EFFECTS OF USING GRAPHIC CALCULATORS IN THE TEACHING AND LEARNING OF MATHEMATICS ON STUDENTS’ PERFORMANCE AND METACOGNITIVE AWARENESS

NOR’AIN MOHD. TAJUDIN

IPM 2008 4
EFFECTS OF USING GRAPHIC CALCULATORS IN THE TEACHING AND LEARNING OF MATHEMATICS ON STUDENTS’ PERFORMANCE AND METACOGNITIVE AWARENESS

NOR’AIN MOHD. TAJUDIN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2008
EFFECTS OF USING GRAPHIC CALCULATORS IN THE TEACHING AND LEARNING OF MATHEMATICS ON STUDENTS’ PERFORMANCE AND METACOGNITIVE AWARENESS

By

NOR’AIN MOHD. TAJUDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2008
EFFECTS OF USING GRAPHIC CALCULATORS IN THE TEACHING AND LEARNING OF MATHEMATICS ON STUDENTS’ PERFORMANCE AND METACOGNITIVE AWARENESS

By

NOR’AIN MOHD. TAJUDIN

May 2008

Chairman: Associate Professor Rohani Ahmad Tarmizi, PhD

Faculty: Institute for Mathematical Research

Three phases of quasi-experimental study with non-equivalent control group posttest only design were conducted to investigate the effects of using graphing calculators in mathematics teaching and learning on Form Four Malaysian secondary school students’ performance and their level of metacognitive awareness. Experiment in Phase I was conducted for two weeks to provide an initial indicator of the effectiveness of graphing calculator strategy on students’ performance and their metacognitive awareness. Graphing calculator strategy refers to the use of TI-83 Plus graphing calculator in teaching and learning of Straight Lines topic. The first phase involved one experimental group (n=21) and one control group (n=19)
from two Form Four classes in a randomly selected school in Selangor. The experimental group underwent learning using graphing calculator while the control group underwent learning using conventional instruction. Experiment for Phase II was further carried out for six weeks incorporating measures of mathematical performance, focused on metacognitive awareness during problem solving and in addition, measures of mental effort and instructional efficiency. This phase involved two experimental groups (n=33) and two control groups (n=32) from four Form Four classes in one randomly selected school in Malacca. As in Phase I, the same learning conditions were given for both experimental and control groups. Finally, experiment in Phase III was carried out for six weeks incorporating comparison on two levels of mathematics ability (low and average) and two types of instructional strategy (graphing calculator strategy and conventional instruction strategy). Form Four students from one of schools in Malacca were the sample for Phase III. Altogether there were four groups of students given four learning conditions vis-à-vis: the average mathematical ability given the use of graphing calculators (n=15), the low mathematical ability also given graphing calculators (n=19), the average mathematical ability given the conventional instruction (n=16) and the low mathematical ability given also the conventional instruction (n=20).
Four instruments were used in this study namely, Straight Lines Achievement Test, Paas Mental Effort Rating Scale, Metacognitive Awareness Survey and Graphing Calculator Usage Survey. The data for Phases I and II were analysed using independent t-test and planned comparison test while data for Phase III were analysed using multiple analysis of variance and planned comparison test. The study shows that the graphing calculator instruction enhanced students’ performance and induced higher levels of their metacognitive awareness with less mental effort invested during the learning and test phases and hence increased 3-dimensional instructional efficiency index in learning of Straight Lines topic for both groups of low and average mathematics ability. These findings indicated that the graphing calculator instruction is superior in comparison to the conventional instruction, hence implying that integrating the use of graphing calculator in teaching and learning of mathematics was more efficient than the conventional instruction strategy. The average mathematics ability group benefited more from the graphing calculator instruction as it decreased the amount of mental effort by double than the low mathematics ability group. Further, most students in graphing calculator strategy group showed an overall favourable view towards integrating the use of the graphing calculator in the teaching and learning of mathematics. Even though some students experience difficulties in using graphing calculators initially during learning, they responded overwhelmingly that
graphing calculator improves their understanding of the Straight Lines topic and hence, the usage of the graphing calculator was an effective strategy in teaching and learning of mathematics.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN PENGUNAAN KALKULATOR GRAFIK DALAM PENGAJARAN DAN PEMBELAJARAN MATEMATIK TERHADAP PRESTASI DAN KESEDARAN METAKOGNITIF

Oleh

NOR’AIN BINTI MOHD. TAJUDIN

Pengerusi: Professor Madya Rohani Ahmad Tarmizi, PhD
Fakulti: Institut Penyelidikan Matematik

Tiga fasa kajian kuasi-eksperimen dengan reka bentuk ujian pos bagi kumpulan kawalan tidak serupa dijalankan untuk mengkaji kesan penggunaan kalkulator grafik dalam pengajaran dan pembelajaran matematik ke atas prestasi dan kesedaran metakognitif pelajar sekolah menengah Malaysia Tingkatan Empat. Eksperimen Fasa I dikendalikan selama dua minggu untuk memberi indikasi awal keberkesanan strategi kalkulator grafik terhadap prestasi dan kesedaran metakognitif pelajar. Strategy kalkulator grafik adalah merujuk kepada penggunaan kalkulator grafik TI-83 Plus dalam pengajaran dan pembelajaran topik Garis Lurus. Fasa ini melibatkan satu kumpulan eksperimen (n=20) dan satu kumpulan kawalan (n=19) daripada dua kelas Tingkatan Empat dalam sebuah sekolah yang dipilih secara rawak di Selangor. Kumpulan eksperimen melaksanakan
pembelajaran menggunakan strategi kalkulator grafik, manakala kumpulan kawalan menggunakan strategi pengajaran konvensional. Eksperimen bagi Fasa II pula dikendalikan selanjutnya selama enam minggu dengan menggabungkan ukuran prestasi matematik, penekanan terhadap kesedaran metakognitif semasa penyelesaian masalah dan seterusnya ukuran daya mental dan *instructional efficiency*. Fasa ini melibatkan dua kumpulan eksperimen (n=33) dan dua kumpulan kawalan (n=32) yang terdiri daripada empat kelas Tingkatan Empat dalam sebuah sekolah yang dipilih secara rawak di Melaka. Kedua-dua kumpulan eksperimen dan kawalan menggunakan strategi pembelajaran yang sama seperti pada Fasa I. Akhirnya, eksperimen Fasa III juga dikendalikan selama enam minggu menggabungkan pula perbandingan ke atas tahap keupayaan matematik (rendah dan sederhana) dan jenis strategi pengajaran (strategi kalkulator grafik dan strategi pengajaran konvensional). Keseluruhannya, terdapat empat kumpulan pelajar dengan kaedah pembelajaran masing-masingnya iaitu: keupayaan matematik tahap sederhana dengan penggunaan kalkulator grafik (n=15), keupayaan matematik tahap rendah juga dengan penggunaan kalkulator(n=19), keupayaan matematik tahap rendah dengan pengajaran konvensional (n=16) dan keupayaan matematik tahap rendah juga dengan pengajaran konvensional (n=20).
Empat instrumen telah digunakan dalam kajian ini iaitu Ujian Pencapaian Garis Lurus, *Paas Mental Effort Rating Scale*, Soal Selidik Kesedaran Metakognitif dan Soal Selidik Penggunaan Kalkulator Grafik. Data bagi Fasa I dan Fasa II dianalisis menggunakan *independent samples t-test* dan *planned comparison test* manakala data bagi Fasa III dianalisis menggunakan analisis varian univariat dan *planned comparison test*. Kajian menunjukkan bahawa pengajaran menggunakan kalkulator grafik dapat menguukulkan prestasi pelajar dan mencetuskan kesedaran metakognitif yang lebih tinggi dengan pengurangan beban kognitif semasa fasa-fasa pembelajaran dan ujian dan seterusnya meningkatkan indek *instructional efficiency* 3-dimensi dalam pembelajaran topik Garis Lurus bagi kedua-dua kumpulan keupayaan matematik tahap rendah dan sederhana. Oleh itu dapan ini memberi indikasi bahawa pengajaran menggunakan kalkulator grafik didapati lebih baik daripada pengajaran secara konvensional kerana pengajaran tersebut adalah lebih cekap berbanding pengajaran secara konvensional. Pelajar dalam kumpulan keupayaan matematik tahap sederhana memperolehi lebih faedah daripada pengajaran menggunakan kalkulator grafik kerana jumlah penggunaan daya mental berkurangkan dua kali ganda jika dibandingkan dengan kumpulan keupayaan matematik tahap rendah. Seterusnya, kebanyakan pelajar dari kumpulan kalkulator grafik menunjukkan pandangan menyeluruh menyokong integrasi penggunaan kalkulator grafik dalam pengajaran dan pembelajaran matematik. Walaupun
terdapat sebilangan pelajar yang mengalami kesukaran menggunakan kalkulator grafik semasa pembelajaran pada awalnya, namun mereka memberi maklumbalas yang menakjubkan bahawa kalkulator grafik dapat mempertingkatkan kefahaman mereka tentang topik Garis Lurus dan justeru itu, penggunaan kalkulator grafik merupakan suatu strategi yang efektif dalam pengajaran dan pembelajaran matematik.
ACKNOWLEDGEMENTS

Alhamdulillah, praise be upon to Allah Ta’ala. Without His blessing, this study would never have been completed. This study was also made possible through the encouragement and support of many people. I would like to acknowledge my debts to all of them for their kindness and effort to make this study a reality.

First and foremost, I wish to express my sincere appreciation and thankful to Associate Professor Dr. Rohani Ahmad Tarmizi, my main thesis supervisor, for her guidance, encouragement and advice towards the completion of this thesis. I would also like to thank to members of my supervisory committee, Associate Professor Dr. Wan Zah Wan Ali and Associate Professor Dr. Mohd. Majid Konting for their support and interest.

I am also grateful to students, mathematics teachers, Heads of Mathematics Departments and Principals of several schools in Selangor and Malacca who tolerated my presence in their schools. Their permission and cooperation were most appreciated. I am especially thankful to students who willingly participated in all phases of experiments.
A special thank to Professor Dr Fred Paas for giving permission to use the Paas Mental Effort Rating Scale instrument and e-mailing a few journals at the initial stage of this study. To validators and translators of the instruments, I would also like to thank them all.

Many individuals have also shared their time, expressed concern, and offered word of encouragement and advice throughout this study. I shall always remember the selfless generosity of all my colleagues at Universiti Pendidikan Sultan Idris and all my friends at Universiti Kebangsaan Malaysia. I am also grateful to Nur Izzati for her friendship and encouragement as well as assistance in various occasions. I also would like to thank Miss Durraini Baharuddin for editing this thesis. A special thank also to all individuals that have helped me somewhere along the way of this study whom I may have inadvertently omitted.

Finally, this study could not have been completed without the love, encouragement and support of my family. I especially would like to dedicate this dissertation to them – to my beloved husband, Alias, my parents, my sister and my brother. I am so blessed to have all of you. Thank you so much for helping to make this personal goal a reality.
I certify that an Examination Committee has met on 9 May 2008 to conduct the final examination of Nor’ain Mohd. Tajudin on her Doctor of Philosophy thesis entitled “Effects of Using Graphic Calculators in the Teaching and Learning of Mathematics on Students Performance and Metacognitive Awareness” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Mat Rofa Ismail, PhD
Associate Professor
Faculty of Science (Mathematics)
Universiti Putra Malaysia
(Chairman)

Aida Suraya Md. Yunus, PhD
Associate Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Internal Examiner)

Habsah Ismail, PhD
Faculty of Educational Studies
Universiti Putra Malaysia
(Internal Examiner)

Fred Paas, PhD
Professor
Educational Technology Expertise Center
Open University of the Netherlands
Netherlands
(External Examiner)

HASSANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 June 2008
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rohani Ahmad Tarmizi, PhD
Associate Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Chairman)

Wan Zah Wan Ali, PhD
Associate Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Member)

Mohd. Majid Konting, PhD
Associate Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10th July 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not currently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

NOR’AIN MOHD. TAJUDIN

Date: 20th May 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Background of the study
 1.2 Development of Malaysian Mathematics Curriculum
 1.2.1 The integrated Mathematics Curriculum for Secondary School
 1.2.2 Emphases in Teaching and Learning of Mathematics
 1.3 Related Learning Theories
 1.3.1 Cognitive Load Theory
 1.3.2 Distributed Cognition Theory
 1.3.3 Constructivist Learning Theory
 1.4 The Use of Graphing Calculator
 1.5 Mathematics Performance in Malaysian Certificate of Education Examination
 1.6 Statement of the Problem
 1.7 Purpose of the Study
 1.8 Objectives and Hypotheses of the Study
 1.9 Significance of the Study
 1.10 Limitations of the Study
 1.11 Definition of Terms

2 REVIEW OF RELATED LITERATURE
 2.1 Introduction
 2.2 Learning for Understanding in Mathematics
 2.2.1 What is Learning?
 2.2.2 What is Understanding?
 2.3 Conceptual knowledge and Procedural Knowledge
2.4 Metacognition
2.4.1 What is metacognition? 77
2.4.2 Metacognition construct 81
2.4.3 The Measurement of Metacognition 86
2.5 Information Processing Theory
2.5.1 Overview of Information Processing Theory 90
2.5.2 Sensory Memory 96
2.5.3 Short Term Memory 97
2.5.4 Long Term Memory 100
2.6 Cognitive Load Theory
2.6.1 Overview of Cognitive Load Theory 104
2.6.2 Schema Acquisition/Construction 107
2.6.3 Schema Automation 110
2.6.4 The cognitive Load Construct 113
2.6.5 Measurement of Cognitive Load 124
2.6.6 The Role of Metacognition in Cognitive Load Theory 133
2.6.7 The Instructional Efficiency 138
2.7 Distributed Cognition Theory 146
2.7.1 Overview of Distributed Cognition Theory 146
2.7.2 Distributed Cognition in Mathematics 148
2.7.3 Distributed Cognition and Graphing Calculator 150
2.8 Constructivist Learning Theory
2.8.1 Overview of Constructivist Learning Theory 153
2.8.2 Constructivists Perspective in Mathematics Teaching and Learning 156
2.9 Graphing Calculator Technology in Mathematics Teaching and Learning
2.9.1 Graphing Calculator Development 159
2.9.2 The TI-83 Plus Graphing Calculator 162
2.9.3 Myths in Using Calculator/Graphing Calculator 166
2.10 Research on Graphing Calculator Technology
2.10.1 Meta-Analysis Studies on Hand-held Calculator/Graphing Technologies 172
2.10.2 Reports on Graphing Calculator Usage 180
2.10.3 Individual Studies on Graphing Calculator Usage 200
2.10.4 Research on Graphing Calculator Usage in Malaysia 225
METHODOLOGY

3.1 Introduction

3.2 Design of the study

3.3 Design and Phases of Experiments

3.4 Population and Sample

3.4.1 Population of the Study

3.4.2 Sample of the Study

3.4.3 Power Analysis

3.5 Threats to Experimental Validity

3.5.1 Threats to Internal Validity

3.5.2 Threats to External Validity

3.6 Lesson Plan

3.6.1 Topic on Straight Lines

3.6.2 The Straight Lines Lesson Plan

3.6.3 Development of the Straight Lines Lesson Plan – Phase I

3.6.4 Development of the Straight Lines Lesson Plan – Phases II and III

3.7 Instrumentation

3.7.1 Instrumentation – Phase I

3.7.2 Instrumentation – Phase II

3.7.3 Instrumentation – Phase III

3.8 Pilot Study

3.9 Procedures for the Experiments

3.9.1 Experimental Procedures – Phase I

3.9.2 Experimental Procedures – Phase II

3.9.3 Experimental Procedures – Phase III

3.10 Data Analysis

3.10.1 Exploratory data Analysis

3.10.2 Quantitative Data

3.10.3 Opinion on Graphing Calculator Usage

3.11 Summary

RESULTS

4.1 Introduction

4.2 Analyses of Performance and Metacognitive Awareness – Phase I

4.2.1 Respondents’ Profiles

4.2.2 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Performance

xvii
4.2.3 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Metacognitive Awareness

4.3 Opinion on Graphing Calculator Usage – Phase I

4.4 Analyses of Performance, Metacognitive Awareness and Instructional Efficiency – Phase II
4.4.1 Respondents’ Profiles
4.4.2 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Performance
4.4.3 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Metacognitive Awareness
4.4.4 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Mental Effort
4.4.5 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Instructional Efficiency

4.5 Opinion on Graphing Calculator Usage – Phase II

4.6 Analyses of Performance, Metacognitive Awareness, Instructional Efficiency and Mathematics Ability – Phase III
4.6.1 Respondents’ Profiles
4.6.2 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Performance
4.6.3 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Metacognitive Awareness
4.6.4 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Mental Effort
4.6.5 Effect of Graphing Calculator Strategy and Conventional Instruction Strategy on Instructional Efficiency

4.7 Opinion on Graphing Calculator Usage – Phase III

4.8 Summary

5 DISCUSSION
5.1 Introduction
5.2 Phase I
5.2.1 Effects of Using Graphing Calculators on Students’ Performance
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Malaysian mathematics KBSM content for Form One to Form Five</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Classification of methods for measuring cognitive load on objectivity and causal relationship</td>
<td>125</td>
</tr>
<tr>
<td>2.2</td>
<td>Studies that measured cognitive load and the measurement techniques they used</td>
<td>132</td>
</tr>
<tr>
<td>2.3</td>
<td>Levels of calculators</td>
<td>162</td>
</tr>
<tr>
<td>3.1</td>
<td>Dependent variables for experiments in Phases I and II</td>
<td>251</td>
</tr>
<tr>
<td>3.2</td>
<td>Dependent variables for experiment in Phases III</td>
<td>256</td>
</tr>
<tr>
<td>3.3</td>
<td>Metacognitive awareness item’s distribution according to subscales in Phase I</td>
<td>288</td>
</tr>
<tr>
<td>3.4</td>
<td>Reliability indices for MCAS in Phase I</td>
<td>290</td>
</tr>
<tr>
<td>3.5</td>
<td>Reliability indices for PMER in Pilot Study and Actual Experiment</td>
<td>299</td>
</tr>
<tr>
<td>3.6</td>
<td>Metacognitive awareness item’s distribution according to subscales</td>
<td>302</td>
</tr>
<tr>
<td>3.7</td>
<td>Reliability indices for MCAS in Phases II</td>
<td>303</td>
</tr>
<tr>
<td>3.8</td>
<td>Reliability indices for MCAS in Phase III</td>
<td>308</td>
</tr>
<tr>
<td>4.1</td>
<td>Contrast coefficient for planned comparison</td>
<td>333</td>
</tr>
<tr>
<td>4.2</td>
<td>Respondents’ profiles for experiment in Phase I</td>
<td>334</td>
</tr>
<tr>
<td>4.3</td>
<td>Independent samples t-test to compare means monthly test performance before experiment in Phase I</td>
<td>335</td>
</tr>
<tr>
<td>4.4</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for overall test performance in Phase I</td>
<td>338</td>
</tr>
<tr>
<td>4.5</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for number of problems solved during test phase in Phase I</td>
<td>339</td>
</tr>
<tr>
<td>4.6</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for number of errors obtained during test phase in Phase I</td>
<td>341</td>
</tr>
<tr>
<td>4.7</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for conceptual knowledge performance in Phase I</td>
<td>342</td>
</tr>
<tr>
<td>4.8</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for procedural knowledge performance in Phase I</td>
<td>344</td>
</tr>
<tr>
<td>4.9</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for number of similar problems solved in Phase I</td>
<td>345</td>
</tr>
<tr>
<td>4.10</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for similar problems performance in Phase I</td>
<td>347</td>
</tr>
<tr>
<td>4.11</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for number of transfer problems solved in Phase I</td>
<td>348</td>
</tr>
<tr>
<td>4.12</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for transfer problems performance in Phase I</td>
<td>350</td>
</tr>
<tr>
<td>4.13</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for overall metacognitive awareness in Phase I</td>
<td>353</td>
</tr>
<tr>
<td>4.14</td>
<td>Means, standard deviations, independent samples t-test and planned comparison for awareness subscale in Phase I</td>
<td>355</td>
</tr>
</tbody>
</table>
4.15 Means, standard deviations, independent samples t-test and planned comparison for cognitive strategy subscale in Phase I

4.16 Means, standard deviations, independent samples t-test and planned comparison for planning subscale in Phase I

4.17 Means, standard deviations, independent samples t-test and planned comparison for self-checking subscale in Phase I

4.18 Students’ views about their experiences using graphing calculators in learning of Straight Lines topic in Phase I

4.19 Benefits of using graphing calculators in learning of Straight Lines topic in Phase I

4.20 Percentage of students having difficulties in using graphing calculators during learning in Phase I

4.21 Respondents’ profiles for experiment in Phase II

4.22 Independent samples t-test to compare means monthly test performance before experiment in Phase II

4.23 Means, standard deviations, independent samples t-test and planned comparison for overall test performance in Phase II

4.24 Means, standard deviations, independent samples t-test and planned comparison for number of problems solved during test phase in Phase II

4.25 Means, standard deviations, independent samples t-test and planned comparison for number of errors obtained during test phase in Phase II

4.26 Means, standard deviations, independent samples t-test and planned comparison for conceptual knowledge performance in Phase II
4.27	Means, standard deviations, independent samples t-test and planned comparison for procedural knowledge performance in Phase II	380
4.28	Means, standard deviations, independent samples t-test and planned comparison for number of similar problems solved in Phase II	381
4.29	Means, standard deviations, independent samples t-test and planned comparison for similar problems performance in Phase II	383
4.30	Means, standard deviations, independent samples t-test and planned comparison for number of transfer problems solved in Phase II	384
4.31	Means, standard deviations, independent samples t-test and planned comparison for transfer problems performance in Phase II	386
4.32	Means, standard deviations, independent samples t-test and planned comparison for overall metacognitive awareness in Phase II	389
4.33	Means, standard deviations, independent samples t-test and planned comparison for cognitive strategy subscale in Phase II	391
4.34	Means, standard deviations, independent samples t-test and planned comparison for planning subscale in Phase II	394
4.35	Means, standard deviations, independent samples t-test and planned comparison for self-checking subscale in Phase II	396
4.36	Means, standard deviations, independent samples t-test and planned comparison for mental effort per problem invested during learning phase in Phase II	398
4.37	Means, standard deviations, independent samples t-test and planned comparison for mental effort per problem invested during test phase in Phase II	399