UNIVERSITI PUTRA MALAYSIA

ROLES OF PLANT GROWTH PROMOTING RHIZOBACTERIA IN SUPPRESSION OF GANODERMA BASAL STEM ROT IN OIL PALM

WAHEEDA PARVIN

FP 2014 52
ROLES OF PLANT GROWTH PROMOTING RHIZOBACTERIA IN SUPPRESSION OF GANODERMA BASAL STEM ROT IN OIL PALM

By

WAHEEDA PARVIN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other art work, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
Specially dedicated

To

My dearest father Prof. Md. Abdul Wahab,
My loveliest mother Aleya Begum
&
My beloved husband Dr. Md. Mahbubur Rahman
ROLES OF PLANT GROWTH PROMOTING RHIZOBACTERIA IN SUPPRESSION OF GANODERMA BASAL STEM ROT IN OIL PALM

By

WAHEEDA PARVIN

October 2014

Chairman: Assoc. Professor Wong Mui Yun, PhD

Faculty: Agriculture

The Basal Stem Rot (BSR) disease caused by *Ganoderma boninense* is a major economic concern and it is a predominant disease of oil palm in Southeast Asia including Malaysia. Until now there is no effective control measure available for this disease. A sustainable control measure is using bio-control agents such as Plant Growth Promoting Rhizobacteria (PGPR). Two PGPR, *Pseudomonas aeruginosa* UPMP3 and *Burkholderia cepacia* UPMB3 isolated from oil palm rhizosphere were studied for their potential to be used as biocontrol agents. The objectives of this study were (i) to determine the mechanisms of plant growth promotion and pathogen suppression by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3, (ii) to identify and quantify the antibiotics produced by selected PGPR and to determine their effects on *G. boninense* mycelial growth *in vitro*, and (iii) to evaluate the effects of selected antibiotic application on the development of BSR disease and on the expression of defense related genes during *Ganoderma*-oil palm interaction. Experiments were conducted to detect phytohormones, antibiotics, siderophores, and volatile substance, hydrogen cyanide (HCN) produced by these two bacterial strains. Various antibiotics produced were identified and quantified using High Performance Liquid Chromatography (HPLC). *In vitro* bioassay was carried out to determine the effect of antibiotics and volatiles produced on *G. boninense*. Subsequent experiments were conducted in the glasshouse with the selected antibiotic to evaluate BSR disease development and to detect pathogenesis-related (PR) genes induced during *Ganoderma*-oil palm interaction at the intervals of 0, 2, 4, 6, and 8 weeks after inoculation. The results showed that *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 produced phytohormones indole-3-acetic acid (IAA), salicylic acid (SA) and zeatin. But only *P. aeruginosa* UPMP3 produced volatile substance HCN. The results revealed that *P. aeruginosa* UPMP3 produced various antibiotics: 2,4-diacetylphloroglucinol (2,4-DAPG), phenazine (PHZ), pyocyanin (PYO), phenazine -1- carboxylic acid (PCA), pyoluteorin, phenazine-1-carboxamide (PCN) and pyrrolnitrin, while *B. cepacia* UPMB3 produced pyocyanin, pyoluteorin and pyrrolnitrin. For *in vitro* bioassay using antibiotics and volatile substances, it was observed that the inhibition of *Ganoderma*
mycelial radial growth caused by \textit{P. aeruginosa} UPMP3 and \textit{B. cepacia} UPMB3 were 94.21% and 21.38% for antibiotics, respectively and 51.16% and 8.89% for volatile substances, respectively after 7 days of incubation. \textit{P. aeruginosa} UPMP3 was more effective than \textit{B. cepacia} UPMB3 in suppressing \textit{Ganoderma in vitro}. Based on these results, \textit{P. aeruginosa} UPMP3 was selected for further studies. Three antibiotics namely PHZ, PCA and PYO were extracted from \textit{P. aeruginosa} UPMP3 due to the availability of these standards and quantified using (HPLC). Standards for PHZ, PCA and PYO were completely separated with retention times of 41.590, 39.740 and 34.863 min, respectively. At 250 nm wave length, the bacterial strain produced a maximum concentration of PHZ (1.36 µg/mL) and PCA (9.62 µg/mL). At 262 nm the maximum concentration of PYO was 15.48 µg/mL. For \textit{in vitro} bioassay, PHZ was more effective than PCA and PYO in suppressing \textit{Ganoderma} at concentration of 1mg/mL. The inhibition percentages were 100%, 78.61% and 91.87%, respectively. For glasshouse study, 5 treatments were used: T1, Negative control; T2, Positive control; T3, Phenazine (1mg/mL); T4, Phenazine (2mg/mL); T5, Hexaconazole (0.048 mg/mL). Plants in T4 showed the highest disease reduction of 52.76% compared to T5 (25.27%). Two putative pathogenesis-related (PR) genes including chitinase and \(\beta\)-1, 3-glucanase were differentially expressed in oil palm roots with different treatments. Chitinase was expressed constantly throughout the sampling intervals while \(\beta\)-1, 3-glucanase expressed at later intervals. The results of this study showed that the antibiotic phenazine has strong antimicrobial activity against \textit{G. boninense in vitro} and was comparable to chemical fungicide in suppressing BSR in glasshouse conditions. The antibiotic phenazine extracted from \textit{P. aeruginosa} UPMP3 could be potentially developed as a commercial formulation to suppress BSR disease of oil palm to reduce the application of harmful pesticides, thus limiting their hazardous effects on the environment.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Doktor Falsafah

PERANAN RIZOBAKTERIA PENGGALAK TUMBESARAN TUMBUHAN DALAM PERENCATAN REPUT PANGKAL BATANG KELAPA SAWIT

Oleh

WAHEEDA PARVIN

Oktober 2014

Pengerusi: Profesor Madya Wong Mui Yun, PhD

Fakulti: Pertanian

Penyakit reput pangkal batang disebabkan oleh *Ganoderma boninense* merupakan masalah ekonomi utama dan merupakan penyakit dominan kelapa sawit di Asia Tenggara termasuk Malaysia. Setakat ini tiada cara kawalan yang berkesan untuk penyakit ini. Satu kaedah lestari adalah menggunakan agen kawalan biologi seperti rizobakteria penggalak tumbesaran tumbuhan (PGPR) yang merupakan suatu pendekatan mesra alam. Dua PGPR iaitu *Pseudomonas aeruginosa* UPMP3 dan *Burkholderia cepacia* UPMB3 dari pemencilan rizosfera kelapa sawit telah dikaji potensinya sebagai agen kawalan biologi. Objektif kajian ini ialah (i) menentukan mekanisma penggalak tumbesaran tumbuhan dan perencatan patogen oleh *Pseudomonas aeruginosa* UPMP3 dan *Burkholderia cepacia* UPMB3, (ii) mengenalpasti jumlah antibiotik yang dihasilkan serta menilaikan khasiat antibiotik tersebut ke atas tumbesaran miselia *G. boninense* secara *in vitro* dan (iii) menentukan khasiat penggunaan antibiotic terhadap perkembangan penyakit BSR dan ekspresi gen perencaatan dalam interaksi *G. boninense*-kelapa sawit. Eksperimen dijalankan untuk mengenalpasti fitohormon, antibiotik, siderofor dan bahan merup seperti hidrogensianida (HCN), yang dihasilkan oleh dua strain bakteria tersebut. Pelbagai antibiotik yang dihasilkan telah dikenalpasti menggunakan 'High Performance Liquid Chromatography' (HPLC). Bioasai *in vitro* dijalankan untuk menentukan khasiat antibiotik dan bahan merup yang dihasilkan terhadap *G. boninense*. Eksperimen seterusnya dijalankan di rumah kaca dengan menggunakan antibiotic tertentu bagi menilaikan perkembangan penyakit pangkal batang reput dan mengesankan gen patogenesis ketika interaksi *Ganoderma*-kelapa sawit dalam tempoh 0, 2, 4, 6 and 8 minggu selepas inokulasi. Hasil kajian menunjukkan *P. aeruginosa* UPMP3 dan *B. cepacia* UPMB3 menghasilkan fitohormon asid indol-3-asetik (IAA), asid salisik (SA) dan zeatin. Tetapi, hanya *P. aeruginosa* UPMP3 menghasilkan bahan merup HCN. Keputusan ini menunjukkan *P. aeruginosa* UPMP3 mampu menghasilkan pelbagai antibiotik: 2,4-diasetilfloroglusinol (2,4-DAPG), fenazin (PHZ), fikosianin (PYO), asid fenazin -1-
karbosilik (PCA), pioluteorin, fenazin-1-carboxamide (PCN) dan pirolnitrin manakala
dan B. cepacia UPMB3 menghasilkan fikosianin, pioluteorin, dan pirolnitrin. Bagi
kajian bioasai secara in vitro dengan menggunakan antibiotik dan bahan meruap, tahap
kerencatan pertumbuhan miselium Ganoderma oleh P. aeruginosa UPMP3 dan B.
cepacia UPMB3 adalah masing-masing 94.21% dan 21.38% bagi antibiotik dan 51.16%
dan 8.89% masing-masing bagi bahan meruap, selepas 7 hari tempoh inkubasi. P.
aeruginosa UPMP3 didapati lebih berkesan berbanding B. cepacia UPMB3 bagi
merencat pertumbuhan Ganoderma secara in vitro. Berdasarkan keputusan ini, P.
aeruginosa UPMP3 dipilih bagi kajian seterusnya. Tiga antibiotik iaitu PHZ, PCA dan
PYO telah diekstrak daripada P. aeruginosa UPMP3 dan penentuan jumlah dilakukan
dengan HPLC. Standard untuk PHZ, PCA dan PYO telah dipisahkan sepenuhnya pada
masa retensi masing-masing 41.590, 39.740 dan 34.863 min. Pada jarak gelombang 250
nm, strain bakteria telah menghasilkan kepekatan kepokan PHZ (1.36 µg/mL) yang tertinggi
dan PCA (9.62 µg/mL). Pada 262 nm, kepekatan maksima dicapai oleh PYO adalah 15.48
µg/mL. Untuk bioasai in vitro, didapati fenazin lebih efektif berbanding PCA dan PYO
untuk merencat Ganoderma pada kepekatan 1 mg/mL. Peratusan perencatan adalah
masing masing 100%, 78.61% dan 91.87%. Untuk kajian rumah kaca, 5 rawatan telah
digunakan: T1, Kawalan negatif; T2, Kawalan positif; T3, Phenazine (1mg/mL); T4,
Phenazine (2mg/mL); T5, Hexaconazole (0.048 mg/mL). Pokok dalam rawatan T4
menunjukkan perencatan penyakit yang tertinggi (52.76%) berbanding T5 (25.27%).
Dua gen putative patogenesis iaitu khitinase dan β-1, 3-gluankanase telah
menunjukkan ekspresi yang berbeza dalam akar pokok kelapa sawit dalam rawatan yang berbeza.
Ekspresi khitinase adalah tetap sepanjang tempoh eksperimen manakala ekspresi β-1, 3-
gluukanase berlaku lebih lambat. Keputusan kajian ini menunjukkan bahawa antibiotik
fenazin mempunyai aktiviti antimikrob yang tinggi terhadap Ganoderma in vitro
dan menunjukkan persamaan dengan racun kulat dalam perencatan BSR di bawah keadaan
rumah kaca. Antibiotik fenazin yang diekstrak daripada P. aeruginosa UPMP3
mempunyai potensi untuk dibangunkan sebagai formulasi komersial untuk mengawal
penyakit reput pangkal batang kelapa sawit bagi mengurangkan penggunaan racun
perosak yang berbahaya dan seterusnya mengurangkan kesan berbahaya terhadap alam
sekitar.
ACKNOWLEDGEMENTS

First of all, I am grateful to Almighty Allah the most merciful for blessing me with health, power and support throughout my PhD study.

I would like to take this opportunity to express my deepest gratitude and special appreciation to my supervisor, Assoc. Prof. Dr. Wong Mui Yun for her thoughtful advice, valuable guidance, continuous inspiration and cooperation in making the completion of this thesis a success. My sincere appreciation is also extended to Assoc. Prof. Dr. Radziah Othman and Assoc. Prof. Dr. Hawa Jaafar, members of my supervisory committee for their valuable advice, technical guidance, and cooperation to complete the thesis.

I would like to express my gratitude the Emerging Nations Science Foundation for offering me one year fellowship of my post graduate study. I also acknowledged South East Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) for my thesis grant. My special thanks to Dr. Wahed Baksha, the former Director of Bangladesh Forest Research Institute, and also the present Director, Dr. Mukhlesur Rahman and my all colleagues for their inspiration and continuous support to complete my study.

A heartfelt thanks to all the former and current staffs, members and lab mates of Plant Protection Department, UPM for their support, help, encouragement and good times. Special thanks to Dr. Qazi Shirin Akhter Jahan, for helping me during my HPLC studies. Grateful appreciation to Sime Darby Seeds and Agricultural Services Sdn Bhd. for providing the oil palm seeds and seedlings in good condition. I would like to express my all course teachers of UPM for their valuable assistance during my study. I wish to thanks all of my friends and staffs from different faculties of UPM for their lab support.

Lastly, I want to express my deepest gratitude to my dearest parents, for teaching me to believe in myself, Special thanks to my affectionate younger brothers Engr. Sharif Mahmud and Ashique Mahmud for their technical guidance, consistent support, love and encouragement. My sincere appreciation also goes to my respected mother in law, my late father in law, my brothers and sisters for their inspiration, prayer, care and love, accompanying me to go through all my happiness and sadness in my study and encouragement for my success.

Finally, to the one who is not only close to myself, but also close to my heart and mind, my pillar of strength and success at every step in my life, my beloved husband, Dr. Md. Mahbubur Rahman, thanks for all the endless love, support, and continuous encouragement during the good and hard times it took for me to finish this work. Thanks also for spending his valuable time in reading and editing my thesis. His patience and understanding were essential to complete my thesis and sacrificing a lot in the course of my study which could never be paid.
I certify that a Thesis Examination Committee has met on 28 October 2014 to conduct the final examination of Waheeda Parvin on her thesis entitled "Roles of Plant Growth Promoting Rhizobacteria in Suppression of Ganoderma Basal Stem Rot in Oil Palm" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Jugah bin Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Zainal Abidin bin Mior Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Halimi bin Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Richard Martin Cooper, PhD
Senior Lecturer
University of Bath
United Kingdom
(External Examiner)

\[Signature\]

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 November 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Wong Mui Yun, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Hawa Jaafar, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

- I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________ Date: ______________

Name and Matric No: Waheeda Parvin, GS 29955
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: [Signature]
Name of Chairman of Supervisory Committee: [Name]
Jabatan Pengurusan Tanah
Fakulti Pertanian
Universiti Putra Malaysia
43400 UPM Serdang
Selangor Darul Ehsan

Signature: [Signature]
Name of Member of Supervisory Committee: [Name]
PROF. MADYA DR. HAWA ZE JA'AFAR
Pengarah Pusat Transformasi Komuniti Universiti (UCTC)
Bangunan Jambatan Hasrat dan Masyarakat (JINM)
Universiti Putra Malaysia, 43400, UPM Serdang, Selangor.
hawazej.uxc@gmail.com / hawezej@upm.edu.my
www.uctc.upm.edu.my

Signature: [Signature]
Name of Member of Supervisory Committee: [Name]
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION 1

2. LITERATURE REVIEW 4

2.1 Oil Palm (*Elaeis guineensis* Jacq.) 4

2.1.1 Origin of oil Palm 4
2.1.2 Taxonomy of oil Palm 4
2.1.3 Botany 4
2.1.4 Current status and economic importance 5
2.1.5 Diseases of oil palm 5

2.2 Basal Stem Rot (BSR) in oil Palm 6

2.2.1 BSR incidence in Malaysia 6
2.2.2 Causal pathogen 6
2.2.3 BSR symptoms and disease development 7
2.2.4 Epidemiology and spread of BSR 7
2.2.5 Economic impact 8
2.2.6 BSR disease control strategies 8

2.3 Plant Growth Promoting Rhizobacteria 10

2.3.1 Plant Growth-Promoting Bacteria for sustainable agriculture and the environment 10
2.3.2 The rhizosphere and plant–microbe interactions 11
2.3.3 PGPR as biocontrol agents 12
2.3.4 Plant growth promotion mechanism of PGPR 12
2.3.5 Bio control mechanisms of PGPR 15
2.3.6 Defense mechanism in Plants 17
2.3.7 PGPR as bio fertilizer 19
2.3.8 Antibiotics of PGPR and its broad spectrum actions 19

2.4 *Pseudomonas* spp. 22

2.4.1 Antibiotic produced by *Pseudomonas* spp. 22
2.4.2 *Pseudomonas aeruginosa* 23
2.4.3 *P. aeruginosa* as the biocontrol agent 23
2.5 *Burkholderia* spp.
2.5.1 *Burkholderia cepacia* complex as a biocontrol agent

2.6 Chromatographic Analysis
2.6.1 Thin Layer Chromatography
2.6.2 High-Performance Liquid Chromatography

3 DETECTION OF PHYTOHORMONES AND ANTIFUNGAL METABOLITES PRODUCED BY *PSEUDOMONAS AERUGINOSA* UPMP3 AND *BURKHOLDERIA CEPACIA* UPMB3 AND THEIR EFFECTS ON PLANT GROWTH AND CONTROL OF *GANODERMA BONINENSE* IN VITRO

3.1 Introduction

3.2 Materials and Methods
3.2.1 Sources of the bacterial strains
3.2.2 Reconfirmation of the bacterial strains using Biolog Reader
3.2.3 Detection and confirmation of indole 3 acetic acid (IAA) production
3.2.4 Optimization and quantification of IAA Production
3.2.5 Preparation of standard graph of IAA
3.2.6 Detection of salicylic acid (SA)
3.2.7 Detection of zeatin (Z)
3.2.8 Effect of bacterial phytohormones in plant responses
3.2.9 Detection of antibiotics
3.2.10 Detection of siderophores
3.2.11 Detection of volatile (HCN)
3.2.12 *In vitro* bioassay of antifungal compounds against *G. boninense*
3.2.13 Statistical analysis

3.3 Results and Discussion
3.3.1 Confirmation of bacterial strains using Biolog reader system
3.3.2 Screening and confirmation of IAA production by thin layer chromatography
3.3.3 Effect of L-tryptophan concentration on IAA production
3.3.4 Effect of pH on IAA production
3.3.5 Effect of culture conditions and incubation periods on IAA production
3.3.6 Screening and confirmation of SA production by TLC
3.3.7 Confirmation of zeatin production by TLC
3.3.8 Effect of bacterial phytohormones on oil palm
4 IDENTIFICATION AND QUANTIFICATION OF THE ANTIBIOTICS PHENAZINE (PHZ), AND PHENAZINE RELATED ANTIBIOTICS FROM P. AERUGINOSA UPMP3 AND DETERMINATION OF THEIR ANTIFUNGAL EFFECTS ON GANODERMA BONINENSE IN VITRO.

4.1 Introduction
4.2 Materials and Methods
 4.2.1 Bacterial strain and culture conditions
 4.2.2 Extraction and purification of phenazine
 4.2.3 Extraction and purification of PCA
 4.2.4 Extraction and purification of pyocyanin
 4.2.5 Chemicals and Reagents for HPLC analysis
 4.2.6 Clean up procedure for HPLC column
 4.2.7 Preparation of standard curve
 4.2.8 Chromatographic analysis of Phenazine, PCA and Pyocyanin
 4.2.9 In vitro antifungal activity of bacterial antibiotics Phenazine, PCA and PYO
 4.2.10 Statistical analysis
4.3 Results and Discussion
 4.3.1 Detection of antibiotics in culture conditions
 4.3.2 Purification and identification of standards
 4.3.3 Chromatography of samples
 4.3.4 Inhibitory bioassay of antibiotics
4.4 Conclusion
EVALUATION OF THE EFFICACY OF PHENAZINE IN SUPPRESSING GANODERMA BASAL STEM ROT AND DETECTION OF PATHOGENESIS RELATED GENES INDUCED DURING GANODERMA - OIL PALM INTERACTION.

5.1 Introduction

5.2 Materials and Methods

5.2.1 Experimental design

5.2.2 Inoculum preparation

5.2.3 Soil establishment of oil palm seedlings and inoculation of Ganoderma

5.2.4 Challenged inoculation of oil palm Seedlings with G. boninense PER71

5.2.5 Preparation of bacterial antibiotic phenazine and hexaconazole

5.2.6 Application of bacterial antibiotic phenazine

5.2.7 Sampling and disease assessment

5.2.8 Assessment of plant vigour with phenazine application

5.2.9 Histological study of challenged inoculated host tissues

5.2.10 Detection of pathogenesis related genes through semi quantitative reverse transcription polymerase chain reaction

5.2.11 Statistical analysis

5.3 Results and Discussion

5.3.1 Effect of bacterial antibiotic phenazine in suppressing basal stem rot disease incidence

5.3.2 RNA extraction and expression profiles of pathogenesis related genes

5.4 Conclusion

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Identification and reconfirmation of P. aeruginosa UPMP3 and B. cepacia UPMB3 from Biolog® identification system</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Thin layer chromatographic analysis of partially purified bacterial plant growth regulators viz. auxins (IAA) from Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UPMB3</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Morphogenic response of oil palm seedlings inoculated with bacterial supernatant after 4 weeks</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Degree of siderophore production by P. aeruginosa UPMP3 and B. cepacia UPMB3 after 21 days</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Quantification of antibiotics Phenazine, PCA, and Pyocyanin from P. aeruginosa UPMP3</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>Treatments of bacterial antibiotic phenazine and fungicide hexaconazole with pre-inoculated G. boninense in oil palm seedlings</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Disease severity scale according to progressive foliar and external symptoms appearance in oil palm seedlings after challenged inoculation with Ganoderma boninense PER 71</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>Areas Under the Disease Progress Curve (AUDPC, units in months after G. boninense challenge inoculation), % in disease reduction (% DR) and epidemic rate (ER, units in months after G. boninense challenge inoculation) in oil palm seedlings pre-inoculated with bacterial phenazine and challenged with G. boninense at 4 months after the challenge</td>
<td>95</td>
</tr>
<tr>
<td>5.4</td>
<td>Average yield of RNA extraction from treated and untreated roots of oil palm seedlings</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Statistics of palm oil production and planted area in Malaysia</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Germinated basidiospores of Ganoderma by light microscopy</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Interactions between biocontrol plant growth promoting rhizobacteria (PGPR), plants, pathogens and soil</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Functions of plant growth-promoting rhizobacteria</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Some important phytohormones</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Induced resistance mechanisms in plants</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Chemical structures of different antibiotic compounds produced by PGPR</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>TLC spotting and calculation of R_f value</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>High-Performance Liquid Chromatography (HPLC) System</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Germinated seeds of oil palm treated by P. aeruginosa UPMP3 and B. cepacia UPMB3</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Culture of P. aeruginosa UPMP3 and B. cepacia UPMB3 on KB medium</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Screening of IAA production in P. aeruginosa UPMP3 and B. cepacia UPMB3</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Thin layer chromatographic pattern on silica gel-G of partially purified auxin IAA of P. aeruginosa UPMP3 and B. cepacia UPMB3</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Production of IAA by P. aeruginosa UPMP3 at various concentrations of L tryptophan</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>Production of IAA by B. cepacia UPMB3 at various concentrations of L–tryptophan</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Production of IAA by P. aeruginosa UPMP3 at different pH</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Production of IAA by B. cepacia UPMB3 at different pH</td>
<td>44</td>
</tr>
</tbody>
</table>
3.9 Effect of culture conditions and incubation period on IAA production by *P. aeruginosa* UPMP3

3.10 Effect of culture conditions and incubation period on IAA production by *B. cepacia* UPMB3

3.11 Screening of SA produced by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 and detection of SA by TLC

3.12 Detection of Zeatin (Z) by TLC produced by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3

3.13 Growth performance of bacteria treated oil palm seedlings in pot experiment after 4 weeks

3.14 Influence of phytohormones in different treatments on morphogenic response of oilpalm seedlings in pot experiment

3.15 Detection of antibiotics produced by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 on TLC plate

3.16 Siderophores production by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 in different media supplemented with CAS agar

3.17 Detection of HCN production by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3

3.18 Bio assay test for the production of antibiotic substances by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 against *G. boninense* on KB medium after 7 days of incubation

3.19 Effect of antibiotic substances on mycelial growth of *Ganoderma* in different treatments after 7 days of incubation

3.20 Inhibitory effects of antibiotics produced by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 on mycelial growth of *G. boninense*

3.21 Bio assay test for the production of volatile substances by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 against *G. boninense* after 7 days of incubation

3.22 Effect of volatile substances on mycelial growth of *Ganoderma* in different treatments after 7 days of incubation
3.23 Inhibitory effects of volatile substances produced by *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 on mycelial growth of *G. boninense* after 7 days of incubation

4.1 Different colour productions in culture medium of *P. aeruginosa* UPMP3 after 4 days incubation period

4.2 Different colours in extraction phase indicates different antibiotics produced by *P. aeruginosa* UPMP3

4.3 Chromatograph of separation of phenazine (PHZ), phenazine 1 carboxylic acid (PCA) and pyocyanin (PYO) from standard mixture at 1000 μg/mL concentration with retention time at 250 nm wave length.

4.4 Chromatographs of phenazine peaks with retention time for the sample at 250 nm

4.5 Chromatographs of phenazine peaks with retention time for the standard at 250 nm

4.6 Chromatographs of PCA peaks with retention time for the sample at 250 nm

4.7 Chromatographs of PCA peaks with retention time for the standard at 250 nm

4.8 Chromatographs of pyocyanin peaks with retention time for the sample at 262 nm

4.9 Chromatographs of Pyocyanin peaks with retention time for the standard at 262 nm

4.10 Inhibitory bioassay of phenazine antibiotic at different concentrations against *G. boninense*

4.11 Inhibitory bioassay of PCA antibiotic at different concentrations against *G. boninense*

4.12 Inhibitory bioassay of pyocyanin antibiotic at different concentrations against *G. boninense*

4.13 Growth inhibition of *G. boninense* at different concentrations of antibiotics phenazine, PCA and pyocyanin after 7 days of treatment
4.14 *Ganoderma* growth at different concentrations of antibiotics phenazine, PCA and pyocyanin after 7 days of treatment with untreated control

5.1 Seven days old *Ganoderma boninense* PER 71 culture on MEA medium

5.2 Rubber wood blocks colonized by *Ganoderma boninense* PER 71 after 3 weeks of incubation in the dark

5.3 Inoculation of oil palm seedlings with *G. boninense*

5.4 Stock preparations of bacterial antibiotic and fungicide

5.5 Antibiotic treatment of oil palm seedlings challenged with *Ganoderma*

5.6 Disease severity scale ranked according to disease development in oil palm seedlings after infection with *Ganoderma boninense* PER 71 through sitting technique (Scale 0 to 4)

5.7 Disease severity scale ranked on internal symptoms developed in oil palm bole tissues after infection with *Ganoderma boninense* PER 71 (Scale 0 to 4)

5.8 Physical appearances of treated and non-treated oil palm seedlings after 6 weeks of inoculation

5.9 Histopathological observation of phenazine treated and non-treated root samples of oil palm seedlings

5.10 Disease incidence in oil palm seedlings treated with phenazine and hexaconazole with time after challenged inoculation with *G. boninense*

5.11 Disease severity expressions based on external and internal symptoms of different treatments challenge inoculation with *G. boninense* after 4 months

5.12 Correlation between external and internal disease symptoms in oil palm seedlings infected with *G. boninense* PER 71

5.13 Response of oil palm seedlings during interaction with *G. boninense*

5.14 Foliar desiccation and decay of basal stem

xviii
5.15 A comparative observations of external (root) and internal (basal stem) symptoms in oil palm seedlings after 4 months of different treatments

5.16 Histological appearances of vascular bundles of oil palm root tissues

5.17 Effect of antibiotic phenazine and fungicide hexaconazole on plant height of oil palm seedlings after *Ganoderma* inoculation

5.18 Effect of antibiotic phenazine and fungicide hexaconazole on stem diameter of oil palm seedlings after *Ganoderma* inoculation

5.19 Effect of antibiotic phenazine and fungicide hexaconazole on plant FW, root FW and root DW of oil palm seedlings after *Ganoderma* inoculation

5.20 Effect of antibiotic phenazine and fungicide hexaconazole on chlorophyll content of oil palm seedlings after *Ganoderma* inoculation

5.21 28S and 18S ribosomal RNA bands from oil palm root tissues of different treatments (T1 - T5) with different time intervals (0, 2, 4, 6, 8 w)

5.22 Semi-quantitative reverse-transcription polymerase chain reaction analysis of chitinase and β-1,3 glucanase expression in different treatments at different week intervals (0, 2, 4, 6, 8) with *Ganoderma* in oil palm root tissues
LIST OF ABBREVIATIONS

Ab	Absorbance
ACC	1-aminocyclopropane-1-carboxylic acid
AHL	N-Acyl homoserine lactones
AMF	Arbuscular mycorrhizal fungi
ANOVA	Analysis of Variance
AUDPC	Area Under Disease Progress Curve
bp	Base pair(s)
BSR	Basal Stem Rot
CA	Casamino Acid
CAS	Chrome azurol sulphonate
cDNA	Complementary Deoxyribonucleic acid
CFU	Colony forming units
CRD	Completely Randomized Design
C_t	Cycle number
DAPG	Diacetylphloroglucinol
DI	Disease incidence
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
dNTP	deoxyribose nucleotide triphosphate
DR	Disease reduction
DS	Disease severity
DW	Dry weight
ER	Epidemic rate
FW	Fresh weight
HCl	Hydrochloric acid
HCN	Hydrogen cyanide
HDTMA	Hexadecyltrimethyl ammonium bromide
HPLC	High performance liquid chromatography
IAA	Indole-3-acetic acid
ISR	Induced systemic resistance
Kb	Kilo- base pair
KB	King’s broth
LSD	Least significant difference
L-tryp	L-tryptophan
MEA	Malt extract agar
MPOB	Malaysian Palm Oil Board
mRNA	Messenger RNA
NA	Nutrient agar
NB	Nutrient Broth
NPR1	Nonexpressor of PR Genes1
OD	Optical density
PCA	Phenazine-1-carboxylic acid
PCN	Phenazine-1-carboxamide

xx
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>Patato Dextrose Agar</td>
</tr>
<tr>
<td>PGPR</td>
<td>Plant Growth Promoting Rhizobacteria</td>
</tr>
<tr>
<td>PHZ</td>
<td>Phenazine</td>
</tr>
<tr>
<td>PIRG</td>
<td>Percentage Inhibition of Radial Growth</td>
</tr>
<tr>
<td>PPM</td>
<td>Pigment production medium</td>
</tr>
<tr>
<td>PR</td>
<td>Pathogenesis –related</td>
</tr>
<tr>
<td>PYO</td>
<td>Pyocyanin</td>
</tr>
<tr>
<td>Plt</td>
<td>Pyoluteorin</td>
</tr>
<tr>
<td>PRN</td>
<td>Pyrrolnitrin</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>RT PCR</td>
<td>Reverse transcription Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RWB</td>
<td>Rubber Wood Block</td>
</tr>
<tr>
<td>SA</td>
<td>Salicylic acid</td>
</tr>
<tr>
<td>SAR</td>
<td>Systemic acquired resistance</td>
</tr>
<tr>
<td>sp.</td>
<td>Species (singular)</td>
</tr>
<tr>
<td>Spp.</td>
<td>Species (plural)</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris base, acetic acid and EDTA buffer</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>wpi</td>
<td>Week post inoculation</td>
</tr>
<tr>
<td>Z</td>
<td>Zeatin</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Oil palm (*Elaeis guineensis* Jacq.) is the most crucial species in the genus *Elaeis* which belongs to the family Arecaceae (former name Palmae). It is one of the most important crops in the world and a major source of oils and fats. Although oil palm originated from West Africa and South America, it becomes popular in South Asia especially Malaysia and Indonesia. Currently, Malaysia is the world 2nd largest producer and exporter of palm oil (Bivi *et al.*, 2010; Halimah *et al.*, 2013). Palm oil has recently become the world’s leading edible vegetable oil, with Europe and China at present the major markets (Mayes *et al.*, 2008). Based on the prediction of the trends in the use of edible vegetable oils with an increasing world population, Corley (2009) postulated that the demand for edible vegetable oil will rise 250 million tons per year. High demand for the edible vegetables oil has pressured on the oil palm industry in Malaysia to improve the status of oil palm production in order to fulfil this requirement (Corley, 2009). According to Gustone (2011), the palm oil production in Malaysia increased from only 1.3 million tons in 1975, through 4.1 million tons in 1985, 7.8 million tons in 1995, 17.8 million tons in 2009/10 up to 18.8 million tons in 2012/13 (Source: OilWorld2013). Besides, the favourable climate, comparatively low labour costs, and the liberal policies of Government attract the oil palm developers to expand this crop in South East Asia (Colchester *et al.*, 2006).

The greatest threat to sustainable oil palm production in South East Asia is from *Ganoderma* diseases, caused by the white rot fungus *Ganoderma boninense*. Basal stem rot (BSR) infection of oil palm by *Ganoderma* in Malaysia was first recorded in 1931. It can kill more than 80% of stands by the time they are halfway through normal economic life that constitutes a major threat to sustainable oil palm production in South East Asia including Malaysia (Mazliham *et al.*, 2007). Since *Ganoderma* has caused severe losses of oil palm production, controlling it is an important factor. Although many control measures have been developed, until now there is no effective control measure for this disease. The available technique of disease control is fungicidal treatment, though often applied ineffectively. *In vitro* studies by Idris *et al.* (2002) claimed that numerous fungicides were strongly inhibitory towards growth of *Ganoderma*. This phenomenon is probably due to the fact that *Ganoderma* has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia that are more resistant to fungicides.

Therefore, alternative control measures are focused on the use of biocontrol agents, including Plant Growth Promoting Rhizobacteria (PGPR). The use of PGPR as biocontrol agents of soil borne plant pathogens, as an alternative or complementary strategy to physical and chemical disease management, has been investigated for over 70 years (Weller, 2007). PGPR are indigenous to soil and the plant rhizosphere plays a major role in the biocontrol of plant pathogens. They can suppress a broad spectrum of bacterial, fungal, viral and nematode diseases. The use of PGPR has become a common practice in many regions of the world. Recent progress in our understanding of their diversity, colonizing ability, and mechanism of action, formulation and application should facilitate their development as reliable biocontrol agents against plant pathogens.
There are several PGPR inoculants currently commercialized that seem to promote growth through suppression of plant disease (bioprotectants), improved nutrients acquisition (biofertilizers), or phytohormone production (biostimulants). Bacteria in the genera *Bacillus*, *Streptomyces*, *Pseudomonas*, *Burkholderia*, and *Agrobacterium* are the biological control agents predominantly studied and increasingly marketed. They suppress plant disease through at least one mechanism, production of antibiotics or siderophores and induction of systemic resistance. Endophytic PGPR such as species of *Serratia*, *Pseudomonas*, *Burkholderia* and *Bacillus* have been shown to be used as biological control agent against several fungal and bacterial disease agents (Soylu et al., 2005). PGPR provide different mechanisms for suppressing plant diseases. They include competition for nutrients and space, antibiosis by producing antibiotics and production of siderophores which limits the availability of iron necessary for the growth of pathogens. Other important mechanisms include production of lytic enzymes such as chitLQDVHV DQG 3 glucanases which degrade chitin and glucan present in the cell wall of fungi. Certain PGPR trigger a phenomenon known as induced systemic resistance (ISR) phenotypically similar to systemic acquired resistance (SAR). Some PGPR are particularly suitable to be used as biocontrol agents because they can produce large amounts of secondary metabolites to protect plants from phytopathogens and stimulate plant growth.

The production of phytohormones by PGPR is now considered to be one of the most important mechanisms by which many rhizobacteria promote plant growth. The phytohormone producing ability is widely distributed among bacteria associated with soil and plants. Studies have demonstrated that the PGPR can stimulate plant growth through the production of auxins, gibberellins and cytokinins or by regulating the ethylene in the plant (Spaepen et al., 2008). Siderophores are low molecular weight compounds that are produced by bacteria and fungi as iron (Fe) chelating agents. Various studies have isolated siderophores producing bacteria belonging to the *Bradyrhizobium*, *Pseudomonas*, *Rhizobium*, *Serratia* and *Streptomyces* (Kuffner et al., 2008) genera from the rhizosphere. Volatiles play an important role in suppression of *Ganoderma* and inhibit sclerotial activity, limiting ascospore production, and reducing disease levels. *Pseudomonas* spp. produces secondary metabolites, also capable of producing organic volatiles such as HCN, benzothiazole, cyclohexanol, dimethyl trisulfide, and nonanal completely inhibit mycelial growth or sclerotia formation, which suggest their potential role in biological control. The production of antibiotics by PGPR is considered one of the most powerful biocontrol mechanisms for combating phytopathogens. It constitutes a wide and heterogeneous group of low molecular weight chemical organic compounds. Under laboratory conditions many different types of antibiotics produced by PGPR have shown to be effective against phytopathogenic agents (Raaijmakers et al., 2002).

Plants react to pathogen attack by the activation of a variety of defense mechanism that culminate in a number of physical and biochemical changes in the host plant. Infection of plants by potentially pathogenic microorganism has been shown to result in the accumulation of a novel class of proteins termed ‘pathogenesis related protein’ or PR proteins. Several classes of PR proteins have been shown to correspond to the KGUROWLF HQ\PHV FKLWQDVH 3DXFDQDVH %RWK FKLWQDVH DQG glucanase are known to be introduced during fungal infection (Sekeli et al., 2003).
Chitinase plays an important role in protecting plants against potentially pathogenic organisms. β-1, 3-glucanase or chitinase activities are able to inhibit fungi by attacking the glucans and chitin that make up fungal cell walls. The use of PGPR is preferable to other biological control agents as they are internal colonizers.

The roles of PGPR in protecting plants against pathogens have been mentioned by several authors. Some of rhizobacteria from the genera *Pseudomonas* and *Burkholderia* might have the potential to control *G. boninense*, as they were mostly found in healthy roots from symptomless palms. Zaiton et al. (2006) tested 863 bacterial isolates. Among them only 256 isolates gave PIRG > 50%. Therefore, 60 isolates from this category were selected for further screening test based on culture filtrate test. Preliminary screening in vitro showed the genera *Pseudomonas* and *Burkholderia* might have the potential to control *G. boninense*, and also produce secondary metabolites inhibitory to its growth. The results of the in vitro screening supported this speculation as the bacteria with the highest PIRG in the dual culture and culture filtrate tests were mostly *Burkholderia* and *Pseudomonas*. The isolates of *Pseudomonas aeruginosa* (P3) and *Burkholderia cepacia* (B3) had very high PIRG in the dual culture (75.95% and 70.80%, respectively) and culture filtrate tests (85.00% and 88.43%, respectively).

Thus, *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 were tested against *G. boninense* in oil palm seedlings at glasshouse test and found that these two bacteria increased plant growth and were effective in suppressing BSR (disease reduction 76.27% and 42.20%, respectively) (Zaiton et al., 2008).

On the basis of these reports this two bacteria were selected for this study. However, the mechanism in which *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 associate themselves with the pathogen *Ganoderma* and the host plant is not known yet. Besides, the ability of these strains to produce antifungal metabolites including antibiotics, siderophores, and volatiles and their efficiency in suppression of *Ganoderma* causing BSR incidence in oil palm has not been reported. Therefore, the present study was undertaken to investigate the antimicrobial activities of *P. aeruginosa* UPMP3 and *B. cepacia* UPMB3 against *Ganoderma* causing BSR disease. The effect of PGPR in suppressing *Ganoderma in vitro* was investigated considering several approaches comprising detection of phytohormones, antibiotics, siderophores and volatile substances, and in glasshouse trial where vegetative growth, disease incidence and gene expression were assessed.

The specific objectives of this study were:

1. To determine the mechanisms of plant growth promotion and pathogen suppression produced by *Pseudomonas aeruginosa* UPMP3 and *Burkholderia cepacia* UPMB3.

2. To identify and quantify the antibiotics produced by selected PGPR and to determine their effects on *Ganoderma boninense* mycelial growth in vitro.

3. To evaluate the effects of selected antibiotic application on the development of BSR disease and on the expression of defense related genes during *Ganoderma*-oil palm interaction.
REFERENCES

Campbell, C.L. and Madden, L.V. (1990). Introduction to Plant Disease Epidemiology. John Wiley and Sons, USA.

quorum sensing network of *Pseudomonas aeruginosa*. *Molecular Microbiology* 61: 1308–1321.

control of *Sclerotinia sclerotiorum*. *Soil Biology and Biochemistry* 36 (in press).

antibiotic inhibits the growth of fungal pathogens but is impaired in
symbiotic performance. Applied and Environmental Microbiology 73: 327–
330.

Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M. and Sessitsch, A.
(2008). Rhizosphere bacteria affect growth and metal uptake of heavy
metal accumulating willows. Plant Soil 304: 35–44.

Lacava, P., Silva, M.E., Araújo, W., Colnaghi, A.V., Carrilho, E., Tsai, S. and
Methylobacterium spp. Associated with Xylella fastidiosa subsp. pauca.

Chan. In Advances in Oil Palm Research, Vol 1 (pp.19-38). Bangi:
Malaysian Palm Oil Board.

Morphological and growth characteristics and somatic incompatibility of
Ganoderma from infected oil palm and coconut stumps. Malaysian Applied

antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production,

Lee, J.Y., Moon, S.S. and Hwang, B.K. (2003). Isolation and Antifungal and
Antioomycete Activities of Aerugine Produced by Pseudomonas
fluorescens Strain MM-B16. Applied and Environmental Microbiology 69:
2023-2031.

Defense Genes Induced by Pathogens and Abiotic Stresses in Panax ginseng

Lee, S., Encarnacion, M.F., Zentella, M.C., Flores, L.G., Fscamilla, J.E. and
Kennedy, C. (2004). Indole-3-actic acid biosynthesis deficient in
Glunacetobacter diazotrophicus strains with mutation in cytochrome C

deaminase-containing Azospirillum brasilense Cd1843 on the rooting of

Liang, H., Li, L., Dong, Z., Surette, M.G. and Duan, K. (2008). The yebc family
protein pa0964 negatively regulates the Pseudomonas aeruginosa quinolone
signal system and pyocyanin production. Journal of Bacteriology 190:
6217-6227.

expression profiles in response to fungal infections. *Physiological and Molecular Plant Pathology* 76: 96-103.

