

UNIVERSITI PUTRA MALAYSIA
MODIFIED ALGORITHMS IN INTERVAL SYMMETRIC SINGLE-STEP PROCEDURE FOR SIMULTANEOUS INCLUSION OF POLYNOMIAL ZEROS.

ATIYAH BINTI WAN MOHD SHAM

FS 201438

By

ATIYAH BINTI WAN MOHD SHAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science.

January 2014

All materials contains within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATIONS

I would like to dedicate this thesis to my father, $\mathcal{M r}$. Wan Mohd Sham 6in Wan Bakar my mother, Madam Azizah bt Hj. AbdulRahman
my sisters,
Asma bt Wan Mohd Sham \mathcal{L} Mastura bt Wan Mohd Sham
and
all my famify members..

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MODIFIED ALGORITHMS IN INTERVAL SYMMETRIC SINGLE-STEP PROCEDURE FOR SIMULTANEOUS INCLUSION OF POLYNOMIAL ZEROS.

By

ATIYAH BT WAN MOHD SHAM

January 2014

Chairman: Mansor bin Monsi, PhD Faculty: Science

Several modifications have been introduced in order to improve the problems in finding the zeros of polynomial simultaneously. They are named as Interval Symmetric Single-step 5-Delta procedure (ISS1-5D), Interval Midpoint Symmetric Single-step 5-Delta procedure (IMSS1-5D), Interval Zoro Symmetric Single-step 5-Delta procedure (IZSS1-5D) and Interval Midpoint Zoro Symmetric Single-step 5-Delta procedure (IMZSS1-5D) which were explained in details in this thesis. These four new procedures have been established from the previous symmetric single-step procedure.

Furthermore, we ensure that we start by choosing the suitable initial disjoint intervals which are guaranteed to contain one zero inside of each interval. The numerical results are given to validate the new modifications and the performances are being compared with the existing procedures in terms of number of iteration and computational time (CPU times).

In addition, the convergence properties for all new modifications are investigated to ensure that the procedures are useful for finding the zeros of polynomial. The convergence analysis of each procedure is also discussed. The programming codes are developed and implemented using Matlab R2012b incorporated with Intlab V5.5 toolbox and compared with the existing procedures. The efficiency of the procedures is justified by the numerical results given. The results generated showed that these new procedures produced less computational time, higher rate of convergence and achieved the desired accuracy.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENGUBAHSUAIAN ALGORITMA DALAM PROSEDUR SELANG SIMETRI TUNGGAL UNTUK MEMERANGKAP SECARA SERENTAK PENSIFAR NYATA BAGI SUATU POLINOMIAL

Oleh

ATIYAH BT WAN MOHD SHAM

Januari 2014

Pengerusi : Mansor bin Monsi, PhD Fakulti: Sains

Beberapa pengubahsuaian telah diperkenalkan untuk memperbaiki masalah dalam mencari pensifar bagi polinomial secara serentak. Mereka dinamakan sebagai prosedur Selang Simetri Tunggal 5 -Delta (ISS1 -5D), prosedur Selang Titik Tengah Simetri Tunggal 5 -Delta (IMSS1 -5D), prosedur Selang Zoro Simetri Tunggal 5 -Delta (IZSS1 -5D) dan prosedur Selang Zoro Titik Tengah Simetri Tunggal 5 -Delta (IMZSS1 -5D) yang telah diterangkan secara terperinci di dalam tesis ini . Keempat-empat prosedur baru telah diwujudkan berdasarkan dari prosedur selang simetri tunggal sebelumnya.

Tambahan pula, kita memastikan bahawa kita bermula dengan selang permulaan tidak bercantum yang dijamin mengandungi satu pensifar di dalam setiap selang. Keputusan berangka diberikan untuk mengesahkan pengubahsuaian baru tersebut dan perlaksanaannya yang dibandingkan dengan prosedur-prosedur yang sedia ada dari segi bilangan lelaran dan masa pengkomputeran (masa CPU).

Di samping itu, sifat-sifat penumpuan untuk semua pengubahsuaian baru diselidiki untuk memastikan bahawa prosedur ini berguna untuk mencari sifar polynomial. Analisis penumpuan setiap prosedur juga dibincangkan. Kod pengaturcaraan dibangunkan dan dilaksanakan dengan menggunakan Matlab R2012b digabungkan dengan Intlab V5.5 toolbox dan dibandingkan dengan prosedur yang sedia ada. Kecekapan prosedur ini dikuatkan dengan hasil berangka diberikan. Keputusan yang dihasilkan menunjukkan bahawa prosedur baru ini menghasilkan masa pengkomputeran yang lebih singkat, kadar penumpuan yang lebih tinggi dan mencapai ketepatan seperti yang dikehendaki.

ACKNOWLEDGEMENTS

In the name of Allah, the most Compasionate and the most Merciful
Alhamdulillah, I am grateful to several people for their help during the course of this research. In particular, I wish to express my infinite gratitude and sincere appreciation to my chairman, Dr Mansor bin Monsi for his valuable comments, support, advice, and suggestions. I am also grateful to Associate Professor Dr Leong Wah Jun for serving in the supervisory committee. His patience and persistent encouragement during the course of my research is instrumental to the completion of this thesis. A thousand appreciations to Dr Sharifah Kartini bt Syed Hussain and Professor Dato. Dr. Muhammad bin Suleiman for all their financial supports.

I wish to express my gratitude to Mr. Fakhrul Hazman Yusoff who is a lecturer from UiTM Shah Alam who willing to guide me all the way during the process of constructing my algorithm using programming language software named MATLAB. I also thank to Miss Nur Raidah bt Salim and Mrs. Syaida Fadhilah bt Mohammad Rusli for their untiring guidance in writing and running the MATLAB code.

Special thanks go to the Head of Department and general staffs of the Institute For Mathematical Research, Universiti Putra Malaysia (UPM), for their assistance in various capacities which providing me the laboratory facilities. I am also acknowledged the financial support given to me by School Graduate of Studies (SGS), Universiti Putra Malaysia under the Graduate Research Fellowship (GRF).

Thanks for my friends from Department of Mathematics, especially all of my course mates such as Nurzeehan, Nur Shakila, Yusra and Iskandar Shah for their great support and help at anytime I need for sharing their knowledge and ideas with me. Special thanks go to my best friend, Noraini Jamaludin for her continuous supports, understanding and patience without limit throughout this study together.

There would be no words to express my heartfelt gratitude towards my family especially to my parents, Wan Mohd Sham Wan Bakar and Azizah Hj Abd Rahman and the rest of my family for their prayers, love, endless supports and encouragement during the course of this study.

I certify that a Thesis Examination Committee has met on 16 January 2014 to conduct the final examination of Atiyah Bt Wan Mohd Sham on her thesis entitled "Modified Algorithms In Interval Symmetric Single-Step Procedure For Simultaneous Inclusion Of Polynomial Zeros" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Zarina Bibi bt Ibrahim, PhD

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd Rizam b Abu Bakar, PhD

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)
Ibragimov Gafurjan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Bachok b M. Talib, PhD

Professor
Faculty of Science and Technology
Universiti Sains Islam Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 February 2014

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.

The members of the Supervisory Committee were as follows:

Mansor Monsi, PhD

Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Leong Wah Jun, PhD

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)
Nasruddin Hassan,PhD
Senior Lecturer
School of Mathematical Sciences
Faculty of Science and technology
Universiti Kebangsaan Malaysia
(External Member)

DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fullyowned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012 . The thesis has undergone plagiarism detection software

Signature: \qquad Date: \qquad

Name and Matric No.:

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under supervision;
- supervision responsibilities as stated in rule 41 in rules 2003 (Revision 2012-2013) were adhered to:

Signature: Name of Chairman of Supervisory Committee:

Signature:
Name of
Member of
Supervisory
Committee:
\qquad
$\pi-2$

$$
14
$$

\qquad

Signature:
Name of Member of Supervisory
Committee:

Signature:
Name of Member of Supervisory Committee:

\qquad

LIST OF TABLES

Table Page
3.1 Number of iterations and CPU times for all test 38 polynomials
3.2 Width of intervals for each step at every iteration k for test polynomial 2
3.3 Width of intervals for each step at every iteration k for 40 test polynomial 3
3.4 Width of intervals for each step at every iteration k for test polynomial 44.1 Number of iterations and CPU times for all testpolynomials
4.2 Width of intervals for each step at every iteration k for 48 test polynomial 4.
4.3 Width of intervals for each step at every iteration k for 48 test polynomial 5.
5.1 Number of iterations and CPU times for all test 60 polynomials
5.2 Width of intervals for each step at every iteration k for 62 test polynomial 3
5.3 Width values of final intervals for test polynomial 3 62
6.1 Number of iterations and CPU times for all test 70polynomials
6.2 Width of intervals for each step at every iteration k for 71 test polynomial 2.6.3 Width of intervals for each step at every iteration k for71test polynomial 4.
6.4 Width of intervals for each step at every iteration k for 72 test polynomial 5 .
6.5 Width values of final intervals for test polynomial 3 72
7.1 Number of iteration for all procedures 75
7.2 CPU times for all procedures 76

LIST OF FIGURES

Figure Page
$3.1 \quad p\left(x_{i}^{(k)}\right) \geq 0$ (i) 29
$3.2 p\left(x_{i}^{(k)}\right) \geq 0$ (ii) 29
3.3 $p\left(x_{i}^{(k)}\right) \leq 0$ (i) 31
3.4 $p\left(x_{i}^{(k)}\right) \leq 0$ (ii) 31
3.5 Number of iterations of ISS1 vs ISS1-5D procedure 39
3.6 CPU times of ISS1 vs ISS1-5D procedure 39
4.1 Number of iterations of ISS1 vs IMSS1-5D procedure 47
4.2 CPU times of ISS1 vs IMSS1-5D procedure 48
5.1 Number of iterations of ISS1 vs IZSS1 vs IZSS1-5D procedure
5.2 CPU times of ISS1 vs IZSS1 and IZSS1-5D procedure 61
6.1 Number of iterations of ISS1 vs IMZSS1-5D procedure 70
6.2 CPU times of ISS1 vs IMZSS1-5D procedure 71
7.1 CPU times against Test Polynomial for all procedures 76

LIST OF ABBREVIATIONS

\mathbb{R}	real numbers
\mathbb{C}	complex numbers
$I(\mathbb{R})$	real intervals
IA	interval analysis
p	polynomial
$R_{p}\left(w^{(k)}\right)$	R-factor
$\inf (x)$	infimum, or lower bound of \mathbf{x}
$\sup (x)$	supremum, or upper bound of \mathbf{x}
$O_{R}\left(I, x^{*}\right)$	R-order of convergence of an iterative process I with the limit point x^{*}
CPU	Central Processing Unit
IS	Interval Single-Step Method
PT	Point Total Step Method
ISS1	Interval Symmetric Single-Step Method
ISS1-5D	Interval Symmetric Single-Step 5-Delta Method
IMSS1-5D	Interval Midpoint Symmetric Single-Step 5-Delta Method
IZSS1	Interval Zoro Symmetric Single-Step Method
IZSS1-5D	Interval Zoro Symmetric Single-Step 5-Delta Method
IMZSS1-5D	Interval Midpoint Zoro Symmetric Single-Step 5-Delta Method

TABLE OF CONTENTS

Page
DEDICATIONS i
ABSTRACT ii
ABSTRAK iii
ACKNOWLEDGEMENTS iv
APPROVAL v
DECLARATION vii
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xii
CHAPTER
1 INTRODUCTION
1.1 Preliminaries 1
1.2 Concepts and properties of interval 1
1.3 Theorem of convergence 9
1.4 Objectives of the thesis 10
1.5 Planning of the thesis 11
2 LITERATURE REVIEW
2.1 Numerical analysis 12
2.1.1 Interval analysis
2.2 Finding zeros of polynomials 12
2.3 Simultaneous methods of bounding polynomial zeros 13
2.4 Simultaneous methods of estimating polynomial zeros 18
3 THE INTERVAL SYMMETRIC SINGLE-STEP PROCEDURE ISS1-5D
3.1 Introduction 22
3.2 The Algorithm of ISS1-5D Procedure 22
3.3 Theorem of convergence 24
3.4 Analysis of R-Order of Convergence of ISS1-5D 25
3.5 Numerical results 38
3.6 Discussion and Conclusions 41
4 THE INTERVAL MIDPOINT SYMMETRIC SINGLE- STEP PROCEDURE IMSS1-5D
4.1 Introduction 42
4.2 The Algorithm of IMSS1-5D Procedure 42
4.3 Theorem of convergence 43
4.4 Analysis of R-Order of Convergence of IMSS1-5D 44
4.5 Numerical results 47
4.6 Discussion and Conclusions 49
THE INTERVAL ZORO SYMMETRIC SINGLE-STEP PROCEDURE IZSS1-5D
5.1 Introduction 50
5.2 The Algorithm of IZSS1-5D Procedure 50
5.3 Theorem of convergence 52
5.4 Analysis of R-Order of Convergence of IZSS1-5D 52
5.5 Numerical results 60
5.6 Discussion and Conclusions 63
6 THE INTERVAL MID-POINT ZORO SYMMETRIC SINGLE-STEP PROCEDURE IMZSS1-5D
6.1 Introduction 64
6.2 The Algorithm of IMZSS1-5D Procedure 64
6.3 Theorem of convergence 66
6.4 Analysis of R-Order of Convergence of IMZSS1-5D 66
6.5 Numerical results 69
6.6 Discussion and Conclusions 73
7 CONCLUSIONS AND SUGGESTIONS
7.1 Conclusions 74
7.2 Suggestion and Future Studies 77
REFERENCES 81
APPENDIX 1 84
APPENDIX 2 86
APPENDIX 3 87
APPENDIX 4 88
APPENDIX 5 89
BIODATA OF STUDENT 90
LIST OF PUBLICATIONS 91

CHAPTER 1

INTRODUCTION

1.1 Preliminaries

One of the significant fields in mathematics is numerical analysis. It is defined as the area of mathematics in solving the problems of continuous mathematics by creating, analyzing, and implementing algorithms. Almost as old as human civilization, numerical algorithms have been existed. During 1980's and 1990's, an area known as computational science was formed and started to take serious view about the usage of numerical analysis (A tkinson K. E., 1855). The subject of numerical analysis provides computational methods for the study and solution of mathematical problems. (A tkinson, K. E., 1978)

In late 50's, interval analysis is a new and promising branch of applied mathematics which have been originated by M oore since 1959. Till now, interval analysis is widely used in order to solve a variety of mathematical problems. The main significance of interval analysis is that it can solve problems so that the results are guaranteed to be correct and can be computed with finitely precise floating point operations (Snyder, 1992). Thus, interval analysis is classified as one of the important tools in solving various kinds of problem such as problems of finding zeros in polynomials, optimization, differential equation and also integral equation where most mathematical models used in the natural sciences and engineering are based on those problems (M oore and Bierbaum 1979).

1.2 Concepts and properties of interval

IA's mathematical definitions and notations are extended from set of theory and ordered numerical sets called interval (Schwartz, 1999). Our research considers closed interval analysis with the following definitions of an interval (using M atlab upper bound, lower bound style notation):

$$
X=[\inf (x), \sup (x)]=\{x \mid \inf (x) \leq x \leq \sup (x), \inf (x), \sup (x), x \in \mathbb{R}\}
$$

where $\inf (x)$ denotes the infimum, or lower bound of $\quad X$ and $\sup (x)$ denotes the supremum, or upper bound of X.

A nother way to define number system is by using interval number system. Furthermore, the M ATLAB programming (Rump, 1999) gives significant ideas of interval number system containing the answers that overcome all the possible
errors made in any low-level computation. According to Moore (1966), an interval number corresponds to a pair of real numbers which representing the lower and upper bound of the parameter range.

The following are the main concepts and properties. In interval analysis, real numbers is denoted by \mathbb{R} and members of \mathbb{R} are denoted by lowercase letters a, b, c, \ldots, x, y, z.

A subject of \mathbb{R} of the form

$$
A=\left[a_{1}, a_{2}\right]=\left\{t \mid a_{1} \leq t \leq a_{2} ; a_{1}, a_{2} \in \mathbb{R}\right\}
$$

is called a closed real interval. The set off all closed real interval is denoted by $I(\mathbb{R})$ and the members of $I(\mathbb{R})$ is denoted by uppercase letters A, B, C, \ldots, X, Y, Z. The following informations are available in A lefeld and Herzberger in 1983. (see also in Salim N.R., 2012)

Definition 1.1: Let $* \in\{+,-,, /\}$ be a binary operation on the set of real numbers \mathbb{R}.If $A, B \in I(\mathbb{R})$ then

$$
A * B=\{z=a * b \mid a \in A, b \in B\}
$$

defines a binary operation on $\quad I(\mathbb{R})$. A ssume that $0 \notin B$ in this case of division. It is straightforward to define interval extensions of basic operations as
a) $A+B=\left[a_{1}+b_{1}, a_{2}+b_{2}\right]$,
b) $A-B=\left[a_{1}-b_{2}, a_{2}-b_{1}\right]$,
c) $A \cdot B=\left[\min \left\{a_{1} b_{1}, a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2}\right\}, \max \left\{a_{1} b_{1}, a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2}\right\}\right]$,
d) $A / B=\left[a_{1} \cdot a_{2}\right] \cdot\left[1 / b_{2}, 1 / b_{1}\right]$.

Example 1.1: Let $A=[1,2]$ and $B=[5,6]$ therefore
a) $A+B=[1,2]+[5,6]=[1+5,6+2]=[6,8]$,
b) $A-B=[1,2]-[5,6]=[1-5,2-6]=[-4,-4]$,
c) $A \cdot B=[1,2] \cdot[5,6]=[\min \{5,6,10,12\}, \max \{5,6,10,12\}]=[5,12]$,
d) $A / B=[1,2] \cdot\left[\frac{1}{6}, \frac{1}{5}\right]=\left[\min \left\{\frac{1}{6}, \frac{1}{5}, \frac{1}{3}, \frac{2}{5}\right\}, \max \left\{\frac{1}{6}, \frac{1}{5}, \frac{1}{3}, \frac{2}{5}\right\}\right]=\left[\frac{1}{6}, \frac{1}{3}\right]$.

Example 1.2: Let $A=[2,4]$ and $B=[3,7]$ therefore
a) $A+B=[2,4]+[3,7]=[2+3,4+7]=[5,11]$,
b) $A-B=[2,4]-[3,7]=[2-7,4-3]=[-5,1]$,
c) $A \cdot B=[2,4] \cdot[3,7]=[\min \{6,14,12,28\}, \max \{6,14,12,28\}]=[6,28]$,
d) $A / B=[2,4] \cdot\left[\frac{1}{7}, \frac{1}{3}\right]=\left[\min \left\{\frac{2}{7}, \frac{2}{3}, \frac{4}{7}, \frac{4}{3}\right\}, \max \left\{\frac{2}{7}, \frac{2}{3}, \frac{4}{7}, \frac{4}{3}\right\}\right]=\left[\frac{2}{7}, \frac{4}{3}\right]$.

Definition 1.2: If $r(x)$ is a continuous unary operation on \mathbb{R}, then

$$
r(X)=\left[\min _{x \in X} r(x), \max _{x \in X} r(x)\right]
$$

defines a (subordinate) unary operation on $\quad I(\mathbb{R})$. Examples of such unary operations on $\quad I(\mathbb{R})$ are $X^{k}(k \in \mathbb{R}), e^{x}, \ln X$ and $\sin X$.

Example 1.3:

Let $r=\ln X$ and $X=\left[\frac{2}{3}, 3\right]$, then $r(X)=\left[\ln \frac{2}{3}, \ln 3\right]=[-0.40547,1.09861]$
Theorem 1.1: Let $A, B \in I(\mathbb{R})$ with $a \in A, b \in B$. Then it follows that

$$
a * b \in A * B
$$

for $* \in\{+,-, \cdot, /\}$.
The unary operations $\quad r(X)$ of Definition 1.2 have the corresponding properties

$$
\begin{gathered}
X \subseteq Y \Rightarrow r(X) \subseteq r(Y) \\
x \in X \Rightarrow r(x) \in r(X)
\end{gathered}
$$

Definition 1.3:

An interval $A \in I_{d}(\mathbb{R})$ is degenerate (or is point interval) if and only if $a_{1}=a_{2}$. The set $I_{d}(\mathbb{R})$ of degenerate intervals and the set \mathbb{R} of real numbers are isomorphic. This permits a meaning to be given to

$$
a * b=[a, b] * B(a \in \mathbb{R}, B \in I(\mathbb{R}), * \in\{+,-, \cdot, /\}) .
$$

Definition 1.4: If $a \in \mathbb{R}$ and $B \in I(\mathbb{R})$ and $B=\left[b_{1}, b_{2}\right] \in I(\mathbb{R})$, then
a) $a+B=[a, a]+B=\left[a+b_{1}, a+b_{2}\right]$,
b) $a-B=[a, a]-B=\left[a-b_{2}, a-b_{1}\right]$,
c) $a \cdot B=[a, a] \cdot B=\left[\min \left\{a b_{1}, a b_{2}\right\}, \max \left\{a b_{1}, a b_{2}\right\}\right]$,
and if $0 \notin B$, then
d) $a / B=[a, a] \cdot\left[\frac{1}{b_{1}}, \frac{1}{b_{2}}\right]=\left[\min \left\{a / b_{2}, a / b_{1}\right\}, \max \left\{a / b_{2}, a / b_{1}\right\}\right]$.

Proposition 1.1:

Interval arithmetic is inclusion monotonic that is to say, if
$A, B, C, D \in I(\mathbb{R})$ then ($\forall * \in\{+,-, \cdot, /\}$)

$$
(A \subseteq C, B \subseteq D) \Rightarrow(A * B \subseteq C * D)
$$

Proof: By Definition 1.1.

$$
\begin{aligned}
A * B & =\{a * b \mid a \in A, b \in B\} \\
& \subseteq\{c * d \mid c \in C, d \in D\} \\
& =C * D .
\end{aligned}
$$

Definition 1.5: Let $A, B \in I(\mathbb{R})$ be given. Then the intersection $A \cap B$ of A and B is defined by

$$
A \cap B=\{x \in \mathbb{R} \mid x \in A, x \in B\} .
$$

Proposition 1.2:

a) $(\forall A, B \in I(\mathbb{R})) A \cap B=B \cap A$;
b) $(\forall A, B \in I(\mathbb{R})) A \cap B \subseteq A, A \cap B \subseteq B$;
c) $(A \cap B=A \Leftrightarrow A \subseteq B),(A \cap B=B \Leftrightarrow B \subseteq A)$.

Proof: Of (a): By definition 1.5

$$
\begin{aligned}
A \cap B & =\{X \in \mathbb{R} \mid x \in A, x \in B\} \\
& \subseteq\{x \in \mathbb{R} \mid x \in B, d \in A\} \\
& =B \cap A .
\end{aligned}
$$

Of (b): By definition 1.5

$$
A \cap B=\{x \in \mathbb{R} \mid x \in A, x \in B\} .
$$

So

$$
\{x \in A \cap B\} \Rightarrow x \in A,
$$

then

$$
(A \cap B) \subseteq A,
$$

A nd

$$
(x \in A \cap B) \Rightarrow x \in B
$$

Then

$$
(A \cap B) \subseteq B
$$

Of $(c):$ By $(A \cap B) \subseteq B$, so

$$
(A \cap B=A) \Rightarrow(A \subseteq B)
$$

Conversely, if \# C \$ then by Definition 1.5

$$
\begin{aligned}
A \cap B & =\{x \mid x \in A, x \in B\} \\
& \subseteq\{x \mid x \in A\} \\
& =A .
\end{aligned}
$$

Therefore

$$
(A \cap B=A) \Leftrightarrow(A \subseteq B)
$$

Interchanging \# and \$ and using (1), it follows that

$$
(A \cap B=A) \Leftrightarrow(B \subseteq A)
$$

Definition 1.6:

The distance between two intervals $A=\left[a_{1}, a_{2}\right], B=\left[b_{1}, b_{2}\right] \in I(\mathbb{R})$ is defined as

$$
q(A, B)=\max \left\{\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right\}
$$

The sequence of intervals $\left\{A^{(k)}\right\}_{k=0}^{\infty}$ converges to an interval $\quad A$ if and only if the sequence of bounds of the individual members of the sequences converges to the corresponding bounds of $A=\left[a_{1}, a_{2}\right]$. We can therefore w rite

$$
\lim _{k \rightarrow \infty} A^{(k)}=A \Leftrightarrow\left(\lim _{k \rightarrow \infty} a_{1}^{(k)}=a_{1} \text { and } \lim _{k \rightarrow \infty} a_{2}^{(k)}=a_{2}\right)
$$

Definition 1.7:

The $A, B \in I(\mathbb{R})$ then the absolute value of an interval $\quad A=\left[a_{1}, a_{2}\right] \in I(\mathbb{R})$ and $B=\left[b_{1}, b_{2}\right] \in I(\mathbb{R})$ is defined as

$$
\begin{aligned}
& |A|=q(A,[0,0])=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\}, \\
& |B|=q(B,[0,0])=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|\right\},
\end{aligned}
$$

and

$$
A \subseteq B \Rightarrow d|A| \leq d|B|
$$

Theorem 1.2: Every sequence of intervals $\quad\left\{A^{(k)}\right\}_{k=0}^{\infty}$ for which

$$
A^{(0)} \supseteq A^{(1)} \supseteq A^{(2)} \supseteq \ldots
$$

is valid converges to the intervals

$$
A=\bigcap_{k=0}^{\infty} A^{(k)}
$$

Proof: Let us consider the sequences of bounds

$$
a_{1}^{(0)} \leq a_{1}^{(1)} \leq a_{1}^{(2)} \leq a_{1}^{(3)} \leq \ldots \leq a_{2}^{(3)} \leq a_{2}^{(2)} \leq a_{2}^{(1)} \leq a_{2}^{(0)}
$$

Theorem 1.3: The operations +,-, and / introduced in Definition 1.1 for intervals are continuous.

Proof:
We carry through the proof only for the operation +. Let $\quad\left\{A^{(k)}\right\}_{k=0}^{\infty}$ and $\left\{B^{(k)}\right\}_{k=0}^{\infty}$ be two sequences of intervals for which $\quad \lim _{k \rightarrow \infty} A^{(k)}=A$ and $\lim _{k \rightarrow \infty} B^{(k)}=B$ The sequence of interval sums $\quad\left\{A^{(k)}+B^{(k)}\right\}_{k=0}^{\infty}$ then from Definition 1.1, satisfies

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(A^{(k)}+B^{(k)}\right) & =\lim _{k \rightarrow \infty}\left(a_{1}^{(k)}+b_{1}^{(k)}, a_{2}^{(k)}+b_{2}^{(k)}\right) \\
& =\left[\lim _{k \rightarrow \infty}\left(a_{1}^{(k)}+b_{1}^{(k)}\right), \lim _{k \rightarrow \infty}\left(a_{2}^{(k)}+b_{2}^{(k)}\right)\right] .
\end{aligned}
$$

Definition 1.8: The width of an interval $A=\left[a_{1}+a_{2}\right]$ is defined to be

$$
d(A)=a_{2}-a_{1} \geq 0
$$

The set of point intervals may now be characterized as $\quad\left\{A \in I_{d}(\mathbb{R}) \mid d(A)=0\right\}$.
From Definition 1.7 we get properties that lead to
a) $A \subseteq B \Rightarrow d(A) \leq d(B)$,
b) $d(A \pm B)=d(A)+d(B)$,
c) $d(A)=\max _{a_{1}, a_{2} \in \Re}\left|a_{2}-a_{1}\right|$.

Definition 1.8:

The midpoint of mid $\quad(A)$ of $A \in I(R)$ is defined by $\operatorname{mid}(A)=\frac{1}{2}\left(a_{1}+a_{2}\right)$.

Theorem 1.4:

Let $A, B \in I(\mathbb{R})$ be real intervals, then

$$
\begin{gathered}
d(A B) \leq d(A)|B|+|A| d(B), \\
d(A B) \geq \max \{|A| d(B),|B| d(A)\}, \\
d(a B)=|a| d(B), a \in \mathbb{R} \\
d\left(A^{n}\right) \leq n|A|^{n-1} d(A), n=1,2, \ldots \\
\left(A^{n}:=A \cdot A \cdot \ldots \cdot A, n \text { times }\right) \\
d\left((X-x)^{n}\right) \geq 2(d(X))^{n}, x \in X, n=1,2, \ldots,
\end{gathered}
$$

From an interval $C \in I(\mathbb{R})$ with $0 \in C$ it furthermore follows that

$$
|C| \leq d(C) \leq 2|C| .
$$

Theorem 1.5: Let $A, B \in I(\mathbb{R})$ be intervals, and assume that A is a symmetric interval; i.e, $A=-A$. The following properties then hold,

$$
\begin{gathered}
A B=|B| A, \\
d(A B)=|B| d(A),
\end{gathered}
$$

The property (1.32) is also valid for $0 \in A$ if either $b_{1} \geq 0$ or $b_{2} \leq 0$.

Theorem 1.6: If A, B and C are members of the real intervals $\quad I(\mathbb{R})$. Then it follows that
a) $A+B=B+A$,
b) $A \cdot B=B \cdot A$,
c) $(A+B)+C=A+(B+C)$,
d) $(A \cdot B) \cdot C=A \cdot(B \cdot C)$.

The pro of of the above theorem can be found in A lefeld and Herzberger (1983). It is easy to show that both interval addition and multiplication are commutative and associative; for any three intervals $\quad A, B$ and C. (M oore, 2009)

1.3 Theorem of convergence

The theorem can be referred to A lefeld and Herzberger(1983).
Theorem 1.7: Let I be an iteration procedure with the limit x^{*}, and let $\Omega\left(I, x^{*}\right)$ be the set of all sequences generated by $\quad I$ having the properties that $\quad \lim _{k \rightarrow \infty} x^{(k)}=x^{*}$ and $x^{*} \subseteq x^{(k)}, k \geq 0$. If there exist a $p \geq 1$ and a constant γ such that for all $\left\{x^{(k)}\right\} \in \Omega\left(I, x^{*}\right)$ and for norm $\|\cdot\|$, it holds that $\left\|h^{(k+1)}\right\| \leq \gamma\left\|h^{(k)}\right\|^{p}, k \geq k\left(\left\{x^{(k)}\right\}\right)$, then follows that R -order of convergence of I satisfies the inequality $O_{R}\left(I, x^{*}\right) \geq p$.

The R-order of convergence is defined as the measurement of the asymptotic convergence rate of the procedure. Its concept is discussed precisely by (Ortega and Rheinboldt, 1970) meanwhile it has been explained sufficiently for this thesis. (Alefeld and Herzberger, 1983). The R-order of procedure I is denoted by $O_{R}\left(I, x^{*}\right)$ and R -factor of a null sequence $\left(w^{(k)}\right)$ is denoted by $R_{p}\left(w^{(k)}\right)$ which is generated from the procedure I. (M onsi, 1988).

Furthermore, if there exists a $\quad p \geq 1$ such that for any null sequence $\left\{w^{(k)}\right\}$ generated from $\left\{x^{(k)}\right\}$, then the R -factor of the sequence is defined as,

$$
R_{p}\left(w^{(k)}\right)=\left\{\begin{array}{l}
\lim _{k \rightarrow \infty} \sup \left\|w^{(k)}\right\|^{1 / k}, p=1 \\
\lim _{k \rightarrow \infty} \sup \left\|w^{(k)}\right\|^{1 / p^{k}}, p>1
\end{array}\right.
$$

where R_{p} is independent of the norm
$\|\cdot\|$. Suppose that $R_{p}\left(w^{(k)}\right)<1$ then it follows from Ortega and Rheinboldt (1970) that the R-order of I satisfies the inequality $O_{R}\left(I, x^{*}\right) \geq p$. We will use this result in order to calculate the rate of convergence of all modified methods in each chapters.

Definition 1.9: Let I be an iteration procedure converging to x^{*}. Then, according A lefeld and Herzberger in 1983, the R -order of the iteration I as

$$
O_{R}\left(I, x^{*}\right)=\left\{\begin{array}{c}
+\infty \quad \text { if } R_{p}\left(I, x^{*}\right)=0 \text { for } p=1, \\
\inf \left\{p \mid p \in[1, \infty), R_{p}\left(I, x^{*}\right)=1\right\} \text { otherwise. }
\end{array}\right.
$$

1.4 Objectives of the research

The objectives of our research are:

1) To develop some new and efficient procedures based on symmetric singlestep procedures for solving real and simple polynomials (M onsi, 1988) and (Rusli et. al, 2011).
2) To investigate the convergence properties of the modified procedures. We want to verify that the modified procedures are better in term of convergence rate and take less time to converge to the solution. The se new procedures are supposed to have higher rate of convergences than does the existing procedures. These procedures are iterative in nature and produce a sequence of intervals $\left\{X_{i}^{(k)}\right\}(i=1, \ldots, n)$ that will converge faster to the solution compared to the existing procedures.
3) To compare the numerical performances; in term of number of iteration and CPU times. M atlab R2012b software (Rump, 1999) in associate with Intlab is employed to record the Central Processing Unit (CPU) time taken in seconds(s) for the existing procedures and the modified procedures.

1.5 Planning of the thesis

This thesis concerns mainly in finding the simple zeros of real polynomials using interval analysis approach. I n Chapter 1, we provided some brief description about the mathematical background of the basic concept and properties of interval arithmetic. Some general theorems of local convergence which are referred along our research are presented.

Chapter 2 highlighted a detailed explanation about literature review based on interval analysis and simultaneous methods of finding polynomial zeros are given in this section.

Chapter 3, 4, 5, and 6 are the chapters that contain the precise and detailed discussions about all four advanced modified procedures. The new four modified procedures are Interval Symmetric Single-Step 5 Delta (ISS1-5D) procedures, Interval M idpoint Symmetric Single-Step 5 Delta (IM SS1-5D) procedures, Interval Zoro Symmetric Single-Step 5 Delta (IZSS1-5D) procedures, and Interval Midpoint Zoro Symmetric Single-Step 5 Delta (IM ZSS1-5D) procedures.

We provide the algorithms and also the analysis of $\quad \mathrm{R}$-order of convergence for each of the new procedures respectively. In addition, we show the comparison between the new procedures with the original one in term of the number of iteration, CPU times and order of convergence.

The efficiency of these four new procedures will be shown clearly from the numerical results for each test polynomials which will be displayed in form of tables and graphs. Finally, we summarize in Chapter 7 by showing all the final numerical results from the previous chapters. In addition, some possible extensions of the work for future studies are al so considered.

REFERENCES

Aitken, A.C. 1950. Studies in Practical M athematics V. On the Iterative Solution of Linear Equation. Proc. Roy. Soc. Edinburg Sec. A. 63: 52-60.

A tkinson, K. E. (1855). Numerical A nalysis. Depts of Mathematics and Computer Science, University of Iowa, Iowa City, Iowa. 1-8.

A tkinson, K. E. Retrieved 03/01/2011, Numerical A nalysis, http://www.cs.uiowa.edu/atkinson/NA_Overview.pdf

A tkinson, K. E. (1978). An Introduction To Numerical A nalysis. John Wiley \& Sons, Inc, Canada.

A lefeld, G. and Herzberger, J. (1974). On the convergence speed of some Algorithms for the simultaneous approximation of polynomial roots, SIAM J.Numer.A nal., 11(1974), 237-243.

Alefeld, G. and Herzberger, J. (1983). Introduction To Interval Computations. Translated By Jon Rokne, New Y ork: A cademic Press.

Docev, K. (1962). An Alternative Method of Newton for Simultaneous Calculation of All Roots of a given Algebraic Equation. Phys. Math. J., Bulg. A cad. Sci. 5, 136-139.

Gargantini, I. (1978). Further A pplication Circular A rithmetic: Shoroeder-like Algorithms with Error Bounds for Finding Zeros of Polynomial. SIAM Journal of Numerical A nalysis. 19:149-154.

Gargantini, I. (1979). The Numerical Stability of Simultaneous Iteration Via Square-Rooting. Comp. \& M ath with A ppls. 5:25-31.

Gargantini, I. and Henrici, P.(1972). Circular arithmetic and the determination of polynomial zeros. Numer M ath. 8:290-294.

Ilieff, L. (1948). On the A pproximations of Newton. A nnual Sofia Univ. 167-171.
Kerner, O. (1966). Total Step Procedure for the Calculation of the Zeros of Polynomials. Numer. Math. 8, 290-294.

M cNamee, J. M., Chui, C. K., W uytack, L. (2007). Numerical M ethods for Zeros of Polynomials Part 1. First Edition, United Kingdom: Elsevier Publishing Company.

Milovanovic, G. V. and Petkovic, M. S. (1983). On the Convergence of a Modified Method for Simultaneous Finding of Polynomial Zeros. Computing (30):171-178.

M onsi, M. (1988). Some A pplications of Computer A Igebra and Interval M athematics. University of St. A ndrews, United K ingdom.

M onsi, M and W olfe, M.A. (1988). Interval V ersions of Some Procedures for the Siultaneous Estimation of Complex Polynomial Zeros. A ppl. Math. Comp. 28: 191-209.

M onsi, M (2010). The interval symmetric single -step ISS1 procedure for simultaneously bounding simple polynomial zeros , M alaysian Journal of M athematical Sciences, 5(2) (2011): 211-227.

M onsi, M (2011). The interval symmetric single -step ISS1 procedure for simultaneously bounding simple polynomial zeros , M alaysian Journal of M athematical Sciences, 5(2) (2011): 211-227.
M. M onsi, N. Hassan, S. F. Rusli, The point zoro symmetric single-step procedure for simultaneous estimation of polynomial zeros. Journal of A pplied Mathematics, V olume 2012, Article ID 709832, 11 pages, doi: 10.1155/2012/709832.

Moore, R. E. (1959). Automatic error analysis in digital computation. Technical Report LM SD-48421 Lockheed M issiles and Space Co, Palo A Ito, CA .

M oore, R. E. (1966). Interval A nalysis . Prentice-Hall, Englewood Cliffs, NJ.
Moore, R. E., Kearfott, R.B. and Cloud, M.J. (2009). Introduction to Interval A nalysis. SIAM , Philadelphia.

M oore, R. E., Bierbaum, B. (1979). Methods and application of interval analysis. SIA M ,Philadelphia.

Neumaier, A. (1990). Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, UK.

Neumaier, A. (2001). Introduction to Numerical A nalysis . Cambridge University Press.

Nourein, A. W. M. (1975). An iterative formula for the simultaneous determination of the zeros of a polynomial. J.Comput.A ppl.M ath. 1(4):251254.

Nourein, A. W. M. (1977). An Improvement on Nourein's method for the simultaneous determination of the zeros of a polynomial (an algorithm), ALGORITHM 007, J. Comput. A ppl. M ath. 3(2):109-110.

Ortega, J.M. and Rheinboldt, W.C. (1970). Iterative Solution of Nonlinear Equations in Several V ariables, New Y ork: A cademic Press.

Petkovic, M.S. (1989). Iterative M ethods for Simultaneous Inclusion of Polynomial Zeros. Springer.

Petkovic, M.S. and Milovanovic, G.V. (1983). A Note On Some Improvements of the Simultaneous M ethods for Determination of Polynomial Zeros J ournal of Computational and A pplied M athematics. 65-69.

Rump, S.M. (1999). INTLA B-Interval Laboratory.
Rusli, S.F.M., M onsi, M., Hassan, M. A., Leong, W. J. (2011). On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros A pplied M athematical Sciences 75: 3693-3706.

Rusli, S.F.M. 2012. Some M odification on Interval Symmetric Single-step Procedure for Simulateneous Inclusion of Real Zeros of Polynomials.

Salim, N. R., M onsi, M., Hassan, M. A., Leong, W. J. (2011). On the Convergence rate of Symmetric Single-step M ethod ISS for Simultaneous B ounding Polynomial Zeros. A pplied M athematical Sciences 75: 3731-3741.

Salim, N. R. 2012. Convergence of Interval Symmetric Single-step Method for Simultaneous Inclusion of Real Polynomial Zeros.

Schwartz, David I. (1999). Deterministic Interval Uncertainty M ethods for Structural A nalysis. Diss. State U niversity of New Y ork at Buffalo, 1999.

Snyder J. M .(1992). Interval A nalysis for Computer graphics. Computer Graphics. 26(2): 121-130.

Weierstrass, K. (1903). Neuer Beweis des Satzes, dass jede Ganze Rationale Function einer Veranderlichen dargestellt werden kann als ein Product aus Linearen Functionen darselben V eranderlichen,

Ges. W erke (3):251269.

