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Current trend shows that Pr6O11 based ZnO ceramics are actively researched to 

overcome drawbacks in Bi2O3 based varistor materials. However, very little attention 

has been paid to evaluate the stability of these materials against DC degradation which 

causes reduction of device lifetime and poses safety risks to users. DC degradation 

characteristics of four series of Pr6O11 type ceramics prepared through modified citrate 

gelation technique and solid state sintering are therefore investigated. The series are 

System 1 (ZnO + Pr6O11), System 2 (ZnO + Pr6O11 + Co3O4), System 3 (ZnO + Pr6O11 + 

MnO2) and System 4 (ZnO + Pr6O11 + Cr2O3).  The objectives of the present study were 

to determine the microstructure and nonlinear properties as a function of dopant contents 

and sintering conditions, to evaluate the degradation effects due to simultaneous DC 

electrical field and high temperature stresses on nonlinear properties of respective 

varistor system and to investigate the influence of deep levels on varistor degradation by 

using deep level transient spectroscopy (DLTS) technique. The ceramics were 

characterized in terms of microstructure profiles, electrical field-current density 

characteristics, DC degradation behaviour and deep level characteristics.  

 

 

Several important findings of the study are highlighted. PrCrO3 spinel has been 

developed in varistor ceramics doped with 0.8 mol% Pr6O11 and 1.0 mol% Cr2O3. To 

certain extent, Pr6O11 and Cr2O3 suppress grain growth. The average grain size, d and 

average relative density, ρrel decreased with increasing Pr6O11 and Cr2O3 contents. 

Co3O4 and MnO2 promoted grain growth and densification. Therefore, the d and ρrel 

values increased with their increasing contents. Electrically, Pr6O11 served as grain 

boundary activator whereas Co3O4, MnO2 and Cr2O3 further enhanced the nonlinearity. 
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The nonlinear coefficient, α and breakdown field, Eb values increased and the leakage 

current density, JL value decreased up to certain extent of dopant contents. In the 

temperature range of 1200 to 1275 
o
C, most systems demonstrated that d and ρrel values 

improved with increasing sintering temperature. Similar trend was observed when the 

sintering time was varied between 1 to 7 hours. Nonlinear properties were improved 

with increasing sintering temperature and time until an optimum point was reached. 

Extreme sintering temperature and extended sintering time deteriorate nonlinear 

characteristics.  

 

 

Ceramics with the highest ρrel value (97.88 + 0.28 %) were obtained from System 1. The 

ceramics were doped with only 0.2 mol% Pr6O11 and sintered at 1225 
o
C for 1 hour. 

Ceramics with the largest d value (18.62 + 4.16 μm) were identified in System 2 which 

contained 0.8 mol% Pr6O11 and 0.4 mol% Co3O4. They were sintered at 1250 
o
C for 3 

hours. The most pronounced nonlinearity was observed in ceramics of System 4 which 

were doped with 0.8 mol% Pr6O11 and 0.6 mol% Cr2O3. The corresponding ceramics 

have been sintered at 1200 
o
C for 1 hour and demonstrated the α value of 6.04. + 0.02, 

the Eb value of 127.05 + 0.38 V/mm and the JL value of 327.+.1.µA/cm
2
. 

 

 

All systems degraded under three stages of stress conditions. At each stage, DC 

electrical field of 85% from the breakdown field was applied for 18 hours whereas the 

temperature was increased from 30 to 60 and 125 
o
C in the subsequent stages. The signs 

of degradation included a decrease in the α value, the shifting of Eb value to a lower 

field and a rise in the JL value. Ceramic of System 4 demonstrated the best tolerance to 

DC degradation compared to the rest by exhibiting %ΔEb value of -9.86%, the %Δα of          

-4.37% and the %ΔJL of +13.73%. Comparatively, some Pr6O11 based ZnO varistor 

ceramics obtained in this study exhibited better stability against DC electrical field and 

temperature stress than the more complex Bi2O3 based ZnO ceramics prepared through 

similar citrate gel method. As previously reported, chemically derived Bi2O3 based ZnO 

ceramics that have been doped with more additives such as Sb2O3, MnO, Al2O3, Co2O3, 

NiO, Cr2O3 demonstrated the %ΔEb value of 1.5%, %Δα of up to -37.5%, and the %ΔJL 

of +323% when subjected to comparable three stages of DC electrical field and high 

temperature stresses.  

 

 

DLTS technique confirmed the presence of four electron traps in Pr6O11 based ceramics. 

The bulk trap, L1 and L2 respectively located (0.09 - 0.15 eV) and (0.29 - 0.39 eV) 

below the conduction band edge. They were associated to intrinsic donor defects (Vo and 

Zni) or the complex with extrinsic donor defects (Mn or Co). The interface states, L3 

and/or L4 located between 0.45 to 0.91 eV below the conduction band edge and they 

were associated to defect clusters of zinc vacancy, VZn, adsorbed or chemisorbed oxygen 

and impurities (Pr, Mn or Co). In degraded state, the densities of L1 and L3 traps for 

System 1 and 4 have reduced due to annihilation of defects and desorption of oxygen 

from grain boundary during stress application. The L3 trap in System 4 shifted to a 

higher energy because of new defect clusters formation. In System 2 and 3, the density 
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of L1 trap increased after degradation test due to an increase in intrinsic defects such as 

Vo and Zni and extrinsic donor defects in depletion regions. It was accompanied by an 

increase in density of L3 (System 2) and L4 (System 3) traps which was associated to 

ionization of mid-gap states induced by Co or Mn. 

 

 

In conclusion, degradation of Pr6O11 based  ZnO varistor ceramics which were doped 

with transition metal oxide (Co3O4, MnO2 or Cr2O3) and derived from modified citrate 

gel technique due to prolonged DC electrical field and high temperature stresses was a 

direct effect to Double Schottky Barrier deformation. The degradation mechanisms were 

governed by electromigration and oxygen desorption processes which induced by 

chemical and electronic changes centering at grain boundary interface. 
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Kecenderungan terkini menunjukkan bahawa seramik ZnO berasaskan Pr6O11 dikaji 

secara aktif untuk mengatasi kekurangan bahan varistor berasaskan Bi2O3. Namun, 

kurang perhatian diberikan untuk menilai kestabilan bahan ini terhadap kemerosotan AT 

yang mengakibatkan penurunan jangka hayat peranti dan mendedahkan risiko 

keselamatan terhadap pengguna. Ciri-ciri kemerosotan AT bagi empat siri seramik 

Pr6O11 yang disediakan melalui teknik pengegelan sitrat terubahsuai dan pensinteran 

keadaan pepejal dengan itu disiasat. Siri-siri berkenaan adalah Sistem 1 (ZnO + Pr6O11), 

Sistem 2 (ZnO + Pr6O11 + Co3O4), Sistem 3 (ZnO + Pr6O11 + MnO2) dan Sisyem 4 (ZnO 

+ Pr6O11 + Cr2O3). Objektif kajian ini adalah untuk menentukan sifat-sifat mikrostruktur 

dan ketaklinearan sebagai satu fungsi kandungan pendopan dan keadaan pensinteran, 

untuk menilai kesan-kesan kemerosotan oleh kerana tekanan medan elektrik AT dan 

suhu tinggi serentak terhadap sifat-sifat ketaklinearan bagi setiap sistem dan untuk 

menyiasat pengaruh aras-aras dalam terhadap kemerosotan varistor menggunakan teknik 

spektroskopi fana aras dalam (DLTS). Seramik-seramik dicirikan mengikut profil 

mikrostruktur, ciri-ciri medan elektrik - ketumpatan arus, kelakuan kemerosotan AT dan 

ciri-ciri aras dalam.  

 

 

Beberapa penemuan penting daripada kajian ini ditegaskan. Spinel PrCrO3 telah pun 

dibangunkan dalam seramik varistor terdop dengan 0.8 mol% Pr6O11 and 1.0 mol% 

Cr2O3. Sehingga ke takat tertentu, Pr6O11 dan Cr2O3 menahan pertumbuhan butir. Saiz 

butir purata, d dan ketumpatan relatif purata, ρrel menurun dengan peningkatan 

kandungan Pr6O11 dan Cr2O3. Co3O4 dan MnO2 menggalakkan pertumbuhan butir dan 

penumpatan. Maka, nilai d dan ρrel meningkat dengan peningkatan kandungannya. 
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Secara elektrik, Pr6O11 berfungsi sebagai pengaktif sempadan butir manakala Co3O4, 

MnO2 and Cr2O3 selanjutnya mempertingkatkan ketaklinearan. Nilai pekali 

ketaklinearan, α dan medan runtuh, Eb meningkat dan ketumpatan arus bocor, JL 

menurun sehingga ke suatu takat kandungan pendopan. Di dalam julat suhu 1200 hingga 

1275 
o
C, kebanyakan sistem menunjukkan bahawa nilai d dan ρrel bertambahbaik 

dengan peningkatan suhu pensinteran. Kecenderungan yang sama diperhatikan apabila 

masa pensinteran diubah di antara 1 ke 7 jam. Sifat-sifat ketaklinearan bertambah baik 

dengan peningkatan suhu dan masa pensinteran sehingga suatu titik optimum dicapai. 

Suhu pensinteran ekstrem dan masa pensinteran lanjutan memusnahkan ciri-ciri 

ketaklinearan.   

 

 

Seramik dengan nilai ρrel tertinggi (97.88 + 0.28 %) diperolehi daripada Sistem 1. 

Seramik tersebut didop dengan hanya 0.2 mol% Pr6O11 dan disinter pada 1225 
o
C 

selama 1 jam. Seramik dengan nilai d terbesar (18.62 + 4.16 μm) telah dikenalpasti 

dalam Sistem 2 yang mengandungi 0.8 mol% Pr6O11 dan 0.4 mol% Co3O4. Ia telah 

disinter pada 1250 
o
C selama 3 jam. Ketaklinearan paling ketara telah diperhatikan 

dalam seramik Sistem 4 yang didop dengan 0.8 mol% Pr6O11 dan 0.6 mol% Cr2O3. 

Seramik berkenaan telah pun disinter pada 1200 
o
C selama 1 jam. Seramik yang terhasil 

menunjukkan nilai α sebanyak 6.04. + 0.02, nilai Eb sebanyak 127.05 + 0.38 V/mm dan 

nilai JL sebanyak 327.+.1.µA/cm
2
.  

 

 

Semua sistem merosot di bawah keadaan tiga peringkat tekanan.  Pada setiap peringkat, 

medan elektrik AT setinggi 85% daripada medan runtuh telah dikenakan selama 18 jam 

manakala suhu ditingkatkan dari 30 ke 60 dan 125 
o
C pada peringkat berikutnya. Tanda-

tanda kemerosotan termasuk penurunan dalam nilai α, anjakan nilai Eb ke medan lebih 

rendah dan kenaikan dalam nilai JL. Seramik bagi Sistem 4 menunjukkan ketahanan 

terbaik terhadap kemerosotan AT berbanding yang lain dengan mempamerkan %ΔEb 

sebanyak -9.86%, nilai %Δα sebanyak -4.37% dan nilai %ΔJL sebanyak +13.73%. 

Secara perbandingannya, sebahagian seramik varistor ZnO berasaskan Pr6O11 yang 

diperoleh dalam kajian ini menunjukkan kestabilan lebih baik terhadap tekanan medan 

elektrik AT dan suhu daripada seramik ZnO berasaskan Bi2O3 lebih kompleks yang 

disediakan melalui kaedah pengejelan sitrat yang serupa. Seperti yang dilaporkan 

sebelum ini, seramik ZnO berasaskan Bi2O3 terbitan secara kimia yang terdop dengan 

lebih banyak tambahan seperti Sb2O3, MnO, Al2O3, Co2O3, NiO, Cr2O3 menunjukkan 

nilai %ΔEb sebanyak 1.5%, %Δα sehingga -37.5%, dan  %ΔJL sebanyak +323% apabila 

dikenakan tiga peringkat tekanan setara medan elektrik AT dan suhu tinggi. 

 

 

Teknik DLTS mengesahkan kehadiran empat perangkap elektron di dalam seramik 

berasaskan Pr6O11. Perangkap pukal, L1 dan L2 masing-masing terletak (0.09 - 0.15 eV) 

dan (0.29 - 0.39 eV) di bawah pinggir jalur konduksi. Ia dikaitkan dengan kecacatan 

penderma dalam (Vo dan Zni) atau kompleks dengan kecacatan penderma luar (Mn atau 

Co). Perangkap antaramuka, L3 dan/atau L4 terletak di antara 0.45 to 0.91 eV di bawah 

pinggir jalur konduksi dan ia dikaitkan dengan kelompok kecacatan bagi kekosongan 
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zink, VZn, oksigen terjerap atau terjerap kimia dan bendasing (Pr, Mn atau Co). Dalam 

keadaan merosot, ketumpatan perangkap L1 dan L3 dalam Sistem 1 dan 4 menurun oleh 

kerana pemusnahan kecacatan dan penyahjerapan oksigen daripada sempadan butir 

semasa penggunaan tekanan. Perangkap L3 dalam Sistem 4 beranjak ke tenaga lebih 

tinggi kerana pembentukan kelompok kecacatan yang baru. Di dalam Sistem 2 dan 3, 

ketumpatan perangkap L1 meningkat selepas ujian kemerosotan disebabkan oleh 

peningkatan dalam kecacatan dalam seperti Vo dan Zni serta kecacatan penderma luar di 

dalam kawasan susutan. Ia disusuli dengan peningkatan dalam ketumpatan perangkap 

L3 (Sistem 2) dan L4 (Sistem 3) yang dikaitkan dengan pengionan aras tengah jurang 

yang dirangsang oleh Co dan Mn.   

 

Kesimpulannya, kemerosotan seramik varistor ZnO berasaskan Pr6O11 yang terdop 

dengan oksida logam peralihan (Co3O4, MnO2 atau Cr2O3) dan diterbitkan daripada 

teknik pengejelan sitrat terubahsuai oleh kerana tekanan berpanjangan medan elektrik 

dan suhu tinggi adalah kesan langsung kepada keruntuhan Sawar Schottky Ganda dua. 

Mekanisme kemerosotan ditentukan oleh proses-proses pengelektrohijrahan dan 

nyahjerapan oksigen yang didorong oleh perubahan kimia dan elektronik berpusat di 

antaramuka sempadan butir.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.0 Introduction 

 

This chapter introduces an overview of nonlinear ZnO varistor for overvoltage 

protection and an update on the current progress of varistor ceramic development. The 

problem statements which are the foundation and focus for this study have been 

highlighted in this chapter. They general raise concerns over varistor degradation 

phenomena that have posed a great challenge on the production of durable and high 

performance varistor materials. The significance and contribution of this study towards a 

better understanding of varistor degradation effects and its mechanism are highlighted. 

In addition, the research objectives and scopes are defined. In the final part, the 

organization of thesis is described. 

 

 

1.1 Research Background 

 

 

1.1.1 Overview of Metal Oxide Varistor Development  

 

Varistor is a voltage-dependent resistor that demonstrates significant nonlinear current-

voltage behaviour. It is incorporated in various electrical protection devices for filtering 

damaging transient voltage from the load. The transient voltage commonly refers to the 

voltage surge that exceeds 10% of circuit’s operating voltage. Frequent transient voltage 

that is raised beyond the design voltage limit will stress or breakdown the insulation 

system and eventually cause damage to an equipment or a circuit. In practice, a varistor 

is connected in parallel to the protected circuit. Figure 1.1 shows a circuit protected with 

varistor.  

 

 

 
Figure 1.1. Typical placement of varistor in a circuit 

 

 

Within the normal operating voltage, a varistor remains under high resistance mode 

(approximately 10
10

 Ω.cm) and appears in open circuit (Eda, 1989). In the event of 

overvoltage, it will instantaneously change to low resistance state allowing conduction 
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of large current resulted from the excess voltage. Energy generated by the transient is 

also effectively absorbed. Eventually, the destructive voltage is bypassed from the 

circuit and grounded.  

 

 

Demands for metal oxide varistors are growing every year and these are driven by 

ongoing development of both Electrostatic Discharge (ESD) and overvoltage protection 

devices. The ESD protection requirement for digital electronic circuits in various 

telecommunication devices and portable electronics has created large market segment 

for varistors. In addition, the application of varistor as voltage transient protection in 

automobile electronics and household appliances significantly encourages the global 

production of varistors. In high voltage applications, overvoltage protection is required 

for preventing temporary transient voltage, power switching and induced-lightning 

surges from affecting the distribution or transmission power lines (He and Hu, 2007). In 

the near future, the movement to smart grids and integration of renewable energy 

systems will bring a greater positive impact on the use of varistors in circuit protection 

equipment.  

 

 

1.1.2 Zinc Oxide Varistors 

 

Most of commercially available varistors are made of solid-state ceramics comprising 

zinc oxide (ZnO) doped with traces amount of specific metal oxide additives. ZnO is an 

n-type semiconducting material with a large energy band–gap (3.44 eV) (Mishra and 

Singh, 2007). It offers many good features as key varistor component such as high 

density and high energy handling capability (Einzinger, 1987). Depending on its power 

ratings, a ZnO varistor can absorbed between 200 - 250 J/cm
3
 of surge-energy and 

dissipate the heat uniformly across its surface (Wang et al., 2007b). Doping of ZnO with 

specific additives is crucial to increase the functionality of varistor. The dopants could 

serve as grain boundary activators (Bi2O3, Pr6O11, SrO, BaO), nonlinearity enhancers 

(MnO2, Co3O4, Cr2O3) and stabilizers (Ag, Sb, B). These additives whether dissolve into 

the interior of ZnO grains or segregate to create highly insulating intergranular layer in 

between ZnO grains.  

 

 

Typical construction of a ZnO varistor device is illustrated in Figure 1.2. It contains 

highly conductive grains of ZnO core material and three-dimensional network of grain 

boundaries connected in series or in parallel. Two silver electrode layers covering both 

upper and lower surfaces of the bulk ZnO ceramic disc allow effective penetration of 

current across the device during operation. Wire leads are soldered on both electrodes to 

provide electrical connection. The ceramic is encapsulated with insulating materials such 

as porcelain or polymeric materials including cured and non-flammable ochre epoxy 

lacqueur to shield the component from excessive exposure to heat, moisture or oxidative 

environment. 
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Figure 1.2. A typical construction of a ZnO varistor device 

 

 

ZnO varistor ceramics are mass-produced through solid- state route technique. This 

conventional technology involves several important steps such as ball milling, cold 

pressing and sintering. Powder mixture of ZnO and metal oxide additives of 

predetermined composition is ball-milled to produce homogenous slurry solution. The 

slurry is then dehydrated and cold-pressed into compact green body. A heat treatment 

known as sintering process is performed to transform the compact green body into 

ceramic of various shape, size and configurations. The sintering process allows solid-

state reaction to occur and induces segregation or diffusion of varistor components. 

Through this array of procedures, the crucial microstructure profile of a varistor could be 

developed and tailored. Despite its simplicity, high purity and homogeneity sample 

could hardly be achieved without accurate ball milling settings. Furthermore, high 

sintering temperature (> 1000 
o
C) and longer sintering time are required to obtain 

uniform and dense-grained varistors. Adversely, such high sintering temperature and 

prolonged heat treatment cause severe loss of some low volatility and reactive dopants. 

In recent years, modified chemical routes provide alternatives for obtaining higher 

quality, purity and homogeneity ceramic materials. Previous researches highlighted a 

number of chemical methods suitable for preparing ZnO and other metal oxides such as 

emulsion precipitation, hydrothermal synthesis, sol-gel, citrate gel (Pechini) and low 

temperature combustion synthesis. Interestingly, most of these chemical routes 

producing metal oxide in the form of nanoparticle intermediates. Purity and 

homogeneity of samples particularly that comprise multicomponent oxides can be 

controlled during processing.  

 

 

 

 

ZnO grains 

Electrode 

Intergranular layer 

Wire lead 

Epoxy encapsulant 

Current flow 
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1.1.3 Electrical Nonlinearity 

 

The competence of ZnO varistors depends on its unique current density, J - electrical 

field, E characteristics. Figure 1.3 depicts a typical wide-range J-E characteristic of a 

ZnO varistor. The J-E response of a ZnO varistor can be divided into three distinctive 

regions which are the pre-breakdown, breakdown and upturn regions. 

 

 

 
Figure 1.3. Typical J-E characteristic of a ZnO varistor (Adapted from (Gupta, 

1990) 

 

 

i) Pre-breakdown region 

 

Prebreakdown region is known as the Ohmic region. It is the region where a varistor 

material behaves like an insulator. Below the breakdown field, Eb point, the material will 

exhibit a linear conduction of current with increasing electrical field. An ideal varistor 

must remain in high resistive state and permits only small amount of leakage current to 

pass through it. Within the region, its electrical properties are thermally dependent and 

determined by the impedance of grain boundaries of ZnO microstructure (Eda, 1989). 

Electrical conduction is predominantly caused by thermal excitation of electron over 

potential barriers (Philipp and Levinson, 1979). 
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ii) Breakdown region 

 

The intermediate region is termed as the breakdown or nonlinear region. The resistance 

of varistor drastically decreases once the applied electrical field exceeding the Eb point 

and the signature nonlinear J-E response ( EJ  ) will be observed. The varistor 

material conducts large amount of current for a small increase of electrical field. The J-E 

characteristics in this region are practically independent of temperature. Conduction 

mechanism is primarily controlled by tunneling process which involves transportation of 

electrons through the barriers (Mukae et al., 1977).  

 

 

iii) Upturn region 

 

The upturn region starts at high current state. The J-E characteristics of this region are 

similar to those of in pre-breakdown region. The electrical field rising is faster with 

current compared in the nonlinear region. Within this region, the impedance of the 

grains in the ZnO microstructure controls the electrical properties of varistor material 

(Philipp and Levinson, 1979; Gupta, 1990). 

 

 

The quality of a varistor material is assessed according to several key J-E characteristic 

parameters. These parameters are the operating voltage, nonlinear coefficient, 

breakdown field and leakage current. Operating voltage is the range of voltage that 

could be withstand by the varistor material without damage. The range of operating 

voltage for low voltage application is 3 – 200 V and a current of 0.1 mA to 1 A. 

Meanwhile, the operating voltage of high voltage varistor could reach up to 20 kV. 

 

 

Nonlinear coefficient, α designates the degree of nonlinear electrical response. The 

exponential relationship between J and E in nonlinear region can be expressed by, 

 

J=CE
α                                                                                       

(1.1) 

 

where C is a constant. A greater α value indicates a better varistor. Advancement in 

ceramic technology has enabled the production of metal oxide varistors having α values 

of up to 100. As shown in Figure 1.4, the value of α gradually change with J and the 

relationship has been investigated in (Philipp and Levinson, 1979). Therefore, the range 

of J where the α value is determined should be clearly stated. The common ranges of J 

used for extracting the α value are 0.1 to 1 mA/cm
2
, 1 to 10 mA/cm

2
 and 10 to 100 

mA/cm
2
. The α value is greatly influenced by composition of varistor ceramic and its 

sintering conditions.  
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Figure 1.4. Variation in nonlinear coefficient with current density (Adapted from 

(Philipp and Levinson, 1979)) 

 

 

Breakdown field, Eb is a reference point to mark a transition from linear into nonlinear 

behavior (Gupta, 1990; Nahm, 2009). Some works use the term breakdown voltage, 

nominal voltage, switching voltage or varistor voltage to signify the same parameter. It 

is widely accepted that the value of Eb is defined as the value of electrical field when 1.0 

mA/cm
2
 of current surge into the varistor material. The Eb value is strongly related to the 

ZnO grain size and the thickness of the ceramics.  

 

 

Leakage current density, JL is the current density when the applied electrical field reach 

the level of 20% below the Eb point. It indirectly signifies the amount of power 

dissipation that will be generated during the steady state application of an operating 

voltage. The higher the leakage current density means the higher the power will be 

dissipated.  

 

 

1.1.4 Low-voltage Varistors 

 

Applications of low-voltage ZnO varistors for circuit protection are increasingly 

significant due to growing demands on low-voltage electronics. For instance, battery 

powered and mobile appliances require protection from transient voltage of between 4 to 

20 V (DC voltage) while many communication devices need fast response protection 

from transient voltage of 22 to 68.V (Levinson and Philipp, 1986; Gupta, 1990; Pan et 

al., 2010). Automotive electronics on the other hand requires protection from transient 

voltage between 16 to 85 V or higher. These factors create needs for continuous 

development of ZnO varistor materials with low breakdown voltage. 
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Fabricating low-voltage ZnO varistors is always demanding. Trade-offs between 

breakdown voltage and grain size in conventional Bi2O3 based ZnO ceramics poses a 

critical bottle-neck in existing manufacturing of low-voltage varistors. This is because 

the effective breakdown voltage of a varistor is proportionate to the number of grain 

boundaries per unit thickness and the inverse to grain size. Consequently, lowering the 

breakdown voltage in Bi2O3-ZnO varistor having average breakdown voltage per 

individual grain boundary, Vgb, of approximately 3.2–3.5 V is a great challenge (Tao et 

al., 1987; Olsson and Dunlop, 1989; Clarke, 1999).  

 

 

Most existing preparation techniques rely strongly on ZnO grain manipulation processes. 

The most classical ways of making low-voltage varistors are through grain coarsening 

techniques by making varistor from crushed ceramics, prolonged sintering processes at 

higher temperatures and adding grain growth enhancers such as TiO2 (Toplan and 

Karakas, 2002). Other ways include employment of seeding technique by using grown 

ZnO crystal seeds as precursor (Eda et al., 1983; Hennings et al., 1990; Souza et al., 

2003) and deposition technique to fabricate multilayered thin film varistor ceramics with 

interdigitated electrodes (Kuo et al., 2008). Grain coarsening and seeding techniques 

could be economically less feasible as they are energy intensive processes and the 

resultant ceramics suffer from inhomogeneous microstructure which leads to 

inconsistent current-voltage characteristics (Hennings et al., 1990). Multilayered thin 

film varistors obtained from deposition technique on the other hand, are lingered with 

structural integrity issues (Kuo et al., 2008). Constraints in many preparation techniques 

of low-voltage ZnO varistors suggest the need for more reliable options.  

 

 

Employment of modified chemical approach into fabrication of low-voltage varistor 

ceramics may potentially overcome some of present limitations. There have been a 

number of valuable studies reporting the successful preparation of ZnO varistors through 

wet chemical techniques including sol-gel, co-precipitation, citrate and hydrothermal 

methods (Hohenberger and Tomandl, 1992; Lorenz et al., 2001a; Lorenz et al., 2001b; 

Durán et al., 2002; Ribeiro et al., 2005; Yang et al., 2005; Li et al., 2006; Lupan et al., 

2008; Sun et al., 2012). The chemical approach offers many key advantages over solid-

state route including higher compositional homogeneity, lower sintering temperature 

requirement and microstructure homogeneity (Lorenz et al., 2001a; Durán et al., 2002; 

Dhage et al., 2003; Fan et al., 2009). Conversely, these efforts mostly concert towards 

high voltage applications and very few attempts have been made so far to adopt the 

technique in low-voltage varistor  ceramic fabrication. Therefore, it is significant to 

extend the study on development of low-voltage varistor ceramics through employment 

of modified chemical techniques.  
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1.1.5 Praseodymium Oxide Based ZnO Varistors 

 

Research trend shows that Pr6O11 based ZnO ceramics have been actively researched to 

overcome drawbacks in conventional Bi2O3 based ZnO varistor materials such as Bi2O3 

vaporization and formation of Bi-containing secondary phases when sintered at 

temperatures over 1000 °C (Cordaro et al., 1986; Simpson and Cordaro, 1990; Winston 

and Cordaro, 1990; Wang et al., 1996; Nahm, 2003). Ramirez et al., (2008b) and 

Furtado et al., (2005) demonstrated that Pr6O11 improved effective electrical current flow 

by restraining the formation of secondary phases and induced densification of varistor 

during fabrication. Zhu et al., (2008) claimed that Pr6O11 exhibited grain growth 

suppressing effect that controlled the overall development of grain during sintering. 

Thus, their studied varistor ceramics had more uniform and compact microstructures. 

Several series of high density and high stability Pr6O11 based ZnO varistor ceramic 

systems containing more than four combination of rare earth and transition metal oxides 

have been developed and reported in Nahm (2003; 2009). The proposed varistor 

formulations exhibited comparable nonlinear properties to those of Bi2O3 based ZnO 

varistor ceramics with minimum number of additives. The nonlinear coefficient of these 

ceramics could reach up to 60 with the general Vgb of 2-3 V. However, most of Pr6O11 

based ZnO varistor systems that have been reported so far are developed for high-

voltage applications. The work by Horio et al., (1998) is one of the very few attempts to 

extend the use of Pr6O11 based ZnO ceramics for low-voltage applications. They have 

successfully fabricated ZnO/Pr6O11 multilayered thin films having the α value of 10 and 

Eb value of 20 V by the radio-frequency sputtering in Ar/O2 environment. Hence, further 

research is needed in order to take advantage of these potentially high nonlinearity and 

high stability ceramic materials for satisfying low-voltage requirements. 

 

 

1.1.6  Varistor Degradation  

 

Performance stability is a major concern in the fabrication of commercial ZnO varistors. 

This is to ensure their robustness to operate under vigorous conditions for long term 

applications. Varistors to be used in automobile electronics for instance, should perform 

their intended functions consistently with low failure rates within the operating 

temperature between -55 to 125 
o
C for more than 1000 cycles. They are subjected to a 

variety of disturbances like lightning strikes, switching transients, continuous or 

temporary overvoltages. Upon application of stress, the variation in breakdown voltage 

must not exceed more that 10%. In fact, many international standards such as 

Automotive Electronic Council – Q200 even enforce more stringent quality assurance 

guideline for the use of varistor in automotive parts to guarantee the reliability of system 

operation and users’ safety.  

 

 

Degradation phenomena observed in many ZnO based varistor ceramics possibly 

impede the long-term viable application of the device. Varistor performance degrades 

under application of single or combination of stresses including high temperature, 

repetitive or continous electrical stress, humidity and reducing atmosphere. Degradation 

effects manifest itself as a decline in α and Eb values which accompanied with a drastic 
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increment in JL with time. These signs indicate a significant disappearance of 

nonlinearity and shifting of properties towards Ohmic behaviour. To certain extent, a 

degraded varistor could experience thermal runaway resulting in overheating or 

potentially explosion. Some of degraded varistors become asymmetrical in polarity and 

exhibit increment in terms of its capacitance component (Einzinger, 1987; Jaroszewski 

et al., 2004).  

 

 

In recent years, the study of degradation in ZnO varistor ceramics have been focused on 

several aspects such as the evaluation of varistor response under various forms and 

intensity of stresses, determination of degradation effects on electrical and chemical 

properties of varistor ceramics and the modelling of electronic and chemical 

mechanisms that drive degradation process of ZnO varistor ceramics.  

 

 

1.2 Problem Statements 

 

Degradation phenomena in commercial and lab-synthesized ZnO varistor ceramics 

under diverse forms of stress conditions have been investigated since the early 1980's 

(Sonder et al., 1985; Zhou et al., 2003; Wang et al., 2007a; Nahm, 2008a, 2012). The 

ultimate motivation for these efforts is to realize the production of high performance and 

high stability varistor materials. Despite extensive research reports on conventional 

high-voltage Bi2O3 type varistor ceramics, very little attention has been paid on 

investigating the degradation phenomena in low-voltage ceramics (Clarke, 1999).  

 

 

Pr6O11 based ZnO ceramics with many promising properties are continuously formulated 

and characterized for new generation ZnO varistors. Meanwhile, the interest to adopt 

nano-fabrication and chemical approaches in varistor fabrication process is now 

growing. Although comprehensive property characterizations have been performed on 

several series of ceramics, the degradation behaviour of low-voltage Pr6O11 based ZnO 

varistor ceramics against electrical and temperature stresses remain unclear. Within the 

years 1999 to 2012, Nahm and co-workers have comprehensively studied the 

degradation behaviour of several high voltage Pr6O11 based ZnO varistor ceramics 

derived through solid state routes. To the author's knowledge, there are in fact, no 

degradation study have been carried out on low-voltage Pr6O11 based ZnO varistors 

derived by chemical techniques.  

 

 

Degradation mechanisms in ZnO varistor is still an area of long-standing confusion and 

debate. Ongoing advancement in varistor processing continuously increases the 

complexity in varistor compositions and microstructure. Due to these reasons, the 

dominant mechanisms that take place during degrading process are always in dispute. It 

is expected that new insights into degradation mechanisms of varistor ceramics could be 

provided by observing the direct changes of electronic states at interface level as a result 

of degradation. The idea can be realized through utilization of deep level transient 

spectroscopy (DLTS) technique. Lang (1974) demonstrated that quantification of deep 



© C
OPYRIG

HT U
PM

10 

 

traps or energy levels in barrier depletion region of semiconductors is made possible by 

using DLTS. Since then, several works have been performed to identify deep level 

parameters of ZnO varistors and their relationship to processing methods, compositions 

and electrical characteristics (Orlandi et al., 2004; Fan and Freer, 2007; Bueno et al., 

2008). Unfortunately, detailed DLTS study to compare the deep level characteristics 

prior to and after degradation test specifically for Pr6O11 based ZnO varistors has never 

been presented so far. Consequently, mechanisms driving degradation in that specific 

varistor system could not be satisfactorily understood.  

 

 

In this study, ZnO varistor ceramics with low breakdown voltage were prepared through 

employment of a wet chemical approach known as modified citrate gelation method. 

Four ceramic systems were prepared by doping ZnO with single Pr6O11 dopant and/or 

added with transition metal oxide additives (Co, Mn, Cr). Variations in microstructure 

and nonlinear electrical characteristics of the prepared ceramics as a function of dopant 

contents and sintering conditions were determined and discussed. The degradation 

behaviour of these varistors against DC electrical field and high temperature stresses 

was thoroughly investigated. The degradation process in Pr6O11 based ZnO varistors 

were also discussed on the basis of DLTS analysis.  

 

 

1.3 Research Objectives 

 

The primary aim of this study was to investigate the degradation phenomena of Pr6O11 

based ZnO varistor ceramics which were obtained through modified citrate gelation 

method. To achieve the goal, the following four research objectives have been 

formulated.  

i) To study effects of dopant contents on microstructure and nonlinear electrical 

characteristics of Pr6O11 based ZnO varistor ceramics prepared through 

modified citrate gelation technique. 

ii) To study effects of sintering conditions (time and temperature) on 

microstructure and nonlinear electrical characteristics of Pr6O11 based ZnO 

varistor ceramics prepared through modified citrate gelation technique. 

iii) To investigate effects of simultaneous DC electrical field and high 

temperature stresses on nonlinear electrical characteristics of Pr6O11 based 

ZnO varistor ceramics. 

iv) To investigate the influence of deep levels on degradation behaviour of 

Pr6O11 based ZnO varistor ceramics using deep level transient spectroscopy 

technique. 

 

 

It is hypothesized that the average grain size and relative density of sintered ceramics 

will increase when the contents of MnO2 and Co3O4 increase whereas they will decrease 

when the contents of Pr6O11 and Cr2O3 increase. These properties will also increase 

when the sintering time and temperature increase. The nonlinear coefficient, α of the 

doped ZnO ceramics will increase up to a certain extent of doping contents, sintering 

temperature or time. 
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The nonlinear properties of the ZnO varistor ceramics doped with Pr6O11, Co3O4, MnO2 

and Cr2O3 will degrade when exposed to continuous application of DC electrical field at 

elevating temperature for prolonged duration. Degradation of Pr6O11 based ZnO varistor 

ceramics will result in a decrease in concentration of bulk traps and the interface traps. 

Degradation also causes shifting of trap activation energy due to the emergence of new 

defect clusters near to grain boundary interface.  

 

 

1.4 Research Scopes 

 

In order to achieve the above-mentioned research objectives, several scopes of works 

have been drawn. It has been determined that the study of degradation phenomena 

discussed in this thesis is limited to low-voltage Pr6O11 based ZnO varistor (breakdown 

field less than 200 V/mm). Four ceramic systems have been developed and the nominal 

composition of each system is listed; 

i) System 1: (100 – x) mol% ZnO + x mol% Pr6O11 

ii) System 2: (99.2 – x) mol% ZnO + 0.8 mol% Pr6O11 + x mol% Co3O4 

iii) System 3: (99.2 – x) mol% ZnO + 0.8 mol% Pr6O11 + x mol% MnO2 

iv) System 4: (99.2 – x) mol% ZnO + 0.8 mol% Pr6O11 + x mol% Cr2O3 

          (where x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) 

 

 

All ceramic systems have been prepared only through employment of modified citrate 

gelation technique and solid-state sintering. The content for dopant of interest was varied 

between 0.2 to 1.0 mol%. The sintering temperatures applied were 1200, 1225, 1250 and 

1275 
o
C and the sintering time applied were 1, 3, 5 and 7 h. 

 

 

All ceramic systems were characterized in terms of their microstructure and electrical 

properties. Microstructure analysis was performed by X-ray diffraction, Field emission 

scanning electron microscopy and energy dispersive X-ray spectroscopic techniques. 

Electrical analysis was conducted on the basis of J-E characteristic measurement at 

30.
o
C using source-measure unit that supplies a maximum DC voltage of 100 V and 

measures current up to 100 mA. A varistor ceramic with optimized dopant content from 

each system was sent for DC degradation test. The stress conditions applied in sequence 

were (0.85Eb/30.
o
C/ / 18 h), (0.85 Eb/ 60 

o
C/18 h) and (0.85Eb/125.

o
C/18 h). Deep level 

characterization prior to and after the DC degradation test was performed using deep 

level transient spectroscopy (DLTS) technique. Deep level parameters such as trap 

concentration, NT, trap activation energy, ET and capture cross section, σn, were extracted 

from DLTS spectra collected from temperature scanning mode in the range of 100 to 

440 K.  
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1.5 Research Significance 

 

The study of degradation phenomena in Pr6O11 based ZnO varistor ceramics can provide 

more scientific evidences on the robustness of low-voltage Pr6O11 based ZnO varistor 

ceramics against electrical and high temperature degradation. This is relevance since 

many existing studies highlighted the vulnerability low-voltage system to degradation. 

This is because the system generally exhibits relatively low α and susceptibility to "hot 

spots" due to non-uniform grain size distributions (Han et al., 1995; Suzuki and Bradt, 

1995; Wang et al., 2008).  

 

 

The findings from this study can be useful in clarifying the role of Pr6O11, the transition 

metal oxide additives particularly the oxides of Co, Mn and Cr as well as their 

synergistic effects on stability of ZnO varistor. Therefore, the information is valuable in 

optimizing the varistor performance through appropriate selections of varistor's 

components. 

 

 

The findings from this study can be a reference for future development of ZnO varistor 

ceramics prepared through nano-fabrication and chemical approaches which is currently 

lacking. The preparation of varistor ceramics through the modified citrate gelation 

method, outlined in this study can be potentially optimized for more complex 

formulation and scaling up. Additionally, the outcome of this study can be use as basis 

for assessing the reliability of varistor products obtained through chemical processes. 

 

 

The study of degradation process in Pr6O11 based ZnO varistor ceramic by means of 

DLTS can provide more explanation on the relationship between deep level 

characteristics of ZnO and DC degradation process. The contribution of intrinsic defects 

of ZnO and impurities towards the stability against DC electrical field and high 

temperature stresses for prolonged duration can be further justified. This contribution is 

valuable towards development of Pr6O11 based ZnO varistor ceramics with improved 

stability and durability in the near future. 

 

 

1.6 Thesis Organization 

 

The thesis is organized into six main chapters. Chapter 1 presents the preface to the 

thesis. It covers the summary of research background, issues and key challenges facing 

ZnO varistor development. The research objectives and scopes are also described. 

Chapter 2 comprises a review on development of ZnO nonlinear varistor ceramics. It 

covers the historical evolution of nonlinear varistor materials, development of ZnO 

varistor microstructure and the analysis on roles of various varistor dopants reported in 

previous studies. Detailed aspects of varistor degradation phenomena and substantive 

findings from studies of varistor degradation using deep level transient spectroscopy 

technique are thoroughly reviewed. Chapter 3 gives detailed description on ZnO 

intrinsic properties, theoretical models related to conduction mechanisms and 
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degradation phenomena in  ZnO varistor ceramics. The theory of deep levels and 

principles of DLTS measurement are elaborated. Chapter 4 outlines the synthesis 

process to obtain four series of Pr6O11 based ZnO ceramic systems according to 

modified citrate gelation approach and solid-state sintering. The implementation of the 

process and issues encountered during the preparation are described. In addition, the 

chapter also provides explanation on every characterization method performed to 

analyze both electrical and microstructure properties of produced ceramics. Chapter 5 is 

divided into four divisions to present the results and discussion on four Pr6O11 based 

ZnO ceramic systems. In each division, the related findings and observation collected 

from both microstructure and electrical studies are presented. Effects of dopant contents 

and sintering conditions on nonlinear electrical properties of Pr6O11 based ZnO varistor 

ceramics are described and correlated to variation in microstructure or electrical 

behaviour. DC degradation characteristics and its effects on nonlinear electrical 

properties are also clarified. In addition, the influence of deep levels on nonlinear 

electrical properties and its linkage to DC degradation phenomena are conferred. 

Chapter 6 concludes the general outcomes from arguments presented in preceding 

chapters. For future works, limitations on current studies and recommendations for 

future research are highlighted.  
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