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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy  

ABSTRACT 

RATIONAL DESIGN OF MIMETIC PEPTIDES BASED ON 

PROMISCUOUS ALDO-KETOREDUCTASE ENZYME AS ASYMMETRIC 

CATALYSTS IN ALDOL AND MICHAEL REACTIONS 

 

By 

 

SAADI BAYAT 

 

March 2014 

 

Chairman: Mohd Basyaruddin Abdul Rahman (PhD) 

Faculty: Sceince 

 

The asymmetric aldol and Michael reactions, as the most prominent carbon-carbon 

bond formation reactions, are the central study issues in the field of asymmetric 

synthesis. In this study, promiscuous aldo-ketoreductase (AKR) used to catalyze 

aldol reaction. between aromatic aldehydes and ketones. Good yield (up to 75%), 

moderate enantioselectivity (60%), and high diastereoselectivity (dr) up to 93/7 

(anti/syn) were obtained. Several mimetic peptides from AKR’s active site were 

designed and synthesized as asymmetric catalysts in the aldol and Michael reactions. 

Mimetic peptides PE16aa (1), PH16aa (2), 16aa (3), 8aa (4), 8aa-z (5), 5aa (6), 3aa 

(7), Fmoc-KLH-R (8), K(z)LH-R (9), PYE (10), PEY (11), PHE (12), PEH (13), 

LFV (14) 4a and 4b were successfully synthesized using manually solid phase 

peptide synthesis protocol. Then, all of these mimetic peptides were employed to 

catalyze aldol reactions and peptides 2, 4, 4a, 4b, 10, 11, 12, and 13 were selected to 

catalyze Michael reactions. In the aldol and Michael reactions, peptide 4 exhibited 

the best results (up to 97% yield, up to 99.9% ee and dr up to 99/1). Peptide 1 

produced a good yield (88%), moderate enantioselectivity (68%), and excellent 

diastereoselectivity (dr = 99/1). Peptide 2 afforded the desired anti aldol product in 

95% yield, 86% ee and 95/5 dr. Peptide 3 exhibited moderate yield (67%) but poor 

enantioselectivity (39% ee). Peptide 5 showed good catalytic activity and produced 

high yield (89%) and enantioselectivity (86%). Pentapeptide 6 catalyzed aldol 

reaction in high diastereo-and enantioselectivity (dr = 99/1 and 90% ee). PHE 

showed the best reactivity and selectivity amongst four tripeptides (PYE, PEY, PEH, 

PHE) up to 94% ee and up to 95/5 dr. Peptide 2 afforded corresponding Michael 

reaction up to 89% yield, 44% ee, and 99/1 dr. Peptide 4 generated desired Michael 

product up to 95% yield, 84% ee and 95/5 dr. Mechanism study demonstrated that 

enamine intermediate and hydrogen-bonding interaction are very important for 

obtaining high enantiomeric excess. The reusability of peptide 4 as the best catalyst 

was also conducted for 10 times. Peptide 4 is able to hydrolysis esters in a good to 

excellent yields of up to 99.7 %. All mimetic peptides exhibited to be active in terms 

of reactivity and selectivity in c-c bond forming reactions. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

ABSTRAK 

REKABENTUK RASIONAL PEPTIDA MIMETIK BERDASARKAN ENZIM 

ALDO-KETOREDUCTASE RAMBANG SEBAGAI MANGKIN 

ASYMMETRIC DALAM TINDAKBALAS ALDOL DAN MIHAEL  

 

Oleh 

 

SAADI BAYAT 

 

Mac 2014 

 

Pengerusi    :       Mohd Basyaruddin Abdul Rahman (PhD) 

Fakulti        :       Sains 

Tidakbalas tidak simetri aldol dan Michael adalah isu yang paling menonjol dalam 

kajian tindakbalas sistesis kimia bagi pembentukan ikatan karbon-karbon. Dalam 

kajian ini, aldo-ketonreductase (AKR) digunakan untuk memangkin tindakbalas 

aldol diantara aromatik aldehida dan keton. Keputusan yang diperoleh menunjukkan 

peratusan hasil yang baik (sehingga 75%), enantioselektiviti yang sederhana(60%), 

dan kadar diastereometrik yang tinggi (dr) sehingga 93 /7 (anti / syn). Peptida yang 

meniru hormon AKR telah direka dan disintesis sebagai pemangkin tidak simetri 

dalam tindak balas Michael dan aldol.  Peptida PE16aa (1), PH16aa (2), 16AA (3), 

8aa (4), 8aa-z (5), 5aa (6), 3aa (7), Fmoc-HKL-R (8), K(z) LH-R (9), PYE (10), PEY 

(11), PHE (12), PEH (13), LFV (14), 4a dan 4b telah berjaya disintesis secara 

manual mengikut kaedah sintesis pepejal peptida. Kemudian, kesemua peptida yang 

meniru hormon tersebut digunakan sebagai pemangkin tindakbalas aldol dan hanya 

peptida 2, 4, 4a, 4b , 10, 11, 12, dan 13 dipilih sebagai pemangkin untuk tindakbalas 

Michael. Melalui tindakbalas aldol dan Michael, peptida 4 memberikan hasil yang 

terbaik (peratusan hasil sehingga 97 %, sehingga 99.9% ee dan dr sehingga 99 /1). 

Peptida 1 pula memberikan hasil yang bagus (88 %), enantioselectiviti sederhana (68 

%), dan diastereoselectiviti baik (dr = 99 /1). Hasil produk Peptida 2 adalah sebanyak 

95%, 86% ee dan 95/5 dr. Peptida 3 memberikan hasil yang sederhana (67 %) dan 

peratusan enantioselectiviti yang rendah (39% ee) . Peptida 5 menunjukkan aktiviti 

pemangkinan yang baik dan menghasilkan produk hasil yang tinggi (89%) dan 

enantioselectiviti (86 % ee). Manakala pentapeptida 6 menjadi mangkin untuk 

tindakbalas aldol dengan diastereo - dan enantioselectiviti yang tinggi (dr = 99 /1 dan 

ee 90%). PHE menunjukkan kadar kereaktifan yang terbaik di kalangan empat 

tripeptida yang lain (PYE, PEY, PEH, PHE) dengan kadar peratusan 94 % ee dan 

95/5 dr. Dalam kajian ini, peptida 2 memberikan hasil tindakbalas Michael sehingga 

89% , 44% ee, dan 99/1 dr. Peptida 4 memberikan hasil produk sebanyak 95% , 84% 

ee dan 95/5 dr. Kajian terhadap mekanisma tindakbalas menunjukkan bahawa 

enamine yang bertindak sebagai pengantara dan juga ikatan hidrogen adalah sangat 

penting untuk mendapatkan peratusan enantioselectiviti yang tinggi. Kebolehgunaan 

peptida 4 sebagai pemangkin yang paling bagus dapat diguna semula sebanyak 10 

kali. Peptida 4 ini juga mampu menghidrolisis ester kepada hasil produk yang lebih 

baik sehingga 99.7 %. Semua peptida yg meniru-niru dipamerkan untuk aktif dari 

segi kereaktifan dan pemilihan dalam bon cc membentuk tindak balas. 
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CHAPTER 1 

 

1 INTRODUCTION 

Life is impossible without the miraculous role of catalytic reactions in plants, 

animals, and human beings. Billions of vital reactions in living organisms are carried 

out by biocatalysts (enzymes), and they take place within seconds. Without enzymes 

these reaction would possibly take centuries. Not only nature applies catalysts, it is 

also keystone of the chemical industry. Approximately 90% of all manmade 

chemicals and materials are produced using catalysis at one stage or another. Human 

application of catalysis began in prehistory (Ojima, 2004). For example, the ancient 

Sumerians unknowingly applied catalysis many millennia ago to produce their beer. 

Even today, many catalytic processes are found using a hit-and-miss approach. 

Rational design of desired catalysts followed by synthesis seems to be difficult yet. 

As demand for optically active pharmaceutical compounds has grown in recent 

years, much research progress has been made towards the development of 

asymmetric catalysts.  

 

Until recently, the asymmetric catalysts utilized for enantioselective synthesis of 

organic compounds, fall into two general categories – transition metal complexes and 

enzymes (Dalko et al., 2004). In 2001 the Nobel Prize in chemistry was awarded to 

William R. Knowles and Ryoji Noyori for their work on the chiral hydrogenation 

catalyzed reactions, and K. Barry Sharpless for his work on chirally catalyzed 

oxidation reactions. For all three winners the development of chiral transition metal 

catalysts was the key to success. It has been a long-standing belief that only man-

made transition metal catalysts can be tailored to produce either two product 

enantiomers whereas the enzymes cannot. This dogma has been challenged in recent 

years by the immense advances in the field of biocatalysis, for example, the 

discovery of preliminarily useful enzymes of novel microorganisms, and the 

optimization of enzyme performance by selective mutation or evolutionary methods 

(Berkessel et al., 2006).  

 

Recently, researchers vividly demonstrated the highly competitive head to head race 

between transition metal catalysis and enzymatic catalysis in contemporary industrial 

production of enantiomerically pure fine chemicals. Therefore, biocatalysis is 

considered to be one of the available approaches to achieve green chemistry owing to 

its high selectivity, mild condition, low energy requirements, and few by-products 

(Wu et al., 2006).  

 

Enzymes are usually very selective with regard to chemo-, diastereo-, and 

enantioselectivity, due to their complex three-dimensional structure allowing only 

specific target molecules to interact with the active site of the enzyme. Problems may 

arise with the low tolerance of changes in operational parameters, such as pH values 

or temperature, preference for water as a reaction medium, and their well recognized 

severe dependence on their natural cofactor, often making them too costly for 

stoichiometric use. Another drawback of enzymes is that they are produced by nature 

in only one enantiomeric form, and their antipodes cannot simply be made from all 

D-amino acids to yield the opposite stereoisomer in a given, chemical 

transformation. In other words, enzymes are generally a specific catalyst (Aleu et al., 

2006).  
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In recent years, some hydrolytic enzymes have demonstrated high activity for 

unnatural substrates and alternative chemical transformation, namely, biocatalytic 

promiscuity, which provides a new tool for organic synthesis and largely extends the 

application of enzymes. To overcome the specificity properties of enzymes, the 

chemists and biochemists involved in the asymmetric catalyst field have given a lot 

of attention to promiscuous enzyme (Svedendahl et al., 2005). Catalytic promiscuity 

refers to the ability of a single active site to catalyze more than one chemical 

transformation (Li et al., 2010). These transformations may differ in terms of the 

functional group involved; that is, the type of bond formed or cleaved during the 

reaction (Kazlauskas, 2005).  

 

Though this field of study is new, the obtained results have exhibited that both yield 

and stereoselectivity are moderate. Although today the vast majority of asymmetric 

reactions catalysis continue to rely on organometallic complexes, this picture is 

changing, and between the extremes of transition metal catalysis and enzymatic 

transformations, a third approach to the catalytic production of enantiomerically pure 

organic compounds has emerged –namely, organocatalysis. Since 1970, 

organocatalysts have become popular for the synthesis of chiral compounds. 

organocatalysis is becoming an increasingly important segment of organic chemistry, 

offering a number of advantages over metal-based and biocatalyst methods. In 

general, organocatalysis can be used in wider range of solvents and for a broader 

scope of  substrates compared to enzymes (Revelou et al., 2012). In addition, they 

are typically less toxic and less sensitive to oxidation and moisture than most 

organometallic based reagents. Given the sheer number of amino acids in a given 

enzyme, it is possible to achieve a near infinite amount of structural diversity. 

  

However, for a given enzyme, the active site is usually extremely specific allowing 

for a limited substrate scope. One rapidly-growing subtopic of organocatalysis, 

peptide-based catalysis, is providing an interesting perspective into the nature of both 

low molecular weight and enzymatic catalysis (Jarvo et al., 2002). By examining the 

nature of small peptide based catalysis, it is possible to study amino acid-mediated 

binding events while “tuning out” some of the more complex interactions that are 

inherent to enzymatic interactions. In addition, it allows for an interesting entry into 

peptide engineering. With careful selection of each residue within a peptide catalyst, 

one may create a system which affects a catalytic transformation with a high level of 

selectivity while employing a bare minimum of amino acids. One of the most 

significant applications of asymmetric organocatalysis is the construction of carbon-

carbon and carbon-heteroatom bond (Pedrosa et al., 2010).  

 

Therefore, asymmetric aldol and Michael reactions are known as the fundamental 

methods for producing one or two stereocenter organic compounds, which are quite 

applicable for pharmaceutical purposes (Milhazes et al., 2006). Peptide-based 

oraganocatalysis can catalyze these reactions asymmetrically to afford 

functionalized, optically active compounds bearing quaternary stereocenter with the 

benefits of high enantioselectivities, excellent yields, and high atom economy. Due 

to the increasing number of chiral drugs in the pharmaceutical industries, 

organocatalysis and particularly, peptide-based biocatalysts, can play significant 

roles as asymmetric catalysts in organic reactions to produce highly efficient 

stereogenically useful compounds (Simon et al., 2012). However, a major drawback 

of organocatalysis is low activity compared to organometallic catalysts, therefore, 
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requiring a larger quantity of catalyst, at least 10 mol % for the reaction. 

Organocatalysts are basically categorized as either Lewis base, Lewis acid, Brønsted 

base or Brønsted acid mediated. An important class of Lewis base catalysis is 

asymmetric enamine catalysis which is regarded as the catalysis of electrophilic 

substitution reactions in the α-position of carbonyl compounds by primary and 

secondary amines occurring via enamine intermediates. The versatility of enamines 

in stochiometric reactions has been confirmed for α-functionalisation of carbonyl 

compounds (Stork et al., 1963). However, many scientists have reported employing 

amino acids and short peptides, especially, proline as an asymmetric organocatalyst. 

This area of study is still challenging. A few studies have been disclosed usage of 

emulated peptides of enzymes, particularly, promiscuous enzymes, as 

organocatalysts in organic reactions. 

 

Peptide can be used as a multipurpose catalyst. Thus, it might catalyze different types 

of organic reactions. For a long time, hydrolysis of esters has been dominated by acid 

and base. However, for the last decade, peptides have emerged as important 

organocatalysts for hydrolysis of esters. . Due to their structural diversity peptides 

are becoming known as a versatile catalyst with a remarkable ability to catalyze 

hydrolysis of esters (Tsutsumi et al., 2004).  

 

 

1.1 Problem Statements 

Promiscuous enzymes can only generate stereospecific products with moderate yield 

and stereoselectivity of carbon-carbon bond forming reaction. Therefore, design and 

synthesis of mimetic peptides derived from active site of promiscuous enzymes in 

this research have been considered to enhance stereoselectivity. One of the problems 

of current organocatalytic methods is the use of high catalyst loading (up to 30 

mol%). A large excess of aldehydes or ketones (normally 10-20 equiv) are also 

required to achieve good catalytic activity and selectivities. Therefore, reaction 

optimization, design and development of highly active organocatalysts are needed in 

order to overcome these limitations.  

 

Current study strongly investigated the rational design of several peptides with 

different length as asymmetric catalyst in aldol and Michael reactions. The role of 

hydrophilic and hydrophobic amino acids residues and also position of residues have 

been investigated. Hydrolysis of esters by acids and bases is caused to change 

configurations of chiral compounds to racemic in the organic synthesis and truble for 

industry. Therefore, peptides are excellent alternative to replace of acid and base due 

to their multifunctionality and mild reaction which is similar to enzymes. 
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1.2 Goal and objectives of the study 

The main goal of this study is to investigate the catalytic activity of mimetic 

oligopeptides based on a promiscuous enzyme in the carbon-carbon bond forming 

reactions and also hydrolysis of esters. The objectives were set as follows: 

 

1- To evaluate the reactivity and selectivity of promiscuous aldo-ketoreductase 

(AKRs) enzyme in aldol reaction. 

2- To design and synthesize mimetic peptides based on AKR active site. 

 

3-  To utilize the mimetic peptides as asymmetric catalysts in aldol and Michael 

reactions. 

 

4- To optimize the reaction conditions with respect to different parameters, such 

as solvents and catalyst loading  

 

5- To investigate the reusablility of the best peptide as asymmetric catalyst in 

the aldol and Michael reaction. 

 

6- To use the best mimetic peptide in hydrolysis of esters.  
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