IMPLEMENTATION OF NEW IMPROVED ROUND ROBIN (NIRR) CPU SCHEDULING ALGORITHM USING DISCRETE EVENT SIMULATION

CHANG JAN VOON

FSKTM 2015 35
IMPLEMENTATION OF NEW IMPROVED ROUND ROBIN (NIRR) CPU
SCHEDULING ALGORITHM USING DISCRETE EVENT SIMULATION

By

CHANG JAN VOON

Thesis Submitted to the School of Graduate Studies,
University Putra Malaysia, in Fulfillment of the
Requirements for the Degree of Master in Computer Science
July 2015
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement of the degree of Master in Computer Science

IMPLEMENTATION OF NEW IMPROVED ROUND ROBIN (NIRR) CPU SCHEDULING ALGORITHM USING DISCRETE EVENT SIMULATION

By

Chang Jan Voon
July 2015

Chairman: Idawaty Ahmad, PhD.
Faculty: Computer Science and Information Technology

Round Robin scheduling algorithm is the most widely used scheduling algorithm because of its simplicity and fairness. However it has higher context switching, larger response time, larger waiting time, larger turnaround time, and lower throughput. (Abdulrahim et al., 2014) proposed a new algorithm, called New Improved Round Robin (NIRR) to enhance the Round Robin scheduling algorithm. The proposed NIRR algorithm has shown improvement over the traditional Round Robin algorithm. However the lack of details of general NIRR simulation model is a clear limitation for the further improvement of the algorithm. The main objective of this research is to validate the NIRR algorithm by developing a comprehensive simulation model using Discrete Event Simulation (DES). An NIRR simulator is deployed and is validated by ensuring the output data closely resemble the output data published by (Abdulrahim et al., 2014). Extensive experiments were done to validate the developed NIRR simulator by ensuring the output data closely resemble the output data published by (Abdulrahim et al., 2014). The success of the developed NIRR simulator was proven by the generated results.
ACKNOWLEDGMENTS

This thesis would not have been possible without the help and support of many people. I would like to express my gratitude and appreciation to my supervisor Dr. Idawaty Ahmad for her constant and valuable support and guidance. Without her patient, insightful criticism and expert guidance, the completion of this research would not have been possible.

I would also like to express my gratitude to my beloved parents and family members who have given me invaluable mental support and encouragement during my study. Last but not least, I give all my love to my wife Wee Mong Sin for her endless love to me.
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institutions.

Name: CHANG JAN VOON
Date: 27th JULY 2015
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Related Works on Round Robin Scheduling Algorithm</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Rationale to use DES to model NIRR</td>
<td>18</td>
</tr>
<tr>
<td>5.1</td>
<td>Simulation Parameters</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>AWT of benchmark model and NIRR simulator</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>ATAT of benchmark model and NIRR simulator</td>
<td>40</td>
</tr>
<tr>
<td>5.4</td>
<td>ART of benchmark model and NIRR simulator</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>System Model Taxanomy</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Simulation Life Cycle</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>NIRR Simulation Framework</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>Flow Chart of NIRR Simulator</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>NIRR Simulation Model</td>
<td>25</td>
</tr>
<tr>
<td>3.6</td>
<td>Task Model</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td><code>taskArrival()</code> – Task Arrival Routine</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td><code>schedule_exe_event()</code> – Schedule Next Task Execution Event</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td><code>taskExecution()</code> – Task Execution Routine</td>
<td>33</td>
</tr>
<tr>
<td>5.1</td>
<td>Life Cycle of a Task</td>
<td>36</td>
</tr>
<tr>
<td>5.2</td>
<td>Graph of Average Waiting Time</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>Graph of Average Turnaround Time</td>
<td>40</td>
</tr>
<tr>
<td>5.4</td>
<td>Graph of Average Response Time</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>Average Response Time</td>
</tr>
<tr>
<td>ATAT</td>
<td>Average Turnaround Time</td>
</tr>
<tr>
<td>AWT</td>
<td>Average Waiting Time</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DES</td>
<td>Discrete Event Simulation</td>
</tr>
<tr>
<td>FCFS</td>
<td>First Come First Serve</td>
</tr>
<tr>
<td>IRR</td>
<td>Improved Round Robin</td>
</tr>
<tr>
<td>NIRR</td>
<td>New Improved Round Robin</td>
</tr>
<tr>
<td>PS</td>
<td>Priority Scheduling</td>
</tr>
<tr>
<td>RR</td>
<td>Round Robin</td>
</tr>
<tr>
<td>RT</td>
<td>Response Time</td>
</tr>
<tr>
<td>SJF</td>
<td>Shortest Job First</td>
</tr>
<tr>
<td>TAT</td>
<td>Turnaround Time</td>
</tr>
<tr>
<td>TOS</td>
<td>Termination of Simulation</td>
</tr>
<tr>
<td>WT</td>
<td>Waiting Time</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iii
DECLARATION iv
LIST OF TABLES v
LIST OF FIGURES vi
LIST OF ABBREVIATIONS vii

CHAPTER

1 INTRODUCTION 1
1.1 Commonly Used Scheduling Algorithm 1
1.2 Problem Statement 2
1.3 Research Objective 2
1.4 Organization of the Thesis 3

2 LITERATURE REVIEW 4
2.1 Fundamental CPU Scheduling Algorithm 4
 2.1.1 First Come First Serve (FCFS) 4
 2.1.2 Shortest Job First (SJF) 5
 2.1.3 Priority Scheduling (PS) 5
 2.1.4 Round Robin (RR) 5
2.2 CPU Scheduling Criteria 6
2.3 Related Works on Round Robin Scheduling Algorithm 8
2.4 Summary 13

3 METHODOLOGY 15
3.1 Basics of Simulation Modeling 15
 3.1.1 Type of Models 15
 3.1.2 Discrete Event Simulation 17
3.2 Simulation Life Cycle 18
 3.2.1 Study Definition Phase 19
3.2.2 Analysis Phase 19
3.2.3 Parameter Estimation Phase 19
3.2.4 Model Development Phase 20
3.2.5 Experimental and Results Analysis Phase 21
3.3 NIRR Simulation Framework 22
 3.3.1 DES Simulation Component 22
 3.3.2 Entities and Resources Component 25
3.4 Summary 28

4 NIRR SCHEDULING ALGORITHM 29
 4.1 Concept of NIRR Algorithm 29
 4.2 Scheduling Algorithm in NIRR Simulator 30
 4.2.1 Task Arrival Routine 30
 4.2.2 Schedule Next Task Execution Event 31
 4.2.3 Task Execution Routine 32
 4.3 Summary 35

5 EXPERIMENT AND RESULTS ANALYSIS 36
 5.1 Performance Metrics 36
 5.1.1 Average Waiting Time (AWT) 36
 5.1.2 Average Response Time (ART) 37
 5.1.3 Average Turnaround Time (ATAT) 37
 5.2 Experimental Setting 38
 5.3 Results and Analysis 39
 5.4 Summary 42

6 CONCLUSIONS AND FUTURE WORKS 43
 6.1 Conclusion 43
 6.2 Future Works 43

REFERENCES 45

BIODATA OF STUDENT 47
CHAPTER 1

INTRODUCTION

An operating system is essential system software of a computer system. It manages the computer resources and provides services to the application programs. It acts as the intermediary between the application programs and computer resources. In the modern computer system, multi-tasking operating systems are used in which more than one application programs can run concurrently. It is the operating system responsibility to schedule tasks for efficient use of system resources.

CPU is one of the most important resources to be shared among the application programs. Therefore the CPU scheduler in the operating system plays an important role in time-sharing and dividing the processor time efficiently between multiple tasks or processes. CPU scheduling algorithms determines which task runs when there are multiple tasks ready to execute.

1.1 Commonly Used Scheduling Algorithm

In general, there is no “best” scheduling algorithm. The choice of scheduling algorithm is based on the type of system used and the users’ requirement. The requirements are based on one or more criteria describe in Section 2.2.

According to (Abdulrahim et al., 2014), Round Robin (RR) scheduling algorithm is the most widely used scheduling algorithm because of its simplicity and fairness. However it has higher context switching, larger response time, larger waiting time,
larger turnaround time, and lower throughput. A lot of researches are conducted to improve the performance of RR scheduling algorithm. According to (Abdulrahim et al., 2014), the performance of RR is sensitive to the time slice selection. The value of time slice affects the algorithm’s efficiency which is measure in the tasks average waiting time, average turnaround time, average response time and number of context switches.

1.2 Problem Statement

(Abdulrahim et al., 2014) proposed a new algorithm, called New Improved Round Robin (NIRR) to enhance the existing Round Robin scheduling algorithm. The NIRR algorithm determines the time slice dynamically, taken from the average of the burst time of the tasks to be executed by the CPU. The NIRR algorithm is simulated and has shown improvement over the traditional RR algorithm. However the lack of details of general NIRR simulation model is a clear limitation for the further improvement of the algorithm.

1.3 Research Objective

The main objective of this research is to validate the NIRR algorithm by developing a comprehensive simulation model using Discrete Event Simulation (DES). An NIRR simulator is deployed and is validated by ensuring the output data closely resemble the output data published by (Abdulrahim et al., 2014). The proposed simulation model in this research may led researcher to greater understanding of the
algorithm and provides a platform for future investigations in NIRR scheduling algorithm.

1.4 Organization of the Thesis

This thesis is organized into six chapters including this introductory chapter. Chapter 2 presents a review on recent works on RR algorithm. Chapter 3 discusses the research methodology and the simulation life cycle in developing the simulator. The details of the NIRR scheduling algorithm are discussed in Chapter 4. The experimental setting and results are presented in Chapter 5. The last chapter, Chapter 6 concludes the thesis and suggests future research directions.
REFERENCES

BIODATA OF STUDENT

Chang Jan Voon was born on the 7th November 1973 in Klang, Selangor. He went to Sekolah Kebangsaan Jalan Batu Tiga Klang, Selangor for his primary education and completed his secondary education in Sekolah Menengah Tinggi Klang, Selangor. He pursued his first degree in University Malaya and graduated with First Class Honours Degree in Electrical Engineering in 1997. He started his career as an R&D Engineer and subsequently moves on to technical support. He is currently working as a Technical Manager, managing a team of technical support engineers and technicians. He is currently pursuing his M.S. degree in Computer Science at University Putra Malaysia (UPM). His areas of interest include real-time system, scheduling algorithm and simulation modeling.