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MODIFICATION OF INTERVAL SYMMETRIC SINGLE- STEP 
PROCEDURE FOR SIMULTANEOUS BOUNDING POLYNOMIAL 

ZEROS 

By 

NORAINI BINTI JAMALUDIN 

 January 2014 

Chairman: Mansor bin Monsi, PhD 

Faculty: Science 

 

The focus of this research is on the bounding of simple and real polynomial 
zeros simultaneously, focusing on the interval analysis approaches. This 

procedure started with some disjoint intervals 𝑋𝑖
(0)

 for 𝑖 = 1, … , 𝑛 each of 

which contains a zero of the polynomial and finally produced successively 
smaller closed bounded intervals, which always converge to the zeros  𝑥𝑖

∗ for 
𝑖 = 1, … , 𝑛  respectively. In relation to that, the previous work on Interval 
Symmetric Single-step (ISS2) procedure is investigated to ensure this 
procedure is useful for solving polynomials. Thus, this procedure is 
extended to some modifications in order to improve the efficiency of the 
procedure.  
 
 
Starting from the authentic ISS2 procedure, four modified procedures are 
developed. The procedures are Interval Symmetric Single-Step (ISS2-5D) 
procedure, Interval Zoro-Symmetric Single-Step (IZSS2-5D) procedure, 
Interval Midpoint Symmetric Single-Step (IMSS2-5D) procedure and Interval 
Midpoint Zoro-Symmetric Single-Step (IMZSS2-5D) procedure. The 
programming language Intlab toolbox for Matlab is used to record the 

numerical results, whereby the stopping criterion used is 𝑤𝑖
(𝑘)

≤ 10−10.  The 

results are numerically compared to the original ISS2 procedure to supervise 
the improvements and efficiencies of the modified procedures.  
 
 
In order to assure that the outcomes of the procedures are promising, 
convergence rate for each modified procedures is analyzed for comparing 
purposes.  Other than that, the analysis of inclusion to certify the 
convergence of the modified procedures is included. All the modifications 
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are proven to have better rate of convergences and these are well-supported 
on the reduction of CPU times, number of iterations and the value of the 
interval width of the procedures. In a nutshell, this study reveals that the 
new modified procedures are capable and efficient for bounding the simple 
and real polynomial zeros simultaneously. 
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PENGUBAHSUAIAN  PADA PROSEDUR SELANG LANGKAH-
TUNGGAL DALAM MEMERANGKAP SUATU PENSIFAR 

POLINOMIAL SECARA SERENTAK 

Oleh 

NORAINI BINTI JAMALUDIN 

Januari 2014 
 

Pengerusi : Mansor bin Monsi, PhD 

Fakluti: Sains 
 
Fokus penyelidikan kami adalah menghadkan punca nyata dan ringkas 
polinomial secara serentak yang memfokuskan kepada pendekatan analisis 
selang.  Prosedur ini bermula dengan beberapa selang permulaan yang tidak 

bercantum 𝑋𝑖
(0)

 bagi 𝑖 = 1, … , 𝑛 yang mana setiap satunya mengandungi 

punca polinomial dan akhirnya menghasilkan selang rapat yang lebih kecil 
secara berturutan yang mana sentiasa menumpu kepada punca-punca 
polinomial  𝑥𝑖

∗ bagi 𝑖 = 1, … , 𝑛. Selanjutnya, hasil kerja terdahulu terhadap 
prosedur selang langkah-tunggal bersimmetri ISS2 dikaji bagi memastikan 
prosedur ini dapat digunakan untuk menyelesaikan polinomial.  Prosedur 
ini kemudiannya diperluaskan dengan beberapa pengubahsuaian bagi 
tujuan meningkatkan kecekapan prosedur. 
 
 
Bermula dengan prosedur asal ISS2, kami menghasilkan empat prosedur-
prosedur baru terubahsuai yang mana dibentangkan sebagai sumbangan 
utama kami dalam tesis ini.  Prosedur ini adalah prosedur ISS2-5D, prosedur 
IZSS2-5D, prosedur IMSS2-5D and prosedur IMZSS2-5D. Keputusan-
keputusan berangka direkod dengan menggunakan perisian Matlab dan 
dibantu oleh perisian Intlab dimana syarat berhenti program yang 

dikenakan adalah 𝑤𝑖
(𝑘)

≤ 10−10.  Keputusan-keputusan secara berangka 

dibandingkan dengan prosedur asal ISS2 untuk melihat peningkatan dan 
kecekapan prosedur-prosedur terubahsuai. 
 
 
Bagi menyakinkan bahawa prosedur-prosedur ini berjaya, kami juga 
menganalisa kadar penumpuan bagi setiap prosedur terubahsuai untuk 
dibandingkan.  Kami juga menyertakan analisa rangkuman bagi menjamin 
penumpuan prosedur tersebut. Kesemua prosedur-prosedur terubahsuai 
telah terbukti mempunyai kadar penumpuan yang lebih baik dan disokong 
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dengan pengurangan masa pemprosesan, bilangan lelaran dan nilai lebar 
lelaran bagi prosedur-prosedur. Pada kesimpulannya, kajian ini 
menunjukkan bahawa prosedur-prosedur baru terubahsuai berkebolehan 
dan cekap untuk menghad punca nyata dan ringkas polinomial secara 
serentak. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

1.1 Background 
 
 
Interval analysis is a branch of applied mathematics. Referring to Neumaier 
(1990), interval analysis is considered to be an elegant tool for practical work 
with inequalities, approximate numbers, error bounds and more generally 
with certain convex and bounded sets.  By using interval numbers we can 
define another number system where an interval number consists of a pair of 
real numbers representing the lower and upper bound of the parameter 
range. 

 
In depth discussion of topics related to interval analysis could be found in 
books by Moore (1966), Alefeld and Herzberger (1983), Neumaier (1990), 
Hansen (1992), and more recently with Jaulin et al. (2001) and Hansen and 
Walster (2004). Interval analysis has the advantage of providing rigorous 
bounds for the exact solutions.  

 
Recently, interval analysis has been widely applied in various kinds of 
problem such as finding the bounds on the value of a function, finding zeros 
of polynomial, solving equation or a system of equation, optimization, 
differential equation as well as integral equation. 
 

It is of evidence that significant improvements are possible in interval 
analysis. With regards to contributing to the development of this field, 
research is conducted, coming up with this thesis entitled “Modifications on 
the Interval Symmetric Single -Step Procedure for Simultaneous Bounding of Real 
Polynomial Zeros”. 

 
1.2 Fundamental Definitions and Properties of Interval Analysis 

 

Description on some of the definitions and properties on interval analysis to 
be used throughout this research are included in this section of this thesis. 
The following definitions and properties can be found in Alefeld and 
Herzberger (1983). 
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An interval number is defined as an ordered pair of real numbers  

𝐴 = [𝑎1, 𝑎2] = {𝑡|𝑎1 ≤ 𝑡 ≤ 𝑎2; 𝑎1, 𝑎2 ∈ 𝑅}.                          (1.2.1) 

An interval parameter is written with brackets where 𝑎1 ∈ 𝑅 is the left 
endpoint or the infimum of A or  𝑖(𝐴) = 𝑎1 , and 𝑎2 ∈ 𝑅 is the right endpoint 
or the suprimum of A or  𝑠(𝐴) = 𝑎2. 

 

In interval analysis the real number is denoted by 𝑅 and member of  𝑅 are 
denoted by lowercase letters   𝑎, 𝑏, 𝑐, … , 𝑥, 𝑦, 𝑧. A subset of 𝑅 of the form 
(1.21) is called a bounded closed real interval.  The set of all bounded closed 
real interval is denoted by 𝐼(𝑅) and the member of 𝐼(𝑅) by uppercase 
letter 𝐴, 𝐵, 𝐶, … , 𝑋, 𝑌, 𝑍.  Real number  𝑥 ∈ 𝑅 may be considered special 
members [𝑥, 𝑥] from 𝐼(𝑅), and they will generally be called point interval. 

 

Definition 1.2.1: 

Two intervals  𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] are said to be equal that is  𝐴 = 𝐵 
if they are in the sense of the theoretical set. From Definition 1.2.1 it follows 
that 

𝐴 = 𝐵 ⟺  𝑎1 = 𝑏1 , 𝑎2 = 𝑏2 . 

The relation “=” between two elements in 𝐼(𝑅) is reflexive, symmetric, and 
transitive. 

 

Definition 1.2.2: 

Let ∗ ∈ {+,−,∙,/} be a binary operation on the set of real numbers  𝑅.  If 𝐴, 𝐵 ∈
𝐼(𝑅), we define 

𝐴 ∗ 𝐵 = {𝑧 = 𝑎 ∗ 𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵},                            (1.2.2) 

a binary operation on the real interval 𝐼(𝑅). 

 

From Definition 1.2.2 the operations on intervals 𝐴 = [𝑎1, 𝑎2] and  𝐵 = [𝑏1, 𝑏2] 
can be calculated explicitly as  

𝐴 + 𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2],                                       

𝐴 − 𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1] = 𝐴 + [−1,−1]. 𝐵,                        

𝐴. 𝐵 = [min{𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2} ,max{𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2}],         
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and if 0 ∉ 𝐵, then 

𝐴/𝐵 = [𝑎1, 𝑎2]. [1/𝑏2 , 1/ 𝑏1],                                        

= [min  {𝑎1/𝑏2,  𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎2/𝑏1} ,max{𝑎1/𝑏2,  𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎2/𝑏1}], 

otherwise, 𝐴/𝐵 undefined if  0 ∈ 𝐵.   

The following definitions and propositions can be found in Monsi (1988). 

 

Definition 1.2.3: 

The set   𝐼𝐷(𝑅) is a degenerate interval (or the set of point interval) if and 
only if  𝐼𝐷(𝑅) = {[𝑎1, 𝑎2]|𝑎1 = 𝑎2}. The set   𝐼𝐷(𝑅) and the set 𝑅 of real 
numbers are isomorphic.  This permits a meaning to be given to 𝑎 ∗ 𝐵  (𝑎 ∈
𝑅, 𝐵 ∈ 𝐼(𝑅) ∗ ∈ {+,−,∙,/}. 

 

Definition 1.2.4: 

If 𝑎 ∈ 𝑅 and 𝐵 ∈ 𝐼(𝑅) then  

𝑎 + 𝐵 = [𝑎, 𝑎] + 𝐵 = [𝑎 + 𝑏1, 𝑎 + 𝑏2],                                     

𝑎 − 𝐵 = [𝑎, 𝑎] − 𝐵 = [𝑎 − 𝑏2, 𝑎 − 𝑏1],                                     

𝑎. 𝐵 = [𝑎, 𝑎]. 𝐵 = [min{𝑎𝑏1, 𝑎𝑏2} ,max{𝑎𝑏1, 𝑎𝑏2}],                         

and if 0 ∉ 𝐵, then  

𝑎

𝐵
= [𝑎, 𝑎]. [

1

𝑏2
 ,
1

 𝑏1
],                                              

= [min  {𝑎/𝑏2, 𝑎/𝑏1} ,max{𝑎/𝑏2, 𝑎/𝑏1}] . 

 

Proposition 1.2.1: 

Interval arithmetic is inclusion monotonic that is to say, if 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝐼(𝑅) then 
for all∗ ∈ {+,−,∙,/  }, 

(𝐴 ⊆ 𝐶, 𝐵 ⊆ 𝐷) ⇒ (𝐴 ∗ 𝐵 ⊆ 𝐶 ∗ 𝐷).                         (1.2.3) 

Proof: By Definition 1.2.2 

𝐴 ∗ 𝐵 = {𝑎 ∗ 𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, 

           ⊆ {𝑐 ∗ 𝑑|𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷}, 

                                                              = 𝐶 ∗ 𝐷. 
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Definition 1.2.5: 

Let  𝐴, 𝐵 ∈ 𝐼(𝑅) be given. Then the intersection  𝐴 ∩ 𝐵 of 𝐴 and 𝐵 is defined  

𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑅| 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵}.                        ( 1.2.4) 

The intersection between the two intervals will yield an interval with 
rigorously narrow width which guaranteed to contain at least a zero.  

 

Proposition 1.2.2: 

(𝑎) (∀𝐴, 𝐵 ∈ 𝐼(𝑅))  𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴; 

(𝑏) (∀𝐴, 𝐵 ∈ 𝐼(𝑅))  𝐴 ∩ 𝐵 ⊆ 𝐴, 𝐴 ∩ 𝐵 ⊆ 𝐵; 

(𝑐) (𝐴 ∩ 𝐵 = 𝐴 ⇔ 𝐴 ⊆ 𝐵) , (𝐴 ∩ 𝐵 = 𝐵 ⇔ 𝐵 ⊆ 𝐴). 

 

Proof of (𝐚): 

By Definition 1.2.5 

𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑅|𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵}, 

            = {𝑥 ∈ 𝑅|𝑥 ∈ 𝐵, 𝑥 ∈ 𝐴}, 

                                                             = 𝐵 ∩ 𝐴. 
Proof of (𝐛) : 

By definition 1.2.5 

𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑅|𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵}, 
So, 

(𝑥 ∈  𝐴 ∩ 𝐵) ⇒ 𝑥 ∈ 𝐴, 
that is 

𝐴 ∩ 𝐵 ⊆ 𝐴, 
and  

(𝑥 ∈  𝐴 ∩ 𝐵) ⇒ 𝑥 ∈ 𝐵, 

thus 

𝐴 ∩ 𝐵 ⊆ 𝐵. 

Proof of (𝐜): 

By (𝑏) 𝐴 ∩ 𝐵 ⊆ 𝐵, so 

(𝐴 ∩ 𝐵 = 𝐴) ⇒ (𝐴 ⊆ 𝐵). 
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Conversely, if 𝐴 ⊆ 𝐵 then by Definition 1.2.5 
𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵 }, 

= {𝑥|𝑥 ∈ 𝐴}, 

                                                                = 𝐴. 

Therefore 
(𝐴 ∩ 𝐵 = 𝐴) ⇔ (𝐴 ⊆ 𝐵). 

Interchanging 𝐴 and 𝐵 and using  (𝑎), it follow that 

(𝐴 ∩ 𝐵 = 𝐴) ⇔ (𝐵 ⊆ 𝐴). 

 

Proposition 1.2.3: 

If 𝐴, 𝐵 and 𝐶 are members of the real interval  𝐼(𝑅). Then it follows that  

(𝑎) (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)                  (associativity of addition); 

(𝑏) (𝐴 ∙ 𝐵) ∙ 𝐶 = 𝐴 ∙ (𝐵 ∙ 𝐶)               (associativity of multiplication); 

 (𝑐) 𝐴 + 𝐵 = 𝐵 + 𝐴                    (commutativity of addition); 

(𝑑) 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴                    (commutativity of multiplication). 

The proof of (𝑎) − (𝑑) follow from Definition 1.2.2 . 

 

Proposition 1.2.4: 

If 0 = [0,0] and 1 = [1,1], then 𝑋 and 𝑌 are the unique element with respect 

to addition and multiplication, that is 

(𝑎) 𝐴 = 𝑋 + 𝐴 = 𝐴 + 𝑋   for all  𝐴 ∈ 𝐼(𝑅) ⇔ 𝑋 = 0, 

(𝑏) 𝐴 = 𝑌 ∙ 𝐴 = 𝐴 ∙ 𝑌   for all  𝐴 ∈ 𝐼(𝑅) ⇔ 𝑋 = 1, 

Proof of (𝐚): 

(𝑋 = 0 , 𝐴 ∈ 𝐼(𝑅)) ⇒ (𝑋 + 𝐴 = [0 + 𝑎1, 0 + 𝑎2] = 𝐴). 

Conversely, suppose that  

𝑋 + 𝐴 = 𝐴(∀𝐴 ∈ 𝐼(𝑅)). 

Then, setting  𝐴 = 0, 
𝑋 + 0 = 0, 

that is 𝑋 = 0, So 
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𝑋 + 𝐴 = 𝐴(∀𝐴 ∈ 𝐼(𝑅)) ⇒ (𝑋 + 0). 

Proof of (𝐛) : 

Suppose that  𝑌 = 1. Then (∀𝐴 ∈ 𝐼(𝑅)) 

𝐴𝑌 = {𝑎𝑦|𝑎 ∈ 𝐴, 𝑦 ∈ 1}, 

                                                       = {𝑎|𝑎 ∈ 𝐴}, 

                                                        = 𝐴. 
So, 

(𝑌 = 1) ⇒ (𝐴𝑌 = 𝐴). 

Conversely, suppose that  

𝐴𝑌 = 𝐴(∀𝐴 ∈ 𝐼(𝑅)). 

Then, in particular   𝐴𝑌 = 𝐴 holds with  (𝐴 = 1), whence  (𝑌 = 1). So  

𝐴𝑌 = 𝐴(∀𝐴 ∈ 𝐼(𝑅)) ⇒ (𝑌 = 1). 

 

Proposition 1.2.5: 

(𝐴, 𝐵 ∈ 𝐼(𝑅)), (𝐴𝐵 = 0) ⇒ (𝐴 = 0)𝑜𝑟 (𝐵 = 0). 

Proof: 

(𝐴𝐵 = 0) ⇒ ({𝑎𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} = {0}), 

                                                    ⇒ ( 𝑎𝑏 = 0(∀𝑎 ∈ 𝐴)(∀𝑏 ∈ 𝐵)), 

                                                    ⇒ (𝑎 = 0(∀𝑎 ∈ 𝐴) 𝑜𝑟 𝑏 = 0 (∀𝑏 ∈ 𝐵)), 

                                                     ⇒ (𝑎 = 0  𝑜𝑟  𝑏 = 0).  

 
Proposition 1.2.6: 

Interval arithmetic is subdistributive; that is (∀𝐴, 𝐵, 𝐶 ∈ 𝐼(𝑅)), 

𝐴(𝐵 + 𝐶) ⊆ 𝐴𝐵 + 𝐴𝐶. 

Proof: 
   𝐴(𝐵 + 𝐶) = {𝑎(𝑏 + 𝑐)|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶}, 

                                                   = {𝑎𝑏 + 𝑎𝑐|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶}, 

                                                   ⊆ {𝑎′𝑏 + 𝑎′′𝑐|𝑎′, 𝑎′′ ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶}, 

                                                    = 𝐴𝐵 + 𝐴𝐶. 
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Proposition 1.2.7: 

Let (𝐴, 𝐵, 𝐶 ∈ 𝐼(𝑅)) where 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2] and 𝐶 = [𝑐1, 𝑐2] are given. 
Then 

                               (𝑎)      (𝐴 ± 𝐶 = 𝐵 ± 𝐶) ⇒ (𝐴 = 𝐵); 

                               (𝑏)      (𝐴𝐶 = 𝐵𝐶) ⇏ (𝐴 = 𝐵); 

                               (𝑐)      (𝐴/𝐶 =  𝐵/𝐶) ⇒ (𝐴 = 𝐵). 

Proof of (𝐚): 

(𝐴 + 𝐶 = 𝐵 + 𝐶) ⇒ (𝑎1 + 𝑐1 = 𝑏1 + 𝑐1, 𝑎2 + 𝑐2 = 𝑏2 + 𝑐2), 

                                                 ⇒ (𝑎1 = 𝑏1, 𝑎2 = 𝑏2), 

                                                 ⇒ (𝐴 = 𝐵). 
Also, 

(𝐴 − 𝐶 = 𝐵 − 𝐶) ⇒ (𝑎1 − 𝑐2 = 𝑏1 − 𝑐2, 𝑎2 − 𝑐1 = 𝑏2 − 𝑐1), 

                                                 ⇒ (𝑎1 = 𝑏1, 𝑎2 = 𝑏2), 

                                                 ⇒ (𝐴 = 𝐵). 

Proof of (𝐜): 

If 𝐴/𝐶 is defined then  0 ∉ 𝐶. So, either 0 < 𝑐1 𝑜𝑟 𝑐2 < 0. If 0 < 𝑐1then 

(𝐴/𝐶) =  [min {𝑎1/𝑐1, 𝑎1/𝑐2},max  {𝑎2/𝑐1, 𝑎2/𝑐2}], 

=

{
 
 

 
 
[𝑎1/𝑐2, 𝑎2/𝑐1 ]            if       0 ≤ 𝑎1,

[𝑎1/𝑐1, 𝑎2/𝑐2]              if      𝑎2 ≤ 0 ,

[𝑎1/𝑐1, 𝑎2/𝑐1]          if  𝑎1 ≤ 0 ≤ 𝑎2.

 

So, 

(i)   (0 < 𝑏1, 𝐴/𝐶 = 𝐵/𝐶) ⇒    (𝑎1/𝑐2 = 𝑏1/𝑐2, 𝑎2/𝑐1 = 𝑏2/𝑐1 ), 
                                                              ⇒ (𝐴 = 𝐵), 

(ii)    (𝑏2 < 0, 𝐴/𝐶 = 𝐵/𝐶) ⇒   (𝑎1/𝑐1 = 𝑏1/𝑐1, 𝑎2/𝑐2 = 𝑏2/𝑐2), 
                                            ⇒ (𝐴 = 𝐵), 
 

(iii)   (𝑏1 < 0 < 𝑏2, 𝐴/𝐶 = 𝐵/𝐶)  ⇒ (𝑎1/𝑐1 = 𝑏1/𝑐1, 𝑎2/𝑐1 = 𝑏2/𝑐1), 
                                                       ⇒ (𝐴 = 𝐵). 

The case  𝑐2 < 0 is similar. So (𝐴/𝐶 = 𝐵/𝐶) ⇒  (𝐴/𝐵). 

 
 



© C
OPYRIG

HT U
PM

8 
 

Example 1.2.1: 

Let 𝐶 = [1,3], where 0 ∉ 𝐶. 

If  𝐴 = [1,7], where  0 < 𝑎1. Then 

𝐴/𝐶 =  [1,7]/[1,3] =  [min {1,1/3, 7,7/3},max {1,1/3, 7,7/3}], 

                                                        = [1/3,7]. 

If 𝐴 = [−7,−1], where  𝑎2 ≤ 0. Then 

                  𝐴/𝐶 =  [−7,−1]/[1,3], 

                           = [min {−7,−7/3,−1,−1/3},max  {−7,−7/3, −1,−1/3}],                                                     

                           = [−7,−1/3]. 

If 𝐴 = [−7,1], where  𝑎1 ≤ 0 ≤ 𝑎2. Then 

                   𝐴/𝐶 =  [−7,1]/[1,3], 

                            =  [min {−7,−7/3,1,1/3},max  {−7,−7/3,1,1/3}], 

                            =  [−7,1]. 

 

Definition 1.2.6: 

The distance between two intervals  𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2] ∈ 𝐼(𝑅) is defined 
as 

𝑑(𝐴, 𝐵) = max{|𝑎1 − 𝑏1|, |𝑎2 − 𝑏2|}.                    (1.2.5) 

The following properties is hold 

𝑑(𝐴, 𝐵) ≥ 0 and  𝑞(𝐴, 𝐵) = 0 ⟺ 𝐴 = 𝐵, 

𝑑(𝐴, 𝐵) ≤ 𝑑(𝐴, 𝐶) + 𝑑(𝐵, 𝐶) (triangle inequality). 

 

Definition 1.2.7: 

The absolute value of an interval  𝐴 = [𝑎1, 𝑎2] ∈ 𝐼(𝑅) is defined as 

|𝐴| = 𝑑(𝐴, [0,0]) = max{|𝑎1|, |𝑎2|},                     (1.2.6) 

can also be written  

|𝐴| = max |𝑎|.                                       (1.2.7) 

Clearly, if 𝐴, 𝐵 ∈ 𝐼(𝑅), then 

                       𝐴 ⊆ 𝐵 ⇒ |𝐴| ≤ |𝐵|. 
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Definition 1.2.8: 

The width  𝑤(𝐴) of an interval  𝐴 = [𝑎1, 𝑎2] where  𝐴 ∈ 𝐼(𝑅) is defined by 

𝑤(𝐴) = 𝑎2 − 𝑎1 ≥ 0.                                  (1.2.8) 

 
Definition 1.2.9: 

The midpoint  midpoint(𝐴) of 𝐴 ∈ 𝐼(𝑅) is defined by  

midpoint(𝐴) =
1

2
(𝑎1 + 𝑎2).                                 (1.2.9)  

 
Theorem 1.2.1: 

Every sequence of intervals  {𝐴(𝑘)}𝑘=0
∞  for which 

𝐴(0) ⊇ 𝐴(1) ⊇ 𝐴(2) ⊇ ⋯ 

is valid converges to the interval  𝐴 ∩𝑘=0
∞  𝐴(𝑘). 

 

1.3 Interval Evaluation of Real Function 
 
 

In this section, we assume  𝑓 is a continuous real function. An 
expression 𝑓(𝑥) belonging to 𝑓 is a calculating procedure that will determine 
a value of the function 𝑓 for every argument 𝑥. If an expression belonging 

to 𝑓 also contains constants   𝑎(0), … , 𝑎(𝑚), then this can be clarifies by writing 

𝑓(𝑥: 𝑎(0), … , 𝑎(𝑚)). Assume that each constant  𝑎(𝑘), 0 ≤ 𝑘 ≤ 𝑚, occurs only 

once in an expressions. Otherwise, introduce new constant that made 
equivalent for the multiple occurrences of these new constants, one may 
transform the expression into the required form. 

The following expression referred to Alefeld and Herzberger (1983) 

𝑊(𝑓, 𝑋; 𝐴(0), … , 𝐴(𝑚)), 

         = {𝑓(𝑥: 𝑎(0), … , 𝑎(𝑚))|𝑥 ∈ 𝑋,   𝑎(𝑘) ∈ 𝐴(𝑘), 0 ≤ 𝑘 ≤ 𝑚},    

= [ min
𝑥∈𝑋

  𝑎(𝑘)∈𝐴(𝑘),0≤𝑘≤𝑚

𝑓(𝑥: 𝑎(0), … , 𝑎(𝑚)) , max
𝑥∈𝑋

  𝑎(𝑘)∈𝐴(𝑘),0≤𝑘≤𝑚

𝑓(𝑥: 𝑎(0), … , 𝑎(𝑚))], 

denote the interval of all values of the function 𝑓 when 𝑥 ∈ 𝑋, and                  

𝑎(𝑘) ∈ 𝐴(𝑘), 0 ≤ 𝑘 ≤ 𝑚 are considered independent of each other. This 
definition is independent of the expression for 𝑓. 
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Let an expression be given for the function 𝑓. In this expression all operands 
are replaced by intervals and all operations by interval operations resulting 

in the expression 𝑓(𝑋: 𝐴(0), … , 𝐴(𝑚)). Then, this is called interval evaluation or 

interval arithmetic evaluation if all operands within the domain of definition 

of 𝑓. The constants  𝑎(0), … , 𝑎(𝑚) as well as the variable 𝑥 are replaced by 
intervals. 

The following example illustrates to well-defined interval evaluation when 
all operands by interval operations leads to interval expression.  

Example 1.3.1: 

Let  𝑓(𝑥) =  5𝑥2 − 𝑥 and  𝑋 = [0,1], then we get 

𝑊(𝑓, [0,1]) = {5𝑥2 − 𝑥 |0 ≤ x ≤ 1} = [−
1

20
, 4]. 

The example for equivalent expressions in multiple occurrences of 𝑥: 

Expression 1 (Triple occurrences of 𝑥):  

𝑓1(𝑥) = 5𝑥
2 − 𝑥 ⇒ 𝑓1([0,1]) = 5[0,1]2 − [0,1] = [−1,5]. 

Expression 2 (Double occurrences of 𝑥): 

 𝑓2(𝑥) = 𝑥(5𝑥 − 1) ⇒ 𝑓2([0,1]) = [0,1](5[0,1] − 1) = [−1,4]. 

Expression 3 (Single occurrences of 𝑥):  

𝑓3(𝑥) = 5 (𝑥 −
1

10
)
2

−
1

100
⇒ 𝑓3([0,1]) = 5(([0,1] −

1

10
)
2

−
1

100
), 

                      = [−
1

20
, 4], 

where  𝑓1 ⊇ 𝑓2 ⊇ 𝑓3 =  𝑊(𝑓, [0,1]). 

Clearly the interval evaluation of a function 𝑓is dependent on the choice of 
expression for 𝑓. This theorem is proven in Alefeld and Herzberger (1983). 

 

1.4 The Concept of the R-order of Convergence 
 

The R-order of convergence of an iterative procedure is used in this thesis as 
a measure of the asymptotic convergence rate of the procedure.  The concept 
of R-order of convergence is discussed in detail in Ortega and Rheinboldt 
(1970), Alefeld and Herzberger (1983) and Monsi and Wolfe (1988).   

The proof of following theorem is in Ortega and Rheinboldt (1970). 
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Theorem 1.4.1 

Let 𝐼 be an iteration procedure with the limit  𝑥∗, and let  Ω(𝐼, 𝑥∗) be the set of 

all sequences generated by I having the properties that lim
𝑘→∞

𝑋(𝑘) = 𝑥∗ 

and  𝑥∗ ⊆ 𝑋(𝑘), 𝑘 ≥ 0.  If there exist a 𝑝 ≥ 1 and a constant 𝛾 such that for 

all  {𝑋(𝑘)} ∈ Ω(𝐼, 𝑥∗) and for a norm  ∥. ∥ it holds that 

∥ ℎ(𝑘+1) ∥≤ 𝛾 ∥ ℎ(𝑘) ∥𝑝, 𝑘 ≥ 𝑘({𝑥(𝑘)}),                                       

then follow that R-order of I satisfies the inequality 𝑂𝑅(𝐼, 𝑥
∗) ≥ 𝑝. The R-

order of convergence of procedure 𝐼 which converges to 𝑥∗ is denoted 
by  𝑂𝑅(𝐼, 𝑥

∗). 

 

Definition 1.4.1 

If the exists a  𝑝 ≥ 1 such that for any null sequence {𝑤(𝑘)} generated 

from  {𝑥(𝑘)} , then the  

 

R-factor of the sequence is define to be, 

𝑅𝑃(𝑤
(𝑘)) = {

 lim
𝑘→∞

sup ∥ 𝑤(𝑘) ∥1/𝑘     𝑝 = 1 ,

 lim
𝑘→∞

sup ∥ 𝑤(𝑘) ∥1/𝑝
𝑘
   𝑝 > 1,

                                      

where  𝑅𝑃 is independent of the norm  ∥. ∥.  Suppose that 𝑅𝑝(𝑤
(𝑘)) < 1 then it 

follow from Orthega and Rheinboldt (1970) that the R-order of I satisfied the 

inequality   𝑂𝑅(𝐼, 𝑥
∗) ≥ 𝑝.  The R-factor of a null sequence {𝑤(𝑘)} generated 

from the procedure 𝐼 is denoted by  𝑅𝑃(𝑤
(𝑘)). 

 

Definition 1.4.2 

Let 𝐼 be an iteration procedure converging to  𝑥∗.  Then, we may now define 
the R-order of the procedure 𝐼 in term of R-factor as 

   𝑂𝑅(𝐼, 𝑥
∗) = {

  +∞ if    𝑅𝑃(𝐼, 𝑥
∗) = 0                                 for   𝑝 ≥ 1,

  inf{𝑝|𝑝 ∈ [1,∞),   𝑅𝑃(𝐼, 𝑥
∗) = 1}           otherwise.

                 

Suppose that 𝑅𝑃(𝑤
(𝑘)) < 1 then it follow from Orthega and Rheinboldt 

(1970) that the R-order of convergence of procedure I which convergence to 
𝑥∗ satisfies the inequality   𝑂𝑅(𝐼, 𝑥

∗) ≥ 𝑝.  We used this result in order to 
calculate the rate of convergence of all the modified procedures in the 
subsequent chapters. 
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1.5 Research Objectives 

 

The main objective of the study is to find the real and simple zeros of the 
polynomial simultaneously by using the interval analysis approach. 

In particular, the objectives of this thesis are: 

1. to modify the Interval Symmetric Single-step (ISS2) procedure 
introduced by Salim et al. (2011) and developed with four modified 
procedures namely; Interval Symmetric Single-Step (ISS2-5D) 
procedure, Interval Zoro-Symmetric Single-Step (IZSS2-5D) 
procedure, Interval Midpoint Symmetric Single-Step (IMSS2-5D) 
procedure and Interval Midpoint Zoro-Symmetric Single-Step 
(IMZSS2-5D) procedure on bounding simple and real polynomial 
zeros simultaneously. 
 

2. to developed numerical algorithm to solve the problems in objective 1 
using a program Matlab associate with Intlab toolbox. 

3. to compare the efficiencies for both original and modified procedures 
in terms of CPU times, number of iterations and the value of the 
intervals width of the procedures by collecting numerical data. 
 

4. to analyze the R-order of convergence for each modified procedures 
for comparisons. 
 

 
1.6 Scope of the Problem 

 

The scope of this study is on polynomial.  In order to narrow down the scope 
of the problem, this thesis focuses on finding the inclusion of real and simple 
polynomial zeros simultaneously. 

 

Furthermore, one must apply some numerical methods to find the zeros of 
polynomials of higher degree (Petkovic, 1989), thus numerical (iterative) 
interval analysis approach is applied throughout this thesis.  According to 
(McNamee et al., 2007) iterative procedure is the process of reiterating the 
procedure in obtaining an outcome considered to be closed enough to the 
required number. 
A polynomial is an expression of the form 

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎1𝑥 + 𝑎0,                            (1.6.1) 
 
where 𝑎𝑛 ≠ 0. If the highest power of 𝑥 is 𝑥𝑛, the polynomial is said to have 
degree 𝑛. It was proved by Gauss in the early 19th century that every 
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polynomial has at least one zero. It follows that a polynomial of degree 𝑛 
has 𝑛 zeros and they are not necessarily distinct.  Often we used 𝑥 for a real 
variable, and 𝑧 for a complex. A zero of a polynomial is equivalent to a 
“root” such that a value 𝑥∗ which makes 𝑝(𝑥) equal to zero of the equation 
 𝑝( 𝑥) = 0 (McNamee et al., 2007). 
 
 
Let consider Newton‘s method which is start with a single initial guess  𝑥0, 
preferably fairly close to a true root 𝑥∗ and apply the iteration: 
 

𝑥𝑖+1 = 𝑥 −
𝑝(𝑥𝑖)

𝑝′(𝑥𝑖)
 , 

and stop when 
|𝑥𝑖+1 − 𝑥𝑖|

|𝑥𝑖+1|
< 𝜖, 

or |𝑝(𝑥𝑖)| < 𝜖. 
 
Next, let consider simultaneous methods, such as 

( )
( 1) ( )

( ) ( )

1,

( )
( 1,..., )

( )

k
k k i

i i n
k k

i j
j
j i

p x
x x i n

x x






  


, 

starting with initial guesses  𝑥𝑖
(0)
 (𝑖 = 1,… , 𝑛), where 𝑥𝑖

(𝑘)
 is the k-th 

approximation to the i-th zero 𝑥𝑖 (𝑖 = 1, … , 𝑛) (McNamee et al., 2007). 
 

The interval iterative procedure is in need of some pre-conditions for initial 

interval  𝑋𝑖
(0)(𝑖 = 1,… , 𝑛) to be converged to the zeros 𝑥𝑖

∗ (𝑖 = 1, … , 𝑛) 

respectively, starting with some disjoint intervals  𝑋1
(0)
, 𝑋2

(0)
, … , 𝑋𝑛

(0)
 each of 

which contains a polynomial zero. It will produce a set of intervals of 
smallest possible width such that each interval includes one or more zeros of 

𝑝(𝑥) from a given interval  𝑋𝑖
(0) ∈ 𝐼(𝑅).  In the other words, the interval 

sequence generated by the procedures are always converging to the zeros, 
which is 

  𝑋𝑖
(0)
⊇ 𝑋𝑖

(1)
⊇ 𝑋𝑖

(2)
⊇ ⋯with  lim

k→∞
  𝑋𝑖

(𝑘)
= 𝑥𝑖

∗, 

or the sequence comes to the rest at [𝑥𝑖
∗, 𝑥𝑖

∗] after a finite of steps (Rusli et al., 
2011). 
 
 
In the matter of finding zeros of polynomial it is necessary to have reliable 
bounds on the errors in the estimated solutions (McNamee et al., 2007). The 
interval iterative procedures which are used in this research are the very 
significant steps in meeting the needs of these criteria. 
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Thus, in this research, it is suppose that 𝑝 has 𝑛 real zeros 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  and 

they are distinct. It is then assumed henceforth that 𝑎(𝑛) = 1 in the sequel 

(1.6.1). The including intervals  𝑋𝑖
(0)
= [  𝑥𝑖𝐼

(0),   𝑥𝑖𝑆
(0)]𝜖 𝑥𝑖

∗ , (𝑖 = 1, … , 𝑛) are the 

initial intervals and are pairwise disjoints, that is 

  𝑋𝑖
(0) ∩  𝑋𝑗

(0) = ∅  (1 ≤ 𝑖, 𝑗 ≤ 𝑛).     

The polynomial 𝑝𝑛(𝑥) will be written as 
𝑝𝑛(𝑥) = (𝑥 − 𝑥1

∗)(𝑥 − 𝑥2
∗)… (𝑥 − 𝑥𝑛

∗), 
or equivalent  

𝑝𝑛(𝑥) =∏(𝑥 − 𝑥𝑖
∗),

𝑛

𝑖=1

 

thus let 𝑝(𝑥) = 𝑝𝑛(𝑥). These principal and necessary tools are to be applied 
in the algorithm, which will be discussed in detail in chapters 3, 4, 5, 6 and 7. 

 

1.7 Thesis Outline 
 
 

The thesis comprises of the following: 

In chapter 1 the background of interval analysis is introduced. Brief yet 
concise descriptions on some of the definitions and properties of interval 
analysis will be provided.  In addition, the R-order of convergence concept is 
included in this section as well. 

 
Chapter 2 includes brief discussions on the previous work on simultaneous 
procedure as well as the point and interval iterative procedure of finding the 
zero of polynomials.  

 
Chapter 3 comprehends the description on the original Interval Symmetric 
Single-step (ISS2) procedure by Salim et al. (2011). The R-order of 
convergence of ISS2 procedure is analyzed, thus utilizing its full potential as 
a stepping stone for the new modified procedures generated in the next four 
chapters. 

 
Chapter 4, 5, 6 and 7 consist of detail discussions on all four modified 
procedures, elaborating how the new procedures are generated, as well as 
elements involved. These modified procedures are called Interval Symmetric 
Single-step (ISS2-5D) procedure, Interval Zoro-Symmetric Single-step 
(IZSS2-5D) procedure, Interval Midpoint Symmetric Single-step (IMSS2-5D) 
procedure and lastly Interval Midpoint Zoro-Symmetric Single-step 
(IMZSS2-5D) procedure. The mentioned chapters include the algorithms, 
theoretical analysis of R-order of convergence, with numerical results for 
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each modification in their respective chapters to support findings.  The 
efficiencies for both the modified procedures and the original procedure are 
compared in terms of CPU time, number of iterations and the value of the 
width of the intervals.  Serving the purpose of providing readers with clearer 
view of the overall outcome, the numerical results for each test polynomials 
will be displayed in the forms of tables and bar charts in each chapter. 

 

Finally, Chapter 8 summarizes the conclusion of the research. Future works, 
which are made to relate to the research findings will also be recommended 
towards the end of the said section. 
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