UNIVERSITI PUTRA MALAYSIA

Andrographis paniculata Nees AND Orthosiphon stamineus Benth
GROUND LEAF AS ANTIBIOTIC AND ANTIOXIDANT SUPPLEMENTS
FOR BROILER CHICKEN

MASNINDAH BINTI MALAHUBBAN

ITA 2014 3
Andrographis paniculata Nees AND Orthosiphon stamineus Benth GROUND LEAF AS ANTIBIOTIC AND ANTIOXIDANT SUPPLEMENTS FOR BROILER CHICKEN

MASNINDAH BINTI MALAHUBBAN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2014
Andrographis paniculata Nees AND Orthosiphon stamineus Benth
GROUND LEAF AS ANTIBIOTIC AND ANTIOXIDANT SUPPLEMENTS
FOR BROILER CHICKEN

By

MASNINDAH BINTI MALAHUBBAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy

Andrographis paniculata Nees AND Orthosiphon stamineus Benth
GROUND LEAF AS ANTIBIOTIC AND ANTIOXIDANT SUPPLEMENTS FOR BROILER CHICKEN

By

MASNINDAH BINTI MALAHUBBAN

September 2014

Chairman: Professor Abd. Razak Bin Alimon, Ph.D.

Faculty: Institute of Tropical Agriculture

The use of synthetic antibiotics and antioxidants has created serious obstacles and hazards to farmers, consumers and the environment. Antibiotics and antioxidant from natural sources can potentially be useful to overcome these problems. Therefore, present study was conducted to evaluate the selected medicinal plants, Andrographis paniculata and Orthosiphon stamineus for antibiotics and antioxidant potential and subsequently to evaluate the broiler performance by inclusion the A. paniculata and O. stamineus ground leaf in diets.

Initially, A. paniculata and O. stamineus ground leaf were evaluated for their in vitro antibiotic and antioxidant potential by extracting the ground leaf in four solvents, namely water, methanol, ethanol and chloroform and subsequently testing using the disc diffusion method for antibiotic potential and selected radical scavenging activities for antioxidant potential. Qualitative screening for bioactive compound on both extracts by using methanol as solvent has indicated the presence of alkaloid, saponin, flavonoid, tannin, terpenoid and steroid. High performance liquid chromatography analysis indicated that andrographolide and rosmarinic acid were the major compounds from A. paniculata and O. stamineus, respectively. It was found that the highest yields of these two compounds were obtained by methanol extraction and that substantial antibiotic and antioxidant properties were exhibited by these compounds. In addition, it was showed that the O. stamineus extract contained higher antioxidant capacity than A. paniculata extract.
The ground leaf were incorporated in broiler diets at levels of 0, 2, 4, and 8 g/kg and the influence on growth performance, carcass characteristics, serum biochemistry, and intestinal and liver morphology was examined in a 42-d feeding trial. It was involved 280 one-day old male broiler chickens, grown, maintained and received ad libitum water and diet. The feeding trial was started from 21 days old and assigned with respective treatments. At day-42, the broiler chickens were slaughtered and analysed and it was found that broilers fed O. stamineus ground leaf at a rate 8 g/kg was the most promising dietary supplement to promote overall growth performance without deleterious effects on carcass characteristics, serum biochemical properties and morphological components of liver and intestine compared with A. paniculata ground leaf and control diets. In addition to promoting weight gain, it reduced abdominal fat and serum cholesterol. It also maintained the integrity of liver, thus indicating that no toxic effect from O. stamineus supplementation at a rate up to 0.8 g/kg. Besides that, 8 g/kg O. stamineus supplementation improved intestinal structure, especially in the duodenum. Present study also found that the inclusion of O. stamineus ground leaf at 8 g/kg in the broiler diet increased total tract N retention and apparent metabolizable energy.

Based on these results, O. stamineus ground leaf at 8 g/kg was selected for the next in vivo experiment. Present study was conducted to evaluate the response of broiler due to antibiotic and antioxidant properties of O. stamineus by comparing its potential with tetracycline and Vitamin E supplementation in diets, as positive controls. The study was involved 160 of a one-day old male broiler chickens, and had ad libitum water and feed for up to 20-day old. The respective treatments were assigned and initiated at 21-day old male broiler chickens. After slaughtering, data were recorded and analysed at 42-day old male broiler chickens, and it was found that O. stamineus ground leaf supplement at a rate of 8 g/kg in broiler diet results in growth performance similar to that of tetracycline and Vitamin E supplementation. In addition, it was also found that 8 g/kg O. stamineus supplementation in diet promoted serum enzymes-lowering effect. In contrast, high serum enzymes activity showed in broiler fed tetracycline supplement. The inclusion of 8 g/kg O. stamineus ground leaf in diet of broiler enhanced meat quality by stabilizing sensory properties, meat colour and meat pH. The results also indicated that the inclusion of O. stamineus leaf ground at 8 g/kg in diet was comparable with 200 mg/kg Vitamin E supplementation in diet. It was found that all dietary treatments maintained intestinal population of Lactobacillus and Escherichia coli. However, the inclusion of 8 g/kg O. stamineus or tetracycline in diet inhibited the population of facultative anaerobe. Therefore, the use of O. stamineus ground leaf as supplement in broiler chicken diet has the potential to promote and maintain growth and gut health and subsequently creates safe and sustainable broiler chicken production.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

SERBUK DAUN *Andrographis paniculata* **Nees** **DAN** *Orthosiphon stamineus* **Benth** **SEBAGAI ADITIF ANTIBIOTIK DAN ANTIOKSIDAN UNTUK AYAM PEDAGING

Oleh

MASNINDAH BINTI MALAHUBAN

September 2014

Pengerusi: Profesor Abd. Razak Bin Alimon, Ph.D.

Fakulti: Institut Pertanian Tropika

Penggunaan antibiotik dan antioksidan sintetik telah menyebabkan masalah dan bencana yang serius kepada petani, pengguna dan persekitaran. Antibiotik dan antioksidan dari sumber semulajadi dilihat berpotensi untuk digunakan bagi mengatasi masalah ini. Maka kajian ini dijalankan untuk menilai tumbuhan perubatan yang terpilih iaitu *Andrographis paniculata* dan *Orthosiphon stamineus* yang berpotensi sebagai sumber antibiotik dan antioksidan, seterusnya kajian ini turut menilai prestasi ayam pedaging kesan dari pengambilan makanan yang mengandungi serbuk daun *A. paniculata* dan *O. stamineus*.

Kajian dimulakan dengan menilai potensi antibiotik dan antioksidan serbuk daun *A. paniculata* dan *O. stamineus* secara in vitro dengan mengekstrak serbuk daun tersebut dalam empat jenis bahan pelarut iaitu air, methanol, etanol dan klorofom, dan seterusnya ia diuji menggunakan kaedah sebaran cakera bagi menentukan potensi antibiotik dan aktiviti-aktiviti pencarian radikal bagi penentuan potensi antioksidan. Saringan kualitatif telah dijalankan, dan ia menunjukkan kedua-dua serbuk daun yang diekstrak menggunakan metanol mengandungi alkaloid, saponin, flavonoid, tannin, terpenoid dan steroid. Analisis kromatografi cecair berprestasi tinggi menunjukkan andrographolida dan asid rosmarinik merupakan kompaun utama masing-masing dari *A. paniculata* dan *O. stamineus*. Kajian mendapati hasilan paling tinggi bagi kedua-dua kompaun terbabit diperoleh daripada pengekstrakan methanol dan ciri-ciri antibiotik dan antioksidan yang menggalakkan ditunjukkan oleh kedua-dua kompaun terbabit.

Serbuk daun berkenaan dicampurkan ke dalam diet ayam pedaging pada beberapa paras kandungan iaitu 0, 2, 4, dan 8 g/kg bagi menentukan pengaruhnya ke atas prestasi pertumbuhan, ciri-ciri karkas, biokimia serum,
dan morfologi usus dan hati, dan kajian cubaan pemakanan ini dilakukan sehingga ayam pedaging berusia 42 hari. Kajian ini melibatkan ayam pedaging jantan yang diperoleh pada ketika usianya satu hari, dipelihara dan dijaga. Cubaan pemakanan dimulakan ketika ayam pedaging berusia 21 hari dan seterusnya disusun mengikut rawatan tersebut. Pada usianya 42 hari, ayam pedaging disembelih dan dianalisis, dan keputusan mendapati ayam pedaging yang makan 8 g/kg serbuk daun *O. stamineus* merupakan makanan tambahan yang paling berpotensi untuk merangsang prestasi pertumbuhan tanpa kesan-kesan negative ke atas ciri-ciri karkas, kandungan biokimia serum dan komponen morfologi hati dan usus berbanding dengan serbuk daun *A. paniculata* dan diet-diet kawalan. Tambahan kepada penggalakan peningkatan berat, ia telah mengurangkan lemak perut dan kolesterol serum. Ia juga memelihara integriti hati, dan hal ini menunjukkan tiadanya kesan toksik dari *O. stamineus* yang ditambah di dalam pemakanan sebanyak 8 g/kg. Di samping itu, penambahan 8 g/kg *O. stamineus* memperbaiki struktur usus, terutamanya duodenum. Kajian ini turut mendapati penambahan 8 g/kg serbuk daun *O. stamineus* meningkatkan jumlah zon pengumpulan N dan tenaga sebenar yang boleh dimetabolikkan.

Berdasarkan kepada keputusan tersebut, 8 g/kg serbuk daun *O. stamineus* telah dipilih untuk eksperimen *in vivo*. Kajian ini dijalankan untuk menilai tindakbalas ayam pedaging kesan dari kandungan antibiotik dan antioksidan *O. stamineus* dengan membandingkannya dengan penambahan tetrasiiklin dan Vitamin E di dalam pemakanan, sebagai kawalan positif. Kajian ini melibatkan 160 ekor ayam pedaging jantan yang dipelihara sejak berusia satu hari. Rawatan kajian dimulakan semasa ayam pedaging berusia 21 hari. Data mula direkodkan dan dianalisis ketika berusia 42 hari. Kajian menunjukkan serbuk daun *O. stamineus* pada kadar 8 g/kg mempunyai prestasi pertumbuhan yang menyamai prestasi tetrasiiklin dan Vitamin E. Tambahan lagi, ia juga didapati mampu merangsang kesan kekurangan enzim serum. Sebaliknya, aktiviti enzim serum yang tinggi didapati pada ayam pedaging yang dirawat dengan pemakanan tambahan yang mengandungi tetrasiiklin. Penambahan 8 g/kg serbuk daun *O. stamineus* di dalam makanan ayam pedaging telah meningkatkan kualiti daging dengan menstabilkan komponen rasa, warna dan pH daging. Kajian turut menunjukkan ia setanding dengan penambahan sebanyak 200 mg/kg Vitamin E. Selain itu, rawatan tambahan pemakanan ini memelihara populasi *Lactobacillus* dan *Eschericia coli* di dalam usus. Walau bagaimanapun, penambahan 8 g/kg serbuk daun *O. stamineus* merencanakan populasi fakultatif anaerob. Dengan ini, penggunaan serbuk daun *O. stamineus* sebagai tambahan di dalam pemakanan ayam pedaging berpotensi untuk merangsang dan mekekalkan pertumbuhan dan kesihatan perut ayam pedaging dan seterusnya mewujudkan pengeluaran ayam pedaging yang selamat dan lestari.
ACKNOWLEDGEMENTS

First of all, praise to Allah S.W.T., with Allah compassion and mercifulness for giving the strength and endurance to carry out and complete this thesis. I would like to express my deepest gratitude to Prof. Dr. Abdul Razak Alimon, chairman of the supervisory committee, for his invaluable guidance, advice and encouragement throughout this study. I wish to express my heartfelt thankfulness to Assoc. Prof. Dr. Sharida Fakurazi and Dr. Awis Qumi Sazili as member of supervisory committee for their valuable advices. I would like to acknowledge Professor Dr. Mohd Hair Bejo, and Mr. Mohamed Halmi Othman from Faculty of Veterinary, UPM for their guidance and technical assistance. Sincere appreciation and gratefulness are also extended to Ms. Nursamiha Othman and all staff of Research and Histology Laboratory, Faculty of Medicine and Health Sciences for their technical assistance. My thanks are in particular to Assoc. Prof. Dr. Halimatun Yaakub, Mr. Saparin Denim, Mr. Zakaria Md Sah, Mrs. Kamariah Jamhari, Mr. Azam Azman and Mr. Hairulnizam Mohd Sam for help during the laboratory work in Department of Animal Science. I would like also to thank Mr. Faizol Azral Sulaiman of Animal Production Laboratory, Institute of Tropical Agriculture, UPM.

Finally, I am grateful for the personal support, understanding and encouragement I received from my parents, Hj. Malahubban Hj. Mohammad and Hjh. Saburayah Husin, my in laws Hj. Ab. Aziz Hj. Zainal and Hjh. Rokiah Hj. Ibrahim and to my husband Dr. Zakry Fitri Hj. Ab. Aziz, my lovely daughter and son Zunah Farwizah and Hadiff Fathullah, and also my younger sisters and brothers throughout this years. Finally, I would like to acknowledge the Ministry of Education Malaysia and Universiti Putra Malaysia for financial and overall support.
I certify that a Thesis Examination Committee has met on (date of viva) to conduct the final examination of Masnindah Binti Malahubban on her thesis entitled “Andrographis paniculata Nees AND Orthosiphon stamineus Benth Ground Leaf as Antibiotic and Antioxidant Supplements for Broiler Chicken” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the students be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Dahlan Ismail, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Loh Teck Chwen, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Norhani Abdullah, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ravi Ravindran, PhD
Professor
Institute of Veterinary, Animal and Biomedical Science
Massey University
New Zealand
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Abdul Razak Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Sharida Fakurazi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Awis Qurni Sazili, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: _____________________

Name and Matric No.__
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _____________________ Signature: _________________
Name of Chairman of Supervisory Committee: _____________________
Name of Member of Supervisory Committee: _____________________

Signature: _____________________ Signature: _________________
Name of Member of Supervisory Committee: _____________________

ix
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **GENERAL INTRODUCTION**
 1

2. **LITERATURE REVIEW**
 2.1 Broiler Production and their Obstacles
 2.2 Mechanism and Application of Antibiotics
 2.3 Mechanism and Application of Antioxidants
 2.4 Natural Antibiotics and Antioxidants Actions Associated with Animals
 2.5 Application of Herbal Feed Additives in Poultry Production
 2.6 Potential of Selected Medicinal Herbs, *Andrographis paniculata* Nees and *Orthosiphon stamineus* Benth Supplementation in Animal diet
 2.6.1 *Andrographis paniculata*: Botanical, Chemical Characteristics, and Uses
 2.6.2 *Orthosiphon stamineus*: Botanical, Chemical Characteristics, and Uses
 3

3. **PHYTOCHEMICAL ANALYSIS OF *Andrographis paniculata* AND *Orthosiphon stamineus* LEAF EXTRACTS FOR THEIR ANTIBACTERIAL AND ANTIOXIDANT POTENTIAL**
 3.1 Introduction
 20

 3.2 Materials and Methods
 3.2.1 Chemicals
 3.2.2 Plant Materials
 3.2.3 Sample Preparation
 3.2.4 Qualitative Screening of Bioactive Compounds
 3.2.4.1 Alkaloid Test
 3.2.4.2 Saponin Test
 3.2.4.3 Flavanoids Test
 3.2.4.4 Tannins Test
 3.2.4.5 Steroids and Terpenoids Test
 3.2.5 Quantification of major active compound
 23
in *A. paniculata* and *O. stamineus* by using High Performance Liquid Chromatography (HPLC) Analyses.

3.2.5.1 Preparation of Sample and Standard Solution

3.2.5.2 Chromatographic Conditions

3.2.6 Antibacterial Potential of *Andrographis paniculata* and *Orthosiphon stamineus* Leaf Extracts Prepared with Different Solvents

3.2.6.1 Test Bacteria

3.2.6.2 Disc Diffusion Assay

3.2.7 Antioxidant Potential of *Andrographis paniculata* and *Orthosiphon stamineus* Leaf Extracts Prepared with Different Solvents

3.2.7.1 Determination of Total Phenolic Content

3.2.7.2 Determination of Free Radical-Scavenging Activity

3.2.7.3 Determination of Superoxide Radical-Scavenging Activity

3.2.8 Statistical Analyses

3.3 Results

3.3.1 Qualitative Screening for Bioactive Compounds

3.3.2 Analysis of Andrographolide in *A. paniculata* Leaf Extracts by HPLC

3.3.3 Analysis of Rosmarinic Acid in *O. stamineus* Leaf Extracts by HPLC

3.3.4 Antibacterial Activity of *A. paniculata* and *O. stamineus* Leaf Extracts Prepared with Different Solvents

3.3.5 Antioxidant Activity of *A. paniculata* and *O. stamineus* Leaf Extracts Prepared with Different Solvents

3.4 Discussion

3.5 Conclusion

4 GROWTH PERFORMANCE, CARCASS CHARACTERISTICS, SERUM BIOCHEMISTRY, LIVER AND INTESTINE MORPHOLOGY OF BROILERS FED *Andrographis paniculata* AND *Orthosiphon stamineus* GROUND LEAF DIETARY SUPPLEMENTS

4.1 Introduction

4.2 Materials and Methods
4.2.1 Birds and Experimental Design 42
4.2.2 Preparation of Herbs for Animal Feed Additive 44
4.2.3 Proximate Analysis 45
 4.2.3.1 Determination of Moisture and Dry Matter 45
 4.2.3.2 Determination of Ash 45
 4.2.3.3 Determination of Crude Protein 45
 4.2.3.4 Determination of Fat 46
 4.2.3.5 Determination of Energy 47
4.2.4 Performance Indices Measurement 48
 4.2.4.1 Average Daily Gain (ADG) 48
 4.2.4.2 Feed Conversion Ratio (FCR) 48
 4.2.4.3 Mortality Rate 48
4.2.5 Carcass Characteristics 48
4.2.6 Digestibility Trial 49
4.2.7 Blood Collection 49
4.2.8 Histological Procedures 49
 4.2.8.1 Tissue Preservation and Processing 50
 4.2.8.2 Staining Procedures 50
 4.2.8.3 Gastrointestinal Tract Examination 50
 4.2.8.4 Liver Examination 51
4.2.8 Statistical Analyses 51
4.3 Results 51
 4.3.1 Live Weight and Weight Gain 51
 4.3.2 Feed Intake, Feed Conversion Ratio and Mortality 54
 4.3.3 Carcass Characteristics and Organs 54
 4.3.4 Digestibility of Dry Matter, Crude Protein and Apparent Metabolizable Energy of Diets 58
 4.3.5 Serum Biochemistry 58
 4.3.6 Morphological Analysis of Intestine and Liver 64
4.4 Discussion 68
4.5 Conclusion 72

5 THE EFFECT OF DIETARY SUPPLEMENTATION OF Orthosiphon stamineus GROUND LEAF ON GROWTH PERFORMANCE, MEAT CHARACTERISTICS, INTESTINAL MICROFLORA AND LIPID PEROXIDATION IN BROILER CHICKENS 73
5.1 Introduction 73
5.2 Materials and Methods 74
 5.2.1 Birds and Experimental Design 74
 5.2.2 Preparation of Orthosiphon stamineus used as An Animal Feed Additive 76
5.2.3 Measurement of Performance Indices 76
5.2.4 Blood collection 76
5.2.5 Intestinal Bacteria Count 77
5.2.6 Broiler Meat Characteristics 77
 5.2.6.1 Water Holding Capacity 77
 5.2.6.2 Proximate Composition 77
 5.2.6.2.1 Total Moisture 77
 5.2.6.2.2 Total Fat 78
 5.2.6.2.3 Total Protein 78
 5.2.6.3 Sensory Evaluation 78
 5.2.6.4 Meat Colour 78
 5.2.6.5 Meat pH Measurement 78
 5.2.6.6 Measurement of Antioxidative Potential 79
 5.2.7 Statistical Analysis 81
5.3 Results 82
 5.3.1 Broiler Weight Performance 82
 5.3.2 Feed Intake, Feed Conversion Ratio and Mortality 83
 5.3.3 Carcass and Organ Characteristics 83
 5.3.4 Serum Biochemistry 84
 5.3.5 Lipid Peroxidation in Serum and Liver 86
 5.3.6 Intestinal Microbial Population 87
 5.3.7 Meat Characteristics 88
 5.3.7.1 Water Holding Capacity, Total Phenolics and Proximate Analysis 88
 5.3.7.2 Sensory Evaluation 89
 5.3.7.3 Meat Colour 89
 5.3.7.4 Meat pH 91
 5.3.7.5 Anti-oxidative Activity of Meat 92
 5.4 Discussion 93
5.5 Conclusion 97

6 GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 98

REFERENCES 102
APPENDICES 118
BIODATA OF STUDENT 128
LIST OF PUBLICATIONS 129

xiii
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>61</td>
</tr>
</tbody>
</table>

Table 2.1 Top ten chicken meat producers in Asia in 2010 ('000 tonnes).

Table 2.2 Critical differences between antibiotic and herbal plant based products.

Table 2.3 Antioxidants and mechanism of action.

Table 2.4 Types of oxidation inhibitors (antioxidants).

Table 2.5 Herbal plants and their responses in poultry.

Table 3.1 Qualitative analysis of bioactive compounds in *A. paniculata* and *O. stamineus* leaf extracts prepared in different solvents.

Table 3.2 HPLC quantification of andrographolide in *A. paniculata* leaf extract and rosmarinic acid in *O. stamineus* leaf extract.

Table 4.1 Ingredients in the basal diet and nutritional analysis.

Table 4.2 Weekly live body weight as of day-21 to day-42 of broilers fed on diets supplemented with different rates of *A. paniculata* and *O. stamineus* ground leaf (g ± SE).

Table 4.3 Weekly weight gain as of week-4 to week-6 of broilers fed on diets supplemented with different rates of *A. paniculata* and *O. stamineus* ground leaf (g ± SE).

Table 4.4 Weekly feed intake, feed conversion ratio (FCR) and mortality as of week-4 to week-6 of broilers fed on diets supplemented with different rates of *A. paniculata* and *O. stamineus* ground leaf (Mean ± SE).

Table 4.5 Carcass characteristics as of day-42 of broilers fed on diets supplemented with different rates of *A. paniculata* and *O. stamineus* ground leaf (Mean ± SE).

Table 4.6 Organs weight expressed as percentage of live-weight as of day-42 of broilers fed on diets supplemented with different rates of *A. paniculata* and *O. stamineus* ground leaf (Mean ± SE).

Table 4.7 Digestibility of dry matter, crude protein and apparent metabolizable energy of the experimental diets (Mean ± SE).

Table 4.8 Serum biochemical parameters of broilers at initial (day-21) and at the end (day-42) of dietary treatments (Mean ± SE).
4.9 Sodium, potassium, chlorine and urea levels in serum of broiler fed on diets supplemented with different rates of *A. paniculata* and *O. stamineus* ground leaf (Mean ± SE).

4.10 Serum enzymes in broiler fed different dietary treatments (Mean ± SE).

4.11 Intestinal morphology of broilers fed on diets supplemented with different rates of *A. paniculata* and *O. stamineus* ground leaf (Mean ± SE).

5.1 Ingredients in the basal diet and nutritional analysis.

5.2 Live body weight and weight gain of broilers fed different diets for three weeks.

5.3 Feed intake, FCR and mortality of broilers fed different diets for three weeks.

5.4 Effect of experimental diets on carcass yield and relative organ/tissue weights of broilers on day-42.

5.5 Serum biochemical parameters and experimental outcomes of broilers on day-42.

5.6 Lipid peroxidation in serum and liver of broilers on day-42.

5.7 Intestinal bacteria population (log CFU/g of intestinal contents) of broiler chickens fed different diets (Readings on Day-42).

5.8 Water holding capacity (WHC), total phenolic content and proximate analysis of the breast meat of broiler chickens on day-42.

5.9 Sensory scores of cooked breast meat of broiler chickens fed on different diets.

5.10 Colour changes of raw breast meat broiler chickens subjected to different dietary treatments in relation to duration of storage at 4°C.

5.11 Changes in antioxidative potential of breast meat of broiler chickens in relation to duration of storage at 4°C.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Andrographis paniculata Nees, common name associated with this medicinal plant including, King of Bitter, and several other names from Malay Archipelago such as Hempedu Bumi, Pokok Cerita, Pasak Bumi and Setunjang Bumi.</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Orthosiphon stamineus Benth, common names associated with this medicinal plant including, Cat Whiskers and Kidney Tea Plant, and several other names from Malay Archipelago such as Misai Kucing, Kumis Kucing, Remujung, Ruku Hitam, and Teh Jawa (Java Tea).</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>HPLC chromatograms (absorbance at 230 nm) of andrographolide (AP) from Andrographis paniculata leaves extracted with different solvents: (a) reference marker; (b) water extract; (c) ethanol extract; (d) methanol extract; (e) chloroform extract.</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>HPLC chromatograms (absorbance at 340 nm) of rosmarinic acid (RA) from Orthosiphon stamineus leaves extracted with different solvents: (a) reference marker; (b) water extract; (c) ethanol extract; (d) methanol extract; (e) chloroform extract (the arrow indicates the RA was undetected).</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Susceptibility of pathogenic bacteria to Andrographis paniculata and Orthosiphon stamineus extracts prepared with different solvents. Note: Ctrl: Control; Ac: Acetic acid (10 %); Tc: Tetracycline (30 µg/disc). Heights of colored bars represent inhibition diameters.</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Total phenol contents of Andrographis paniculata and Orthosiphon stamineus leaf extracts prepared with different solvents. Values in each column bearing the same letter are not significantly different (P>0.05).</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>DPPH scavenging activity of A. paniculata and O. stamineus extracts prepared with different solvents. Values in each column bearing the same letter are not significantly different (P>0.05).</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Superoxide scavenging activity of A. paniculata and O. stamineus extracts prepared with different solvents. Values in each column bearing the same letter are not significantly different (P>0.05).</td>
<td>37</td>
</tr>
</tbody>
</table>
4.1 Histological examination on liver of 42-day old broilers fed control diet, Diet AP2, Diet AP4, Diet AP8, Diet OS2, Diet OS4, and Diet OS8. All figures show normal liver histology where hepatocytes (H), sinusoid (S), central vein (CV) and portal area conditions were at normal (40X magnification).

5.1 The pH of raw breast meat of broiler chickens on different diets. Changes over duration of storage at 4°C.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Aminotransferase</td>
</tr>
<tr>
<td>AME</td>
<td>Apparent metabolizable energy</td>
</tr>
<tr>
<td>AP</td>
<td>Andrographis paniculata</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Aminotransferase</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>CP</td>
<td>Crude Protein</td>
</tr>
<tr>
<td>DM</td>
<td>Dry Matter</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FCR</td>
<td>Food Conversion Ratio</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Association</td>
</tr>
<tr>
<td>GE</td>
<td>Gross Energy</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic Acid Equivalent</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Inhibitory Concentration at 50 %</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>OS</td>
<td>Orthosiphon stamineus</td>
</tr>
<tr>
<td>T20</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>VE</td>
<td>Vitamin E</td>
</tr>
<tr>
<td>Units</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>°C</td>
<td>degrees centigrade</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g/day</td>
<td>gram per day</td>
</tr>
<tr>
<td>g/kg</td>
<td>gram per kilogram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>MJ/kg</td>
<td>megajoule per kilogram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mbar</td>
<td>milibar</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>mmol/L</td>
<td>milimol per liter</td>
</tr>
<tr>
<td>ml/min</td>
<td>milliliter per minute</td>
</tr>
<tr>
<td>mM</td>
<td>milimol</td>
</tr>
<tr>
<td>mg/ml</td>
<td>milligram per milliliter</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
</tbody>
</table>
Common abbreviations

et al. and others
%
percentage
e.g. for example

Statistical terms

ANOVA Analysis of variance
CRD Completely Randomized Design
SE Standard Error

Chemical elements and compounds

ABTS 2,2- azinobis- (3 ethylbenzothiazoline-6-sulfonic acid)
ACN acetonitrile
DPPH 2, 2- diphenyl -1-picrylhydrazyl
HCl Hydrochloric acid
H₂SO₄ Sulphuric acid
MHA Muller Hinton Agar
RA Rogosa Agar
CHAPTER 1

GENERAL INTRODUCTION

Broiler chicken represents 29% of meat production from farmed animals and this value rising each year. Poultry meat and eggs offer considerable potential for meeting human needs for dietary animal protein supply. With regards to the growth of broiler industry, Malaysia ranked seventh place in the world (Anon, 2012). In Malaysia, the broiler industry is expected to grow at the rate of 4% in 2013, outpacing global production growth at 2.5% (Lim, 2013).

To improve broiler production and satisfy market demand, it has been the common practice for farmers to use synthetic antibiotics and antioxidant in the feed as growth promoters. Antibiotics including chlortetracycline, tetracycline, virginiamycin, spiramycin, tylosin phosphate, zinc bacitracin and avopacrin as growth promoters have been used for decades in poultry production for improving farm performance and controlling diseases (Huyghebaert et al., 2011). With increasing interests in discontinuing the use of antibiotics due to their harmful effects to environment, actively efforts to search for safe, suitable and viable alternatives to the antibiotic growth promoters has become intensified. Ideally, these alternative growth promoters should improve growth performance, as do the antibiotics, and maintain a sound health of the chickens. Besides the need of healthy grown broilers, meat quality also needs to give much attention. Oxidative stability is a central parameter in the estimation of meat quality because of the susceptibility of this food product to oxidative degeneration, which is one of the main causes of spoilage (Morrissey et al., 1998). The shelf life of meat is related to lipid oxidation reactions which could affect its sensory properties, by causing rancidity, as well as its nutritional characteristics through the formation of potentially toxic compound (Morrissey and Kerry, 2004). Conventionally, oxidation of chicken meat can be prevented by synthetic antioxidants including butylated hydroxyanisole (BHA), butylated hydroxy toluene (BHT) and propyl gallate (PG) but their safety has been questioned (Barlow, 1990).

Moreover, the excessive use of these synthetic antibiotics and antioxidants has led to contamination of broiler meat and environment. For example, the practice of feeding antibiotics to livestock leads to antibiotic-resistant bacteria that are dangerous to human health. Frequently and excessively used of antibiotics cause harmful bacteria become resistant to the drug, and the treatment becomes less effective (Huyghebaert et al., 2011). In fact, bacteria can develop into a completely different strain that cannot be killed by the normally prescribed antibiotic. Synthetic antioxidants have been restricted recently, mainly because of their possible carcinogenicity causing liver swelling and changing liver enzyme activities. With the increasing consciousness of public consumers on safety of food additive, therefore, an urgent need for identifying alternative natural and probably safer sources of antibiotics and antioxidants.
Currently, the interest in natural antioxidants and antibiotics have increased dramatically because they are considered to be safer than the synthetics, and have greater application potential for consumers acceptability, palatability, stability and shelf-life of meat products (Kang et al., 2008). The medicinal herbs have been used since ancient times not only for flavouring foods but also for their remedies. The preservative effect of spices and herbs suggests the presence of antimicrobial and antioxidative constituents (Basmacioglu et al., 2004; Al-Marzooqi et al., 2010).

In the present study, two species of medicinal plants have been selected namely, Andrographis paniculata Nees, (Acanthaceae) and Orthosiphon stamineus Benth, (Lamiaceae), they are common in Southeast Asia, India and China. A. paniculata has been traditionally used as an antioxidant, antiviral, anti-inflammatory, immune enhancing agent and hepatoprotective (Prajjal et al., 2003). Its active component has been reported to have anti-cancer (Sheeja and Kuttan, 2007), anti-HIV (Calabrese et al., 2000), and antimicrobial (Roy et al., 2010) properties. The other herb, Orthosiphon stamineus, has been used to treat urinary lithiasis, edema, eruptive fever, influenza, rheumatism, hepatitis, jaundice and biliary lithiasis (Akowuah et al., 2005). O. stamineus leaf is consumed as Java tea to facilitate body detoxification (Chin et al., 2008). Both plants have been reported containing natural antibiotics and antioxidants (Prajjal et al., 2003; Ho et al., 2010). However, very few information of medicinal plants as dietary supplements in animals, especially Andrographis paniculata and Orthosiphon stamineus. The hypotheses of the present study were:

1. Andrographis paniculata and Orthosiphon stamineus are species of medicinal plants containing antibiotic and antioxidant compounds.

The goal of this research work was to evaluate the possibilities of improving broiler chicken performance using A. paniculata and O. stamineus leaf preparation as feed supplement as opposed to the synthetic antibiotics and antioxidant. The specific objectives set were:

1. To determine the antibiotic and antioxidant properties of A. paniculata and O. stamineus leaf extracts in different solvents, and to detect and quantify andrographolide and rosmarinic acid presence in the respective species.
2. To evaluate the effect of different levels of A. paniculata and O. stamineus ground leaf supplemented in diets on growth performance, carcass characteristics and blood biochemistry of broiler chickens, and also to determine the morphological and histological changes in gastrointestinal tract and in the liver.
3. To evaluate the antibiotic and antioxidant potential of Orthosiphon stamineus ground leaf on growth performance, meat characteristics, intestinal microflora and lipid peroxidation of broiler chickens.

FAO, 2010, Food and Agriculture Organization of the United Nations (FAO), Livestock and Fish Primary Equivalent, 02 June 2010, FAOSTAT online statistical service, FAO, Rome.

Hashemi, S.R. Zulkifli, I., Davoodi, H., Zunita, Z. and Ebrahim, M. 2012. Growth performance, intestinal microflora plasma, fatty acid profile in

intestinal microflora population in broiler chickens. *Animal Feed Science and Technology* 134: 304-315.

Yao, Y. and Ren, G. 2011. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT-Food Science and Technology. 44: 181-185.

