UNIVERSITI PUTRA MALAYSIA

UTILIZATION OF SPENT MUSHROOM WASTE AND PEAT AS SOILLESS GROWING MEDIUM FOR Brassica oleracea var. Alboglabra

HATARI SENDI

FP 2014 47
UTILIZATION OF SPENT MUSHROOM WASTE AND PEAT AS SOILLESS GROWING MEDIUM FOR Brassica oleracea var. Alboglabra

By

HATARI SENDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Agricultural Science

December 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright@ Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Agricultural Science

UTILIZATION OF SPENT MUSHROOM WASTE AND PEAT AS SOILLESS GROWING MEDIUM FOR Brassica oleracea var. Alboglabra

By

HATARI SENDI

December 2014

Chairman: Mahmud Tengku Muda Mohamed, PhD

Faculty: Agriculture

Peat moss (PM) is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW) for kailan (Brassica oleracea var. Alboglabra) production replacing PM in growth media. The treatments evaluated were 100% SMW, 100% PM, and mixtures of SMW and PM in different ratios like 1:1, 1:2 and 2:1 (v/v) with or without NPK amendment. The experiment was arranged in a completely randomized design (CRD) with five replications per treatment. Chemical properties like pH and salinity level (EC) of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100%) and SMW and PM mixture in 1:2 ratio with NPK amendment performed equally in terms of kailan growth. This study confirms the feasibility of replacing PM by SMW up to maximum 50% in the growth media, and suggests NPK supplementation from inorganic sources to ensure higher productivity of kailan.

Further testing was conducted to study the effects of various rates of SMW with virgin peat (VP) and non-virgin peat (NVP) at different location on the growth and yield of kailan. The peat sampling for VP and NVP was collected at Malaysian Agricultural Research and Development Institute (MARDI), Pontian Johor. The treatments evaluated were 100% SMW, 100% VP, 100% NVP and mixtures of SMW and VP or NVP in different ratios like 1:1, 1:2 and 2:1 (v/v) with NPK amendment. The experiment was arranged in a completely randomized design (CRD) with five replications per treatment. Result was obtained from peat soil in Peninsular Malaysia (Johor) indicated that no significant differences occurred between treatments that contained the portion of SMW with VP and SMW with NVP when amended with NPK. Plant height, leaf number, leaf fresh weights, leaf dry weight, total leaf area and chlorophyll content increased significantly when kailan were planted with amended NPK especially on NVP. The media with 100%
NVP also showed a better plant growth because of the existing of fertilizer in the soil which is came from previous agriculture activities.

For experiment three, the peat sampling was collected at Malaysian Agricultural Research and Development Institute (MARDI), Saratok Sarawak. Result obtained from observation in Sarawak also showed the media with amended NPK, fertilized soilless, there is not much differences among VP and NVP. This is due to the pH reading for all treatments gave almost similar result in between pH 3.63 to pH 5.04.

Plants grown in soilless media that contained portions of SMW and NVP gave better result compared to plants grown in media that contained SMW and VP. Further studies should be conducted under various conditions with plant species or other horticultural crops. Since imported PM is expensive and not economical to use as part of the soilless media, more studies need to be done to determine the modifications on soil fertility, and fertilizer requirements should be taken into account to enable SMW and peat compound to become a soilless media.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains Pertanian

PENGUNGAAN SISA BUANGAN CENDAWAN DAN GAMBUT SEBAGAI MEDIA PERTUMBUHAN KURANG TANAH UNTUK *Brassica oleracea* var. Alboglabra

Oleh

HATARI SENDI

Disember 2014

Pengerusi: Mahmud Tengku Muda Mohamed, PhD

Fakulti: Pertanian

Peat moss (PM) adalah media tanaman yang paling meluas digunakan untuk kultur pot. Disebabkan ketersediaan pengurangan dan kenaikan harga PM, para penyelidik melihat gambut sebagai alternatif media pertumbuhan bagi tanaman berpasu. Kajian ini dilaksanakan untuk menilai kemungkinan menggunakan bahan buangan cendawan (SMW) untuk pengeluaran kailan (*Brassica oleracea* var. Alboglabra) menggantikan PM dalam media tanaman. Rawatan yang telah dibuat adalah 100% SMW, 100% PM pada nisbah berbeza seperti 1:1, 1:2, 2:1 dengan pengubahan NPK. Rekabentuk kajian yang digunakan ialah rekabentuk penuh rawak lengkap (CRD) dengan lima replikasi setiap rawatan. Sifat kimia seperti pH dan tahap kemasinan bahan buangan cendawan adalah di dalam lingkungan yang boleh diterima untuk pengeluaran tanaman tetapi kandungan nutrien khasnya kandungan nitrogen adalah tidak mencukupi untuk dijadikan zat makanan supaya tanaman ini tumbuh dalam keadaan biasa. Hanya PM (100%) dan campuran SMW dan PM pada nisbah 1:2 dengan NPK menunjukkan pertumbuhan sebenar kailan. Kajian ini mengesahkan SMW dapat menggantikan PM sehingga 50% dalam media tanaman dan mencadangkan gantian NPK dari sumber bukan organik untuk memastikan produktiviti kailan meningkat.

Kajian selanjutnya dijalankan untuk menilai keberkesanan kepelbagaian kadar SMW dengan tanah gambut dara (VP) dan bukan tanah gambut dara (NVP) di kawasan yang berbeza terhadap pertumbuhan dan hasilan kailan. Persampelan gambut untuk VP dan NVP telah diambil di Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI), Pontian Johor. Rawatan yang telah dinilai adalah 100% SMW, 100% VP dan 100% NVP pada nisbah berbeza seperti 1:1, 1:2, 2:1 dengan pengubahan NPK. Rekabentuk kajian yang digunakan ialah rekabentuk penuh rawak lengkap (CRD) dengan lima replikasi setiap kawatan. Keputusan yang diperolehi di Semenanjung Malaysia (Johor) menunjukkan perbezaan yang tidak ketara pada rawatan yang mengandungi SMW dengan VP dan SMW dengan NVP apabila adanya pengubahan NPK. Ketinggian tanaman, jumlah bilangan daun, berat basah pucuk, berat kering pucuk, jumlah keluasan daun dan
kandungan klorofil meningkat dengan ketara apabila di tanam dengan campuran baja NPK terutamanya pada media NVP. Media yang mengandungi 100% NVP juga menunjukkan pertumbuhan tanaman yang lebih baik berbanding dengan rawatan kawalan disebabkan oleh kewujudan baja di dalam kandungan tanah yang terhasil daripada aktiviti pertanian sebelum ini.

Untuk kajian ketiga, persampelan gambut untuk VP dan NVP telah diambil di Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI), Saratok Sarawak. Keputusan yang diperolehi daripada pemerhatian di Sarawak menunjukkan media yang dibaja NPK, ianya tidak menunjukkan perbezaan yang ketara di antara VP dan NVP. Ini berikutan bacaan pH tanah untuk kesemua rawatan memberikan keputusan yang hampir sama di antara pH 3.63 hingga pH 5.04.

Pertumbuhan pokok dalam media kurang tanah yang mengandungi SMW dan NVP memberikan keputusan yang baik berbanding dengan tanaman pada media yang mengandungi SMW dan VP. Kajian pada masa akan datang haruslah dibuat dengan mengambil kira pelbagai keadaan dengan spesis tanaman atau tanaman hortikultur yang lain. Memandangkan PM import adalah mahal dan tidak ekonomi untuk digunakan sebagai sebahagian daripada media kurang tanah, kajian lanjut haruslah dibuat untuk menentukan pengubahaan pada kesuburan tanah, dan keperluan pembajaan perlulah di ambil kira untuk membolehkan SMW dan kandungan gambut boleh menjadi media kurang tanah.
ACKNOWLEDGEMENTS

In the name of Allah the Beneficial and the Compassionate

First of all, I thank Allah for giving me the strength and ability to complete this study.

I also wish to express my sincere thank and profound appreciation to the chairman of my supervisory committee, Professor Dr. Mahmud Tengku Muda Mohamed, Department of Crop Science, Faculty of Agriculture for his supervision, advice, encouragement and friendship. Special thanks to Associate Professor Dr. Halimi Mohd Saud as a member of my supervisory for his ideas and suggestion during the course of this project. Furthermore, I would also like to acknowledge with much appreciation to Dr. Anwar Perves for the useful comments on my thesis writing.

My special appreciation and gratitude to my beloved parents and my wife for their continuous support and encouragement to achieve higher level of education carry out this research.

Last but not least, most profound thanks to MARDI for giving me the opportunity to further my study at UPM. ALHAMDULILLAH…
I certify that a Thesis Examination Committee has met on 19 December 2014 to conduct the final examination of Hatari bin Sendi on his thesis entitled "Utilization of Spent Mushroom Waste and Peat as Soilless Growing Medium for *Brassica oleracea* var. Alboglabra" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Agricultural Science.

Members of the Thesis Examination Committee were as follows:

Mohd Rafii bin Yusop, PhD
Professor
Institute of Tropical Agriculture
Universiti Putra Malaysia
(Chairman)

Siti Hajar binti Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Datin Rosenani binti Abu Bakar, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohd Yusoff Abdullah, PhD
Senior Lecturer
Malaysian Agricultural Research and Development Institute (MARDI)
Malaysia
(External Examiner)

\[signature\]

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 May 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Agricultural Science. The members of the Supervisory Committee were as follows:

Mahmud Tengku Muda Mohamed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Halimi Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: HATARI SENDI (GS22556)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________________
Name of Chairman of Supervisory Committee: Mahmud Tengku Muda Mohamed, PhD

Signature: ___________________________________
Name of Member of Supervisory Committee: Halimi Mohd Saud, PhD
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 3
 2.1 Mushroom substrates 3
 2.2 Soilless culture 3
 2.3 Spent mushroom waste 3
 2.4 Kailan (*Brassica oleracea* var. Alboglabra) 4
 2.5 Peat in Malaysia 6
 2.6 Characteristics of peat soil in Malaysia 6

3 EFFECTS OF DIFFERENT RATIOS OF SPENT MUSHROOM WASTE AND PEAT MOSS AS SOILLESS MEDIA ON GROWTH AND YIELD OF KAILAN (*Brassica oleracea* var. Alboglabra) 11
 3.1 Introduction 11
 3.2 Materials and methods 13
 3.2.1 Experimental site 13
 3.2.2 Seedling preparation 13
 3.2.3 Experimental treatments and design 13
 3.2.4 Media preparation and potting 14
 3.2.5 Data collection 15
 3.2.6 Statistical analysis 15
 3.3 Results 16
 3.3.1 Acidity and salinity of media 16
 3.3.2 Nutrient status of media 17
 3.3.3 Growth and yield responses 18
 3.3.3.1 Plant height of kailan 18
 3.3.3.2 Leaf number of kailan 19
 3.3.3.3 Shoot fresh weight of kailan 20
 3.3.3.4 Shoot dry weight of kailan 21
 3.3.3.5 Root length of kailan 22
 3.3.3.6 Leaf area of kailan 23
 3.3.3.7 SPAD value of kailan 24
4 EFFECTS OF DIFFERENT RATIOS OF SPENT MUSHROOM WASTE MIXED WITH VIRGIN AND NON-VIRGIN PEAT AS SOILLESS MEDIA ON GROWTH AND YIELD OF KAILAN (Brassica oleracea var. Alboglabra)

4.1 Introduction

4.2 Materials and methods
4.2.1 Experimental site
4.2.2 Seedling preparation
4.2.3 Experimental treatments and design
4.2.4 Media preparation and potting
4.2.5 Data collection
4.2.6 Statistical analysis

4.3 Results
4.3.1 Acidity and salinity of media
4.3.2 Nutrient status of media
4.3.3 Growth and yield responses
4.3.3.1 Plant height of kailan
4.3.3.2 Leaf number of kailan
4.3.3.3 Shoot fresh weight of kailan
4.3.3.4 Shoot dry weight of kailan
4.3.3.5 Root length of kailan
4.3.3.6 Leaf area of kailan
4.3.3.7 SPAD value of kailan

4.4 Discussion

4.5 Conclusion

5 EFFECTS OF DIFFERENT RATIOS OF SPENT MUSHROOM WASTE MIXED WITH SARAWAK’S VIRGIN AND NON-VIRGIN PEAT AS SOILLESS MEDIA ON GROWTH AND YIELD OF KAILAN (Brassica oleracea var. alboglabra)

5.1 Introduction

5.2 Materials and methods
5.2.1 Experimental site
5.2.2 Seedling preparation
5.2.3 Experimental treatments and design
5.2.4 Media preparation and potting
5.2.5 Data collection
5.2.6 Statistical analysis

5.3 Results
5.3.1 Acidity and salinity of media
5.3.2 Nutrient status of media
5.3.3 Growth and yield responses
5.3.3.1 Plant height of kailan
5.3.3.2 Leaf number of kailan
5.3.3.3 Shoot fresh weight of kailan
5.3.3.4 Shoot dry weight of kailan 59
5.3.3.5 Root length of kailan 60
5.3.3.6 Leaf area of kailan 61
5.3.3.7 SPAD value of kailan 62

5.4 Discussion 63
5.5 Conclusion 65

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 66

REFERENCES 69
APPENDICES 80
BIODATA OF STUDENT 89
PUBLICATIONS 90
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Nutrient composition of kailan (Per 100 gram edible portion)</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Division of peat area distinguished by countries</td>
<td>8</td>
</tr>
<tr>
<td>2.3 The area (ha) of peatlands in Peninsular Malaysia by state</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Physical properties of peat soil in Peninsular Malaysia</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Geotechnical properties of Sarawak peat</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Soilless media at different ratios of spent mushroom waste (SMW) and peat moss (PM)</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Chemical composition of study media</td>
<td>16</td>
</tr>
<tr>
<td>4.1 The soilless media at different ratios of spent mushroom waste (SMW) with virgin peat (VP) and non-virgin peat (NVP)</td>
<td>32</td>
</tr>
<tr>
<td>4.2 Chemical composition of study media</td>
<td>35</td>
</tr>
<tr>
<td>5.1 Estimates of the peatland area in Sarawak</td>
<td>49</td>
</tr>
<tr>
<td>5.2 The soilless media at different ratios of spent mushroom waste (SMW) with virgin peat (VP) and non-virgin peat (NVP) at Sarawak, West Malaysia</td>
<td>51</td>
</tr>
<tr>
<td>5.3 Chemical composition of study media</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure Page
3.1 Media of different ratios of spent mushroom waste (SMW) and peat moss (PM). 14
3.2 Effect of different ratios of spent mushroom waste (SMW) and peat moss (PM) on plant height of Brassica alboglabra at 5 weeks after transplanting (WAT). Means with the same letter were not significantly different (p<0.05) according to least significant different (LSD) test. T₁=100% SMW; T₂=100% PM; T₃=1(SMW):1(PM); T₄=1(SMW):2(PM); T₅=2(SMW):1(PM); T₆=1(SMW):1(PM) + NPK; T₇=1(SMW):2(PM) + NPK and T₈=2(SMW):1(PM) + NPK. 18
3.3 Effect of different ratios of spent mushroom waste (SMW) and peat moss (PM) on number of leaves of Brassica alboglabra at 5 weeks after transplanting (WAT). Means with the same letter were not significantly different (p<0.05) according to least significant different (LSD) test. T₁=100% SMW; T₂=100% PM; T₃=1(SMW):1(PM); T₄=1(SMW):2(PM); T₅=2(SMW):1(PM); T₆=1(SMW):1(PM) + NPK; T₇=1(SMW):2(PM) + NPK and T₈=2(SMW):1(PM) + NPK. 19
3.4 Effect of different ratios of spent mushroom waste (SMW) and peat moss (PM) on shoot fresh weight of Brassica alboglabra at 5 weeks after transplanting (WAT). Means with the same letter were not significantly different (p<0.05) according to least significant different (LSD) test. T₁=100% SMW; T₂=100% PM; T₃=1(SMW):1(PM); T₄=1(SMW):2(PM); T₅=2(SMW):1(PM); T₆=1(SMW):1(PM) + NPK; T₇=1(SMW):2(PM) + NPK and T₈=2(SMW):1(PM) + NPK. 20
3.5 Effect of different ratios of spent mushroom waste (SMW) and peat moss (PM) on shoot dry weight of Brassica alboglabra at 5 weeks after transplanting (WAT). Means with the same letter were not significantly different (p<0.05) according to least significant different (LSD) test. T₁=100% SMW; T₂=100% PM; T₃=1(SMW):1(PM); T₄=1(SMW):2(PM); T₅=2(SMW):1(PM); T₆=1(SMW):1(PM) + NPK; T₇=1(SMW):2(PM) + NPK and T₈=2(SMW):1(PM) + NPK. 21
3.6 Effect of different ratios of spent mushroom waste (SMW) and peat moss (PM) on root length of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter were not significantly different (p<0.05) according to least significant different (LSD) test. T₃=100% SMW; T₂=100% PM; T₆=1(SMW):1(PM); T₄=1(SMW):2(PM); T₅=2(SMW):1(PM); T₆=1(SMW):1(PM) + NPK; T₇=1(SMW):2(PM) + NPK and T₈=2(SMW):1(PM) + NPK.

3.7 Effect of different ratios of spent mushroom waste (SMW) and peat moss (PM) on total leaf area of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter were not significantly different (p<0.05) according to least significant different (LSD) test. T₃=100% SMW; T₂=100% PM; T₆=1(SMW):1(PM); T₄=1(SMW):2(PM); T₅=2(SMW):1(PM); T₆=1(SMW):1(PM) + NPK; T₇=1(SMW):2(PM) + NPK and T₈=2(SMW):1(PM) + NPK.

3.8 Effect of different ratios of spent mushroom waste (SMW) and peat moss (PM) on chlorophyll contents of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter were not significantly different (p<0.05) according to least significant different (LSD) test. T₃=100% SMW; T₂=100% PM; T₆=1(SMW):1(PM); T₄=1(SMW):2(PM); T₅=2(SMW):1(PM); T₆=1(SMW):1(PM) + NPK; T₇=1(SMW):2(PM) + NPK and T₈=2(SMW):1(PM) + NPK.

4.1 Media of different ratios of spent mushroom waste (SMW) and virgin peat (VP).

4.2 Media of different ratios of spent mushroom waste (SMW) and non-virgin peat (NVP).

4.3 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on plant height of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. T₃=100% SMW; T₂=100% VP; T₅=100% NVP; T₄=1(SMW):1(VP) + NPK; T₇=1(SMW):1(NVP) + NPK; T₆=1(SMW):2(VP) + NPK; T₇=1(SMW):2(NVP) + NPK; T₈=2(SMW):1(VP) + NPK; T₉=2(SMW):1(NVP) + NPK.
4.4 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on number of leaves of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$ (SMW):1 (VP) + NPK; $T_5=1$ (SMW):1 (NVP) + NPK; $T_6=1$ (SMW):2 (VP) + NPK; $T_7=1$ (SMW):2 (NVP) + NPK; $T_8=2$ (SMW):1 (VP) + NPK; $T_9=2$ (SMW):1 (NVP) + NPK.

4.5 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on shoot fresh weight of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$ (SMW):1 (VP) + NPK; $T_5=1$ (SMW):1 (NVP) + NPK; $T_6=1$ (SMW):2 (VP) + NPK; $T_7=1$ (SMW):2 (NVP) + NPK; $T_8=2$ (SMW):1 (VP) + NPK; $T_9=2$ (SMW):1 (NVP) + NPK.

4.6 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on shoot dry weight of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$ (SMW):1 (VP) + NPK; $T_5=1$ (SMW):1 (NVP) + NPK; $T_6=1$ (SMW):2 (VP) + NPK; $T_7=1$ (SMW):2 (NVP) + NPK; $T_8=2$ (SMW):1 (VP) + NPK; $T_9=2$ (SMW):1 (NVP) + NPK.

4.7 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on root length of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$ (SMW):1 (VP) + NPK; $T_5=1$ (SMW):1 (NVP) + NPK; $T_6=1$ (SMW):2 (VP) + NPK; $T_7=1$ (SMW):2 (NVP) + NPK; $T_8=2$ (SMW):1 (VP) + NPK; $T_9=2$ (SMW):1 (NVP) + NPK.

4.8 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on total leaf area of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$ (SMW):1 (VP) + NPK; $T_5=1$ (SMW):1 (NVP) + NPK; $T_6=1$ (SMW):2 (VP) + NPK; $T_7=1$ (SMW):2 (NVP) + NPK; $T_8=2$ (SMW):1 (VP) + NPK; $T_9=2$ (SMW):1 (NVP) + NPK.
4.9 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on chlorophyll contents of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. T_1=100% SMW; T_2=100% VP; T_3=100% NVP; T_4=1(SMW):1(VP) + NPK; T_5=1(SMW):1(NVP) + NPK; T_6=1(SMW):2(VP) + NPK; T_7=1(SMW):2(NVP) + NPK; T_8=2(SMW):1(VP) + NPK; T_9=2(SMW):1(NVP) + NPK.

5.1 Media of different ratios of spent mushroom waste (SMW) and virgin peat (VP).

5.2 Media of different ratios of spent mushroom waste (SMW) and non-virgin peat (NVP).

5.3 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on plant height of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. T_1=100% SMW; T_2=100% VP; T_3=100% NVP; T_4=1(SMW):1(VP) + NPK; T_5=1(SMW):1(NVP) + NPK; T_6=1(SMW):2(VP) + NPK; T_7=1(SMW):2(NVP) + NPK; T_8=2(SMW):1(VP) + NPK; T_9=2(SMW):1(NVP) + NPK.

5.4 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on number of leaves of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. T_1=100% SMW; T_2=100% VP; T_3=100% NVP; T_4=1(SMW):1(VP) + NPK; T_5=1(SMW):1(NVP) + NPK; T_6=1(SMW):2(VP) + NPK; T_7=1(SMW):2(NVP) + NPK; T_8=2(SMW):1(VP) + NPK; T_9=2(SMW):1(NVP) + NPK.

5.5 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on shoot fresh weight of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. T_1=100% SMW; T_2=100% VP; T_3=100% NVP; T_4=1(SMW):1(VP) + NPK; T_5=1(SMW):1(NVP) + NPK; T_6=1(SMW):2(VP) + NPK; T_7=1(SMW):2(NVP) + NPK; T_8=2(SMW):1(VP) + NPK; T_9=2(SMW):1(NVP) + NPK.
5.6 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on shoot dry weight of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$(SMW):1(VP) + NPK; $T_5=1$(SMW):1(NVP) + NPK; $T_6=1$(SMW):2(VP) + NPK; $T_7=1$(SMW):2(NVP) + NPK; $T_8=2$(SMW):1(VP) + NPK; $T_9=2$(SMW):1(NVP) + NPK.

5.7 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on root length of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$(SMW):1(VP) + NPK; $T_5=1$(SMW):1(NVP) + NPK; $T_6=1$(SMW):2(VP) + NPK; $T_7=1$(SMW):2(NVP) + NPK; $T_8=2$(SMW):1(VP) + NPK; $T_9=2$(SMW):1(NVP) + NPK.

5.8 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on total leaf area of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$(SMW):1(VP) + NPK; $T_5=1$(SMW):1(NVP) + NPK; $T_6=1$(SMW):2(VP) + NPK; $T_7=1$(SMW):2(NVP) + NPK; $T_8=2$(SMW):1(VP) + NPK; $T_9=2$(SMW):1(NVP) + NPK.

5.9 Effect of different ratios of spent mushroom waste (SMW) mixed with virgin peat (VP) or non-virgin peat (NVP) with NPK amended on chlorophyll contents of *Brassica alboglabra* at 5 weeks after transplanting (WAT). Means with the same letter are not significantly different (p<0.05) according to least significant different (LSD) test. $T_1=100\%$ SMW; $T_2=100\%$ VP; $T_3=100\%$ NVP; $T_4=1$(SMW):1(VP) + NPK; $T_5=1$(SMW):1(NVP) + NPK; $T_6=1$(SMW):2(VP) + NPK; $T_7=1$(SMW):2(NVP) + NPK; $T_8=2$(SMW):1(VP) + NPK; $T_9=2$(SMW):1(NVP) + NPK.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely randomized design</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>NAP</td>
<td>National agrofood policy</td>
</tr>
<tr>
<td>NVP</td>
<td>Non-virgin peat</td>
</tr>
<tr>
<td>PM</td>
<td>Peat moss</td>
</tr>
<tr>
<td>SMC</td>
<td>Spent mushroom compost</td>
</tr>
<tr>
<td>SMS</td>
<td>Spent mushroom substrate</td>
</tr>
<tr>
<td>SMW</td>
<td>Spent mushroom waste</td>
</tr>
<tr>
<td>VP</td>
<td>Virgin peat</td>
</tr>
<tr>
<td>WAT</td>
<td>Week after transplanting</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Mushroom cultivation is a profitable agribusiness. In 2007, global mushroom production amounted to 3.4 million tons (USITC, 2010). China, European Union and the United States were the largest global producers of mushrooms. Other important global producers in year 2007 included Canada, Japan, India, Australia and Indonesia. Global mushroom consumption amounted to 3.3 million tons and China, the European Union and the United States were the leading consumers of mushrooms. Other major consumers included Canada, Japan, Russia, Australia and India. All consumption in China, European Union and India was supplied from domestic production. Global exports of canned mushrooms amounted to 458 thousand tons with China accounting for 87% of total volume in 2008. However, global imports of canned mushroom amounted to 292 thousand tons with the United States and Russia accounting for the largest of total import volume in 2008 (USITC, 2010). For the global exports of fresh mushroom, Canada and the United States were the largest global exporters in 2008 together accounting almost 80% of the total volume. Other major exporters of fresh mushrooms in 2008 included Malaysia and Mexico. For the global imports of fresh mushroom, Russia and the United States together were the most important global import markets (USITC, 2010).

In Malaysia, the cultivation technique of the mushroom has been introduced into Malaysia from Canton and has been grown at Penang since 1934 (Baker, 1934). In 2008, there were 436 mushroom growers in Malaysia (Khairul et al., 2012). In year 2007, total import for mushroom is 16,243 tonnes with a value of RM 50.40 million compared to total quantity of exported mushroom which was only 3,506 tonnes with a value of RM 25.1 million (DOSM, 2005). Among the types of mushrooms grown in Malaysia, grey oyster mushroom (Pleurotus sojar-caju) is widely cultivated. Oyster mushroom is harvested four to seven times from each production cycle. Normally, at the end of the mushroom fruiting cycle, “spent” (used) mushroom substrate is left abandoned or discarded (Danny and Seung, 2004). If not properly handled, these spent substrates may eventually cause environmental hazard.

Worldwide, mushrooms are produced on natural materials obtained from agriculture, woodlands, animal husbandry and manufacturing industries. Some of these wastes include banana leaves, peanut hull and corn leaves, mango fruits and seeds, sugarcane leaves, wheat and rice straw (Cangy and Peerally, 1995). The widely used substrate for cultivation of the oyster mushroom in Asia is rice straw (Thomas et al., 1998). Rice straw considered as the best substrate in terms of yield and protein content of mushroom. In Europe, wheat straw is used as a growing medium for mushroom, while in the South East Asian countries sawdust is more common. Adding of soil, peat moss or both components to the media will increase the nutrient contents. Hence, growth of plants in media that was formulated with peat, soil or both amended with fertilizers is better than without amendment.
In recent years, plant growing in a soilless culture has a great importance worldwide. Lohr et al. (1984) and Maher (1991) reported that spent mushroom waste (SMW) also was used as plant growing medium. Mixtures of SMW with high quality growing medium such as peat, vermiculite and bark were given a significant result than used alone in studies on SMW (Calvin et al., 1994). SMW from Agaricus bisporus production is used in horticulture as a component of potting soil mixes, soil amendment to improve turf-grass, in wetlands for remediation of contaminated water, in stabilizing severely disturbed soils, as bedding for animals and to control plant diseases (Danny, 2002). SMW from Agaricus bisporus has found acceptance as feed or animals, ingredients in the cultivation of other mushroom species, fuel, medium for vermiculture, in agriculture or landscape to enrich soils and as a matrix for bio-remediation of contaminated soils (Danny, 2002).

Shi et al. (2008) reported that the electronic conductivity value of SMW is high but low for peat. Thus, the pH value of SMW can be lowered by mixing with peat. If SMW is used in proper proportion, it can act as peat substitute in soilless culture (Shi et al., 2008). According to Wang et al. (1984) increased plant growth and yield were obtained with the addition of 20 to 30% of SMW with sandy loam. However, vegetables grown at 50% of SMW with sandy loam exhibited some stunting effect.

In Europe, farmers are using SMW, supplemented with other materials to cultivate plants but, in Malaysia there are not much scientific research done to use it in combination with other agricultural by-products. Study on the use of SMW as a part of soilless media is still scarce in Malaysia, thus this study was deemed necessary. This study was undertaken with an ultimate aim to determine the effects of SMW alone and in combination with peat moss (PM) and peat on growth and quality of kailan, Brassica oleracea var. Alboglabra. This variety is a popular variety, easy to grow and contain high nutritional value. The specific objectives were:

i. To evaluate the effects of spent mushroom waste and different ratios of spent mushroom waste and peat moss with and without fertilizer on growth and yield of Brassica oleracea var. Alboglabra at an open field.

ii. To evaluate the effects of different ratios of spent mushroom waste, virgin peat and non-virgin peat in soilless media on growth and yield of Brassica oleracea var. Alboglabra at an open field.

iii. To evaluate the effects of different ratios of spent mushroom waste, virgin peat and non-virgin peat in soilless media on growth and yield of Brassica oleracea var. Alboglabra at Sarawak, East Malaysia under netted structure.
REFERENCES

(Retrieved 23 February 2011)

