to create low-voltage ZnO varistors (Trontelj et al., 1986). 

 

1.3 Fabrication of Polycrystalline Ceramics  From Powders 

The fabrication of ceramics from powders is illustrated in the flow chart shown in Figure 

1.3. 

 

 

 

 

                                                                     Mixing 

 

                                                               Consolidation 

 

 

 

                                                                     Firing 

 

 

 

Figure 1.3. Basic flow chart for the production of polycrystalline ceramics by firing 

of consolidated powders. (Rahaman, 2007) 

 

In most cases, the fabrication process starts from a mass of powder obtained from 

commercial sources. Nevertheless, knowledge of powder synthesis methods is very 

important. Equally important are methods that can be used to determine the physical, 

chemical, and surface characteristics of the powder. The characteristics of the powder rely 

intensely on the technique utilized to synthesize it, and these, in turn, affect the subsequent 

processing of the ceramic. The more details are explained in section 1.4. The consolidation 

of ceramic powders to produce a green body is commonly referred to as forming. The 

main forming methods include: dry or semidry pressing of the powder (e.g., in a die). It is 

found that the green body microstructure has importance effects on the subsequent firing 

stage. If severe variations in packing density occur in the green body, then under 

Powder 

Shaped Powder Form 

         (green body) 

 Dense Polycrystalline 

             Product 
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conventional firing conditions, the fabricated body will usually have a heterogeneous 

microstructure that limits the properties and reliability. 

After consolidation, the green body is heated to yield the preferred microstructure. The 

alterations happening through out this stage might be quite complicated, relying on the 

difficulty of the initiating materials. (Lee, 1994; Rahaman, 2007).  

 

1.4 Synthesis of Powders 

The characteristics of the powder have a remarkable effect on subsequent processing, such 

as consolidation of the powder into a greenbody and firing to produce the desired 

microstructure. The significant relations between atomic structure, chemical composition, 

microstructure, fabrication, and properties of polycrystalline ceramics are illustrated in 

Figure 1.4. As a result, powder synthesis is very important to the overall fabrication of 

ceramics. The desirable characteristics that a powder should possess for the production of 

successful ceramics are explained in the next topic (Rahaman, 2007). 

 

                                                            Chemical  

                                                          Composition 

 

                                        Ceramic  

                                     Fabrication 

                                               

 

                 Microstructure           Properties 

 

Figure 1.4. The important relationships in ceramic fabrication 

 

1.4.1 Desirable Powder Characteristic 

Advanced ceramics must meet very specific property requirements and therefore their 

chemical composition and microstructure must be well controlled. Advanced ceramics 

include ceramics for electrical, magnetic, electronic, and optical applications. Careful 

attention must be paid to the quality of the starting powders. For advanced ceramics, the 

important powder features are the size, size distribution, shape, state of agglomeration, 

chemical composition. These properties have an significant influence on both the powder 

consolidation stage and the microstructure of the fired body. The most profound effect of 

the particle size, however, is on the sintering. The rate at which the body densifies 

increases strongly with a decrease in particle size. Normally, if other factors do not cause 

severe difficulties during firing, a particle size of less than ~ 1μm permits the attainment 
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of great density in a sensible time (e.g., few hours). Homogeneous packing of a narrow 

size distribution powder generally allows greater control of the microstructure. 

Agglomerates result in heterogeneous packing in the green body that, in turn, result in 

differential sintering during the firing stage. Differential sintering occurs when diverse 

areas of the body shrink at diverse rates (Ma and Lim, 2002; Rahaman, 2007). This can 

lead to serious problems such as the development of large pores and crack like voids in 

the fired body. Surface impurities may have a significant influence on the dispersion of 

the powder in a liquid, but the most serious effects of variations in chemical composition 

are encountered in the firing stage. Impurities may lead to the formation of a small quantity 

of liquid phase at the sintering temperature, which causes selected growth of large 

individual grains. In such a case, the achievement of a fine uniform grain size would be 

impossible (Rahaman, 2007). To summarize, the desirable powder characteristics for the 

fabrication of advanced ceramics are listed in Table 1.1. 

 

Table 1.1. Desirable Powder Characteristics for Advanced Ceramics 

Powder characteristic                                Desired property 

   Particle size                       Fine(˂ ~ 1μm) 

   Particle size distribution                            Narrow or monodisperse 

   State of agglomeration                               No agglomeration or soft agglomerate 

   Chemical composition                               High purity 

 

1.5 Optimization 

Optimization refers to developing the performance of a system, a procedure, or a product 

in order to obtain the highest benefit from it. Optimization has been commonly utilized in 

analytical chemistry as a means of exploring circumstances at which to apply a process 

which creates the greatest possible response (Araujo and Brereton, 1996). Traditionally, 

optimization in analytical chemistry has been carried out by observing the effect of one 

factor at a moment on an experimental response. Whereas just one parameter is altered, 

others are maintained at a constant level. This optimization method is named one-variable-

at-a-time. Its main disadvantage is that it does not involve the interactive effects amongst 

the variables considered. As a result, this method does not represent the whole effects of 

the parameter on the response (Lundstedt et al., 1998). Another detriment of the one-factor 

optimization is the growth in the quantity of experimentations necessary to conduct the 

study, that results in a raise of expenses and time and also a raise in the consumption of 

materials and reagents. In order for overcoming this difficulty, the optimization of 

analytical processes has been carried out through utilizing multivariate statistic 

techniques. Amongst the most pertinent multivariate methods used in analytical 

optimization is response surface methodology (RSM). Response surface methodology is 

a collection of statistical and mathematical methods based on the fit of a polynomial 

equation to the experimental data, that must describe the behavior of a data set with the 

objective of making statistical previsions. It could be well applied when a response or a 

set of responses of interest are affected by numerous variables. The objective is to 

simultaneously optimize the levels of these variables to attain the best system performance 
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(Bezerra et al., 2008). This method consists of changing or manipulating levels or amount 

of selected independent variables to investigate their effect on the dependent variables 

(Brown and Melamed, 1990). RSM was applied by Box and collaborators in the 50s 

(Gilmour, 2006). This term was initiated from the graphical perspective produced after 

fitness of the mathematical model                              (Teófilo and Ferreira, 2006). 

 

1.6 Research Problem and Hypothesis 

In fabrication of the varistors, homogeneity of the additive is the critical point for 

producing good varistor microstructure. The first problem is that varistor ceramic with 

inhomogeneous microstructure has negative effect on the current–voltage characteristics 

due to high local currents. In other words, to achieve a uniform sintered  microstructure, 

uniformly packed  particles with a narrow size distribution are needed. As is well known, 

nanoparticles yield a narrow grain size distribution. In order to  get such uniform 

nanoparticles with a narrow size distribution, the nano-solution coating process for doped 

ZnO synthesis provides an efficient way to increase the microstructural homogeneity. In 

addition in this method, more additive atoms could be accommodated at the boundary 

regions to better control and improve the electrical  properties of resulting materials. The 

hypothesis is that nano-solution coating method can be more efficient than the 

conventional method because it provides the desired microstructures and consequently 

improved electrical properties. The second problem is that the additives have been 

optimized by the traditional methods such as one variable at a time. The method is 

changing one parameter at a time while the other parameters are kept constant that 

provides the information related to that particular parameter only. This method of 

optimization is time consuming and cannot take the mutual interactions of the parameters 

during performance. The statistical procedures such as RSM provides an alternative 

technique to optimize the productive process by considering the interactions between the 

variables and gives an estimate of the combined effect of these variables on final result. 

The other hypothesis is that RSM is able to optimize the input variables such as the mole 

fraction of Bi2O3, TiO2 and Sb2O3 to achieve the maximum homogeneity and 

consequently non-linearity property. 

 

1.7 Objectives 

In this study two fabrication methods of low-voltage varistor  have been performed 

according to CCD experimental design. The performance was carried out to achieve the 

following objectives: 

 

a) To optimize the additives of ceramic (Bi2O3, TiO2 and Sb2O3) in ZnO based low voltage 

varistor via nano-solution coating and ball milling methods by Response surface 

methodology (RSM). 
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b) To compare the physical properties and electrical characteristics of the optimized 

valistors that are fabricated by nano-solution coating and ball milling methods. 

 

1.8 Scope of Study 

The present study reports the results of modeling and optimizing of molar ratio of Bi2O3, 

TiO2 and Sb2O3 as additives for the maximization of alpha in nano-solution coating and 

ball milling methods. CCD of 20 experiments based on RSM by the assistance of  Design-

Expert software version 8.0.7.1, Stat-Ease Inc., USA has been used in each method. A 

model to predict the response (alpha) has been formulated and validated by ANOVA. The 

model optimized the molar ratio of input additives and after that maximized the alpha as 

output. The model also predicted the desired situation involving minimum standard error 

and the maximum alpha that are validated by additional experimentations. The predicted 

samples were considered by Filed Emission Scanning Electron Microscopy (FESEM), 

variable pressure scanning electron microscope (VPSEM), Energy-dispersive X-ray 

(EDX) and X-ray diffractometer (XRD).   

 

1.9 Chapter Organization 

Chapter 2 presents the previous research on non-ohmic devices. In this chapter, the effects 

of additives/dopants selection and reviews related to ceramic varistors prepared from 

solution processes also were briefly discussed. In chapter 3, two methods were introduced 

for fabrication of ZnO based low-voltage ceramic according experimental design. 

Moreover, detailed discussions on sample preparation for each method were explained 

and followed by characterization techniques in this chapter. Finally, it should be noted 

that the software procedures were defined at the end of this chapter. The results and 

discussion begin by data collection according experimental design in the laboratory and 

then continue with analysis of the resulting data by software for both method. Data 

analysis include standard error, result of fitting process, ANOVA, checking adequacy of 

model by different diagnostic plot, model presentation, optimization, prediction and 

validation. Finally, the comparison between methods was performed by the 

characterization of the validated samples. It includes chemical, morphological and 

electrical analyses. Last but not least, chapter 5 summarizes the present study and 

expresses some recommendations for future works. 
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