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MODIFICATION OF INTERVAL SYMMETRIC SINGLE- STEP 
PROCEDURE FOR SIMULTANEOUS BOUNDING POLYNOMIAL 

ZEROS 

By 

NORAINI BINTI JAMALUDIN 

 January 2014 

Chairman: Mansor bin Monsi, PhD 

Faculty: Science 

 

The focus of this research is on the bounding of simple and real polynomial 
zeros simultaneously, focusing on the interval analysis approaches. This 

procedure started with some disjoint intervals 𝑋𝑖
(0)

 for 𝑖 = 1, … , 𝑛 each of 

which contains a zero of the polynomial and finally produced successively 
smaller closed bounded intervals, which always converge to the zeros  𝑥𝑖

∗ for 
𝑖 = 1, … , 𝑛  respectively. In relation to that, the previous work on Interval 
Symmetric Single-step (ISS2) procedure is investigated to ensure this 
procedure is useful for solving polynomials. Thus, this procedure is 
extended to some modifications in order to improve the efficiency of the 
procedure.  
 
 
Starting from the authentic ISS2 procedure, four modified procedures are 
developed. The procedures are Interval Symmetric Single-Step (ISS2-5D) 
procedure, Interval Zoro-Symmetric Single-Step (IZSS2-5D) procedure, 
Interval Midpoint Symmetric Single-Step (IMSS2-5D) procedure and Interval 
Midpoint Zoro-Symmetric Single-Step (IMZSS2-5D) procedure. The 
programming language Intlab toolbox for Matlab is used to record the 

numerical results, whereby the stopping criterion used is 𝑤𝑖
(𝑘)

≤ 10−10.  The 

results are numerically compared to the original ISS2 procedure to supervise 
the improvements and efficiencies of the modified procedures.  
 
 
In order to assure that the outcomes of the procedures are promising, 
convergence rate for each modified procedures is analyzed for comparing 
purposes.  Other than that, the analysis of inclusion to certify the 
convergence of the modified procedures is included. All the modifications 
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are proven to have better rate of convergences and these are well-supported 
on the reduction of CPU times, number of iterations and the value of the 
interval width of the procedures. In a nutshell, this study reveals that the 
new modified procedures are capable and efficient for bounding the simple 
and real polynomial zeros simultaneously. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
 sebagai memenuhi keperluan untuk Ijazah Master Sains 

 
 

PENGUBAHSUAIAN  PADA PROSEDUR SELANG LANGKAH-
TUNGGAL DALAM MEMERANGKAP SUATU PENSIFAR 

POLINOMIAL SECARA SERENTAK 

Oleh 

NORAINI BINTI JAMALUDIN 

Januari 2014 
 

Pengerusi : Mansor bin Monsi, PhD 

Fakluti: Sains 
 
Fokus penyelidikan kami adalah menghadkan punca nyata dan ringkas 
polinomial secara serentak yang memfokuskan kepada pendekatan analisis 
selang.  Prosedur ini bermula dengan beberapa selang permulaan yang tidak 

bercantum 𝑋𝑖
(0)

 bagi 𝑖 = 1, … , 𝑛 yang mana setiap satunya mengandungi 

punca polinomial dan akhirnya menghasilkan selang rapat yang lebih kecil 
secara berturutan yang mana sentiasa menumpu kepada punca-punca 
polinomial  𝑥𝑖

∗ bagi 𝑖 = 1, … , 𝑛. Selanjutnya, hasil kerja terdahulu terhadap 
prosedur selang langkah-tunggal bersimmetri ISS2 dikaji bagi memastikan 
prosedur ini dapat digunakan untuk menyelesaikan polinomial.  Prosedur 
ini kemudiannya diperluaskan dengan beberapa pengubahsuaian bagi 
tujuan meningkatkan kecekapan prosedur. 
 
 
Bermula dengan prosedur asal ISS2, kami menghasilkan empat prosedur-
prosedur baru terubahsuai yang mana dibentangkan sebagai sumbangan 
utama kami dalam tesis ini.  Prosedur ini adalah prosedur ISS2-5D, prosedur 
IZSS2-5D, prosedur IMSS2-5D and prosedur IMZSS2-5D. Keputusan-
keputusan berangka direkod dengan menggunakan perisian Matlab dan 
dibantu oleh perisian Intlab dimana syarat berhenti program yang 

dikenakan adalah 𝑤𝑖
(𝑘)

≤ 10−10.  Keputusan-keputusan secara berangka 

dibandingkan dengan prosedur asal ISS2 untuk melihat peningkatan dan 
kecekapan prosedur-prosedur terubahsuai. 
 
 
Bagi menyakinkan bahawa prosedur-prosedur ini berjaya, kami juga 
menganalisa kadar penumpuan bagi setiap prosedur terubahsuai untuk 
dibandingkan.  Kami juga menyertakan analisa rangkuman bagi menjamin 
penumpuan prosedur tersebut. Kesemua prosedur-prosedur terubahsuai 
telah terbukti mempunyai kadar penumpuan yang lebih baik dan disokong 
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dengan pengurangan masa pemprosesan, bilangan lelaran dan nilai lebar 
lelaran bagi prosedur-prosedur. Pada kesimpulannya, kajian ini 
menunjukkan bahawa prosedur-prosedur baru terubahsuai berkebolehan 
dan cekap untuk menghad punca nyata dan ringkas polinomial secara 
serentak. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

1.1 Background 
 
 
Interval analysis is a branch of applied mathematics. Referring to Neumaier 
(1990), interval analysis is considered to be an elegant tool for practical work 
with inequalities, approximate numbers, error bounds and more generally 
with certain convex and bounded sets.  By using interval numbers we can 
define another number system where an interval number consists of a pair of 
real numbers representing the lower and upper bound of the parameter 
range. 

 
In depth discussion of topics related to interval analysis could be found in 
books by Moore (1966), Alefeld and Herzberger (1983), Neumaier (1990), 
Hansen (1992), and more recently with Jaulin et al. (2001) and Hansen and 
Walster (2004). Interval analysis has the advantage of providing rigorous 
bounds for the exact solutions.  

 
Recently, interval analysis has been widely applied in various kinds of 
problem such as finding the bounds on the value of a function, finding zeros 
of polynomial, solving equation or a system of equation, optimization, 
differential equation as well as integral equation. 
 

It is of evidence that significant improvements are possible in interval 
analysis. With regards to contributing to the development of this field, 
research is conducted, coming up with this thesis entitled “Modifications on 
the Interval Symmetric Single -Step Procedure for Simultaneous Bounding of Real 
Polynomial Zeros”. 

 
1.2 Fundamental Definitions and Properties of Interval Analysis 

 

Description on some of the definitions and properties on interval analysis to 
be used throughout this research are included in this section of this thesis. 
The following definitions and properties can be found in Alefeld and 
Herzberger (1983). 
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each modification in their respective chapters to support findings.  The 
efficiencies for both the modified procedures and the original procedure are 
compared in terms of CPU time, number of iterations and the value of the 
width of the intervals.  Serving the purpose of providing readers with clearer 
view of the overall outcome, the numerical results for each test polynomials 
will be displayed in the forms of tables and bar charts in each chapter. 

 

Finally, Chapter 8 summarizes the conclusion of the research. Future works, 
which are made to relate to the research findings will also be recommended 
towards the end of the said section. 
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