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By
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Chair: Professor Fudziah Bint Ismail, PhD
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We derived in this thesis new highly dispersive and highly dissipative two-step
explicit hybrid methods for solving oscillatory problems. Dispersion conditions
up to order ten and dissipation conditions up to order eleven for five stage hy-
brid methods are presented. The derivation of the methods was largely based on
maximization of order of dispersion and dissipation while minimizing the princi-
pal error norm. Stability of the methods was investigated and their intervals of
stability presented. The methods, which can be applied using constant step size,
were tested on model problems. Numerical results revealed the superiority of the
methods over several existing methods in the literature.

In order to achieve higher accuracy and efficiency, trigonometrically fitted hybrid
methods based on existing zero-dissipative methods were derived. Their ability to
approximate the solution of problems with large fitted frequency using large step
size proved their accuracy and efficiency for solving highly oscillatory problems
compared to phase-fitted methods and trigonometrically fitted methods which are
based on dissipative hybrid methods.

Finally, semi-implicit hybrid methods based on explicit hybrid methods were de-
rived. Dispersion and dissipation conditions for the methods were presented. Sta-
bility analysis along side stability or periodicity intervals of the methods was pre-
sented. Results obtained from numerical experiment showed the accuracy and
efficiency of the new methods compared to the existing methods.
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AWAL PERINGKAT KEDUA DENGAN MENGGUNAKAN

KAEDAH JENIS HIBRID

Oleh

DAUDA YUSUF JIKANTORO

Mac, 2014

Pengerusi: Professor Fudziah Bint Ismail, PhD

Fakulti: Sains

Dalam tesis ini kami menerbitkan kaedah dua langkah tak tersirat dengan ser-
akan dan lesapan yang tinggi untuk menyelesaikan masalah berayun. Syarat ser-
akan sehingga peringkat kesepuluh dan syarat lesapan sehingga peringkat kese-
belas untuk kaedah hibrid tahap lima dipersembahkan. Penerbitan kaedah terse-
but adalah dengan memaksimumkan peringkat serakan dan lesapan dan memi-
nimumkan norma ralat prinsipal. Kestabilan kaedah tersebut dikaji dan selang
kestabilannya dipersembahkan. Kaedah tersebut yang boleh digunakan dengan
panjang langkah malar, diuji ke atas model masalah. Keputusan berangka me-
nunjukkan kelebihan kaedah berbanding kaedah sedia ada dalam literatur.

Untuk mencapai kejituan dan kecekapan yang tinggi, kaedah hibrid suaisecara
trigonometri berasaskan kaedah lesapan sifar sedia ada diterbitkan. Kebolehan
kaedah ini menghampiri penyelesaian masalah dengan penyuaian frekuensi yang
besar menggunakan panjang langkah besar membuktikan kejituan dan kecekapan-
nya menyelesaikan masalah yang sangat berayun berbanding kaedah penyuaian
fasa dan trigonometri yang berasaskan kaedah hibrid lesapan.

Akhir sekali, kaedah semi-tersirat berasaskan kaedah hibrid tak terserirat diter-
bitkan. Syarat serakan dan lesapan bagi kaedah tersebut dipersembahkan. Analisis
kestabilan, kestabilan atau selang kalaan bagi kaedah dipersembahkan. Keputusan
yang diperolehi dari eksperimen berangka menunjukkan kejituan dan kecekapan
kaedah baharu ini berbanding kaedah sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Differential equations

System of differential equations, in general, is an essential tool for modeling in
science, engineering and economics to mention a few. Solution to this system of
differential equations translates the property of physical system that the equations
represent. Some of the physical problems represented by these equations are mo-
tion of wave particles, chemical kinetics problems, motion of planets around the
sun. Some of the equations are partial differential equations (PDEs) while some
are ordinary differential equations (ODEs) depending on the phenomena under
consideration. PDEs have two or more independent variables while ODEs have
one independent variable. Each of these classes of differential equations occur in
different orders. Second order ordinary differential equation is an equation with
highest order of derivative of dependent variable as two. The general form of sec-
ond order ordinary differential equations considered is

y′′(x) = f(x, y), (1.1)

which is the special case of

y′′(x) = f(x, y, y′). (1.2)

The specialty associated with (1.1) being that f(x, y) does not depend on y′ ex-
plicitly.

1.1.1 Initial value problems

The ODE given in (1.1) cannot stand alone to give the equation a unique solution,
thus, there is a need of additional conditions to be added for a unique solution.
Therefore, an equation of the type (1.1) is said to be initial value problem (IVP) if
an initial condition is imposed on it, in other words, if the solution y(x) is known
at some initial points of x. That is,

y′′(x) = f(x, y), y(a) = α (1.3)

where x ∈ R, y(x) ∈ Rr, f(x, y) ∈ Rr+1, x ∈ [a, b] and α ∈ R. This type of prob-
lems arise in different fields of science and engineering, for example, astrophysics,
celestial mechanics, quantum mechanics, electronics, quantum chemistry.

1.1.2 Existence and Uniqueness of Solution

Initial value problems describe a problem together with the behavior of it’s trajec-
tory at some initial points of independent variable x. The question is how reliable
are they in predicting the future behavior of the same trajectory? Some of the
attributes of initial value problems that answer this question, as given in Butcher
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(2008), are existence of solution, uniqueness of the solution if it exists and the sen-
sitivity of the solution to a small perturbation to the initial information. One of
the famous conditions that guarantees these attributes is the Lipschitz condition.

Definition 1.1 A function f : R×Rr → Rr is said to satisfy Lipschitz condition
in its second variable if there exist a constant L such that for any x ∈ [a, b] and
y1, y2 ∈ Rr,

‖f(x, y1)− f(x, y2)‖ ≤ L‖y1 − y2‖, (1.4)

where L is called Lipschitz constant.

Theorem 1.1 :(Existence and Uniqueness)
Suppose f(x, y(x)) is defined and continuous ∀ points (x, y(x)) in a domain D
made up of x ∈ [a, b], y ∈ (−∞,∞), a and b are finite, and that f(x, y(x)) satisfies
Lipschitz condition. Then for any given number §, ∃ a unique solution y(x) of the
IVP (1.3), where ∀ (x, y(x)) ∈ D, y(x) is continuous and differentiable. Butcher
(2008).

In this thesis, we assume that f(x, y(x)) of the IVP (1.3) satisfies Lipschitz con-
dition so that a unique solution is guaranteed.

1.2 Hybrid Method

Runge-Kutta method and linear multi-step method are two different but related
methods for approximating the solutions of differential equations. While the former
is non-linear and self starting, the latter is linear and requires additional starting
information from the former in order to start numerical integration. The idea of
combining the ideas of these methods to obtain a single method possessing the
characteristics of the methods dates back to six decades, Butcher (2008). The
nomenclature of the method varies with authors, it is called Pseudo Runge-Kutta
method or modified linear multi-step method. The most commonly used name
for this method is ’hybrid method’, Butcher (2008). The idea was extended to
combining Runge-Kutta Nyström method with linear multi-step method so that
second order ODEs can be solved directly.

1.2.1 Two-step Hybrid Methods

The general form of an m-stage two-step hybrid method, as given in Coleman
(2003), for numerical integration of the initial value problems (IVPs) (1.3) is de-
fined by

yn+1 = 2yn − yn−1 + h2
m
∑

i=1

bif(xn + cih, Yi), (1.5)

Yi = (1 + ci)yn − ciyn−1 + h2
i−1
∑

j=1

aijf(xn + cjh, Yj), i = 1, 2, 3, ..,m. (1.6)

2
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The parameters ci, bi, aij appearing in the method are assumed to be real numbers.
For simplicity the two-step hybrid method can be summarized in Butcher tableau
as given in Table 1.1.

Two-step hybrids methods, like other numerical methods for solving (1.3), can
be divided into two major classes namely; explicit two-step hybrid method and
implicit two-step hybrid method. It is said to be explicit if aij = 0 for j ≥ i and it
is implicit if aij 6= 0 for j ≥ i. Implicit hybrid method contains subclass, which is

Table 1.1: General coefficients of two-step hybrid method

c1 a11 a12 a13 ... a1m
c2 a21 a22 a23 ... a2m
c3 a31 a32 a33 ... a3m
c4 a41 a42 a43 ... a4m
... ... ... ... ... ...
... ... ... ... ... ...
cm am1 am2 am3 ... amm

b1 b2 b3 ... bm

semi-implicit. It is called semi-implicit if aij = 0 for j > i and the semi-implicit is
in turn called singularly diagonally implicit if all the diagonal elements are equal.

1.3 Algebraic Order Conditions of Two-step Hybrid Methods

Order conditions of a numerical method are said to be ”relationships between the
coefficients of the method that cause the successive terms in a Taylor expansion
of the local truncation error to vanish”, see Coleman (2003). In most cases they
determine the order of convergent of the method. The Taylor expansion technique
is so famous in the derivation of order conditions of most numerical methods espe-
cially families of Runge-Kutta methods and linear multistep methods. The Taylor
series techniques require excessive use of machine especially when higher order
conditions are required. However, other approach like the rooted tree techniques
are also used in the derivation of order conditions of numerical methods. For ex-
ample, see Butcher (2008). The order conditions of two-step hybrid method have
been derived by Coleman (2003) using rooted tree approach. Hence, we adopt the
outcome that produces the order conditions in this thesis.

1.3.1 Concept of Rooted Trees

For simplicity and convenience, the following form of (1.1) is considered

y′′ = f(y), (1.7)

3
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where y is a solution vector of (1.7). Differentiating y repeatedly with respect to
independent variable x gives

y′ = y′,

y′′ = f,

y′′′ = fy′,

yiv = fyy(y
′)2 + fyf,

yv = fyyy(y
′)3 + 3fyy(fy

′) + fyfyy
′.

The expressions of the derivatives of y can be associated with a rooted tree. Rooted
tree is a simple combinatorial graph, which have the properties of being connected,
having no cycles, and having specific vertex designated as root, Butcher (2008).
Two types of vertices are identified for a rooted tree namely; big and small vertices,
which respectively correspond to y′ and f . Small vertex is represented by a small
circle while big vertex with a small circle containing a dot. The line connecting
vertices, which can also be seen as ’branch’ of the tree, represents differentiation
with respect to the component of y′ if it runs from small vertex to a big vertex
and a differentiation with respect to y component if otherwise.

Illustration:

.

.

It can be seen from the illustration that small vertex has at most a son, which is
the big vertex and the big vertex has all its sons as small vertices. This is because
y′ has only a derivative with respect to it self and f is a function of y only. Now,
let t = [t1, t2, t3, ..., tm] be a tree, which is obtained through the connection of the
roots of all the trees t1, t2, t3, ..., tm to a new big vertex and finally to a small root,
which basically form the root of the resultant tree.

1.3.2 Generating Trees and their Corresponding Order Conditions

For every rooted tree associated with (1.3) there exist a corresponding summation
of parameters of (1.5)-(1.6), which is equal to a numerical quantity. This is referred
to as order condition generated by that particular tree. The illustration of how
derivatives of y convert to tree t (given in subsection 1.3.1) and how t converts
to summation of the parameters of the method (which is the order condition) is
given in this subsection.
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Let N be order of any tree then, according to Coleman (2003),

m
∑

i=1

bic
N−2
i =

1 + (−1)N

N(N − 1)
, (1.8)

gives order condition for tree of the form tN1. Furthermore, if all lower order
conditions are satisfied then, for any natural numbers l, w

∑

ij

bic
w−1
i aijc

l−1
j =

1

l(l + 1)

(

1 + (−1)w+l

(w + l + 2)(w + l + 1))

)

+(−1)l−1
(

1 + (−1)w

(w + 2)(w + 1))

)

, (1.9)

gives the order condition for any other tree of the form tNΓ+1, where Γ = 1, 2, 3, ....

fyy
′ ⇒⇒

.
⇒⇒ [φ]2 ⇒⇒ ∑

bici = 1

fyy(y
′)2 ⇒⇒

.
⇒⇒ [τ ′, τ ′]2 ⇒⇒ ∑

bic
2
i = 1

6

fyf ⇒⇒

.

.
⇒⇒ [τ ]2 ⇒⇒ ∑

biaij =
1
12

fyyy(y
′)3 ⇒⇒

.
⇒⇒ [τ ′, τ ′, τ ′]2 ⇒⇒ ∑

bic
3
i = 0

...

...

...
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1.3.3 Order Conditions

Following the strategy given in the immediate previous subsection, order conditions
of two-step hybrid method up to order eight are given below, Coleman (2003).

Order 1:
∑

bi = 1, (1.10)

Order 2:
∑

bici = 0, (1.11)

Order 3:
∑

bic
2
i =

1

6
,
∑

biaij =
1

12
, (1.12)

Order 4:
∑

bic
3
i = 0,

∑

biciaij =
1

12
,
∑

biaijcj = 0, (1.13)

Order 5:
∑

bic
4
i =

1

15
,
∑

bic
2
i aij =

1

30
,
∑

biciaijcj = − 1

60
, (1.14)

∑

biaijaik =
7

120
,
∑

biaijc
2
j =

1

180
, (1.15)

∑

biaijajkcj =
1

360
, (1.16)

Order 6:
∑

bic
5
i = 0,

∑

bic
3
i aij =

1

30
,
∑

bic
2
i aijcj = 0, (1.17)

∑

biciaijaik =
1

30
,
∑

biciaijc
2
j =

1

72
, (1.18)

∑

biciaijajk = − 1

720
,
∑

biaijaikck = − 1

120
, (1.19)

∑

biaijc
3
j = 0,

∑

biaijcjaik =
1

360
, (1.20)

∑

biaijajkck = 0, (1.21)

Order 7:
∑

bic
6
i =

1

28
,
∑

bic
3
i aijc

2
j = − 13

2530
, (1.22)

∑

bic
2
i aijc

2
j =

1

336
,
∑

biciaijc
3
j = − 11

1680
, (1.23)

∑

biciaijajkck =
17

10080
,
∑

biaijc
4
j =

1

840
, (1.24)

∑

biaijcjajkck = − 11

15120
,
∑

biaijajkc
2
k =

1

10080
, (1.25)

∑

biaijcjaikck =
29

15120
. (1.26)

All subscripts i, j, k run to m or less. It is obvious from the order conditions
that the equations of order conditions to be satisfied by a two-step hybrid method
increase more rapidly as the order of the method increases. As a remedial measure,
Coleman (2003) proposed the following simplifying condition, which is capable of
reducing independent order conditions

m
∑

j=1

aijc
Ω
j =

cΩ+2
i + (−1)Ω

(Ω + 1)(Ω + 2)
,Ω ≥ 0. (1.27)
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1.4 Stability Analysis of Two-step Hybrid Method

To analyze the stability of two-step hybrid method, (1.5)-(1.6) is applied to ho-
mogeneous test equation

y′′(x) = −θ2y(x), θ > 0, θ ∈ R, (1.28)

which yields

Yi = (1 + ci)yn − ciyn−1 − θ2h2
m
∑

j=1

aijYj , yn+1 = 2yn − yn−1 − θ2h2
m
∑

i=1

biYi,

Y = (I + z2A)−1(e+ c)yn − (I + z2A)−1cyn−1, (1.29)

where z = θh, Y = [Y1, Y2, Y3, ..., Ym]T and e = [1, 1, 1, ..., 1]T .
Substituting (1.29) in update equation gives

yn+1 = T (z2)yn −D(z2)yn−1. (1.30)

By re-writing and rearranging (1.30) we get

̟2 − T (z2)̟ +D(z2) = 0. (1.31)

Equation (1.31) is the stability polynomial of the two-step hybrid method, where

T (z2) = 2− z2bT (I + z2A)−1(e+ c), D(z2) = 1 + z2bT (I + z2A)−1c.

Definition 1.2 Two-step hybrid method is said to be absolutely stable if ∀ z ∈
(0, zs), D(z2) < 1, |T (z2)| < 1 + D(z2), where (0, zs) is the interval of absolute
stability. On the other hand, the method is said to be periodic with interval of
periodicity (0, zp) if ∀ z ∈ (0, zp); D(z2) ≡ 1 and |T (z2)| < 2.

1.4.1 Determination of stability region/interval

The idea that brought about Definition 1.2 above is that the roots
(

̟1,2
)

of the
equation (1.31) must satisfy

∣

∣̟1,2

∣

∣ < 1 for the hybrid method to be absolutely
stable or

∣

∣̟1,2

∣

∣ = 1 to be periodic, see Van der Houwen and Sommeijer (1987a).
Therefore, the stability region of two-step hybrid method is a region enclosed by
the set of points for which |̟| = 1.

To obtain the region we follow these few steps:

• substitute ̟ = exp(Iθ) into (1.31) for values θ ∈ [0, 2π] ,

• solve for z in the equation,

• plot all the z to trace out the boundary of the region,

7
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• then trace the absolute stability or periodicity intervals on the graph, see
Norazak Senu (2010).

Maple program developed for this task can be found in Appendix B.

1.5 Dispersion and Dissipation Analysis of Two-step Hybrid Methods

To study dispersion and dissipation of two-step hybrid method, the test equation
(1.28) needs to be solved by (1.5)-(1.6). This task has been accomplished in
Section 1.4. The solution of difference equation (1.30), (see, Van der Houwen and
Sommeijer, 1987b; Ahmad et al., 2013a), is given by

yn = 2|c||ρ|n cos(ω + nφ), (1.32)

and the test problem (1.28) is satisfied by

y(xn) = 2|δ| cos(ψ + nz), (1.33)

where ρ is amplification factor, φ is the phase, ω, δ, ψ are real constants.

Definition 1.3 From (1.32) and (1.33), the quantity R(z) = z − φ is called the
dispersion or phase-lag of the two-step hybrid method. The method is said to have
phase-lag or dispersion error of order q if R(z) = O(zq+1). Furthermore, the
quantity S(z) = 1 − |ρ| is called dissipation or amplification error of the method.
And the method is said to be dissipative of order r if S(z) = O(zr+1).

From the definition above, dispersion and dissipation errors of two-step hybrid
method can be written respectively as

R(z) = z − cos−1

(

T (z2)

2
√

D(z2)

)

, S(z) = 1−
√

D(z2). (1.34)

1.6 Construction of Exponentially Fitted and Trigonometrically Fitted
Two-step Explicit Hybrid Methods

Exponentially and trigonometrically fitted methods are basically modifications
of existing numerical methods, for example, Runge-Kutta method, Runge-Kutta
Nyström method, multi-step method, collocation method, hybrid method and so
on, to integrate exactly differential equations whose solutions are linear combina-
tion of functions of the form {xjeθx, xje−θx}, where θ ∈ R/ıR, see Vanden Berghe
et al. (1999), Berghe et al. (2000) and Simos (2002). In this section, we discuss the
construction of recursive relations for exponentially and trigonometrically fitted
methods based on two-step hybrid methods.

It is known that a numerical method with approximation yn for true solution of a
differential equation at a point n is said to integrate exactly G(x) if yn = G(xn),
where G(x) is the true solution of the given differential equation. Furthermore,
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for some internal stages Yi of the numerical method (for example, equation (1.6)),
Yi = G(xn + cih) is true, see Berghe et al. (2000).

1.6.1 Exponentially Fitted Two-step Hybrid Method

Following the assertion given above, the construction goes thus; from equations
(1.5)-(1.6) where G(x) = e±θx;

e(xn+cih)θ = (1 + ci)e
xnθ − e(xn−h)θ + θ2h2

m
∑

j=1

aije
(xn+cjh)θ,

eciz = (1 + ci)− cie
−z + z2

m
∑

j=1

aije
cjz. (1.35)

Similarly,

e−ciz = (1 + ci)− cie
z + v2

m
∑

j=1

aije
−cjz. (1.36)

Also for the update stage:

e(xn+h)θ = 2exnθ − e(xn−h)θ + θ2h2
m
∑

j=1

bie
(xn+cih)θ,

ez = 2− e−z + z2
m
∑

i=1

bie
ciz, (1.37)

similarly;

e−z = 2− ez + z2
m
∑

i=1

bie
−ciz, (1.38)

where z = hθ.

Equations (1.35)-(1.38) are the recursive relations that guarantee an exact in-
tegration of (1.3) (whose solutions are exponential functions) by two-step hybrid
method of the form (1.5)-(1.6).

1.6.2 Trigonometrically Fitted Two-step Hybrid Method

For trigonometrically fitted hybrid method G(x) = eıθx, where ı =
√
−1 is imagi-

nary unit. Following the assertion given in the earlier part of this section we get
the relations for internal and update stages as follows:

eı(ciz) = (1 + ci)− cie
−ız − z2

m
∑

j=1

aije
ıcjz,

9
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cos(ciz) = (1 + ci)− ci cos(z)− z2
m
∑

i=1

aij cos(cjz), sin(ciz) = ci sin(z)

− z2
m
∑

i=1

aij sin(cjz). (1.39)

Similarly;

cos(z) = 1− 1

2
z2

m
∑

i=1

bi cos(ciz),
m
∑

i=1

bi sin(ciz) = 0. (1.40)

1.7 Objectives of the Thesis

The objective of this thesis is to develop an improved numerical methods that can
integrate non-stiff second order IVPs of the form (1.3) (whose solution is oscillatory
in nature) accurately and efficiently. To accomplish this, we propose the following
methods:

1. Improved explicit two-step hybrid methods for solving special second order
IVPs with oscillatory solutions.

2. Trigonometrically fitted two-step hybrid methods for the solution of special
second order IVPs with oscillatory solutions.

3. Semi-implicit two-step hybrid methods for solving special second order IVPs
with oscillatory solutions.

1.8 Organization of the Thesis

In Chapter 1 of this thesis, introductory background of second order initial value
problems and theory of existence of their solution is presented. Two-step hy-
brid method is briefly discussed and its algebraic order conditions. Stability as
well as dispersion and dissipation analysis of two-step hybrid method is presented.
Overview of the modification of two-step hybrid methods to solve problems whose
solutions are linear combination of trigonometric functions is presented. In Chap-
ter 2, literature review is given. In Chapter 3, zero-dissipative and higher order
dispersive fifth order five stage hybrid methods are derived. Stability of the meth-
ods is analyzed and numerical results are presented. Trigonometrically fitted based
on zero-dissipative hybrid methods are derived in Chapter 4. In Chapter 5, we
derive zero-dissipative semi-implicit hybrid methods. Conclusion of the thesis is
given in Chapter 6.
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