UNIVERSITI PUTRA MALAYSIA

PARAMETRIC AND SEMIPARAMETRIC COMPETING RISKS MODELS FOR STATISTICAL PROCESS CONTROL WITH RELIABILITY ANALYSIS

FAIZ AHMED MOHAMED ELFAKI

FSAS 2004 27
PARAMETRIC AND SEMIPARAMETRIC COMPETING RISKS MODELS FOR STATISTICAL PROCESS CONTROL WITH RELIABILITY ANALYSIS

FAIZ AHMED MOHAMED ELFAKI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2004
PARAMETRIC AND SEMIPARAMETRIC COMPETING RISKS MODELS FOR STATISTICAL PROCESS CONTROL WITH RELIABILITY ANALYSIS

By

FAIZ AHMED MOHAMED ELFAKI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements For the Degree of Doctor of Philosophy

July 2004
To my wife Salma,

To my love son Ahmed,

To my father, Ahmed

To my late mother, Eltayah

May Allah Rest Her Soul in heaven
The work in this thesis is concerned with the development of techniques for the assessment of statistical process control in data that include censored observations. Various regression models with censored data are presented and we concentrate on four competing risks models namely, two parametric Cox’s model that is, Cox’s with Weibull distribution, Cox’s with exponential distribution and two semiparametric Cox’s model with subdistribution function that is, the weighted score function (W) and censoring complete (CC). The Expectation Maximization (EM) algorithm is utilized to obtain the estimate of the parameters in the models. A generated data where the failure times are taken as exponentially distributed are used to further compare these two parametric models. From the simulation study for this particular case, we can conclude that Weibull distribution describes well the nature of the model concerned as compared to the exponential distribution in terms of the mean value of parameter estimates, bias, and the root means square error. Plots of survival
distribution function against failure time are used to examine the predicted survival patterns for the two types of failures.

In this thesis we develop a modified Fine and Gray methods to increase the sensitivity of the models and these methods are tested and compared. A simulation data using subdistribution function for the two types of failure are carried out to compare the performance of the modified model. The results of the study indicate the models show better result compared to Fine and Gray models. However, the weighted score function (W) shows better result compared to the censored complete data (CC). Residual-based approaches are used to assess the validity of the two models (MW, CC) assumptions. Plots of this residual against failure time are used to investigate whether important explanatory variables have been omitted from the model.

The study also carries out an investigation of the causes of failure for statistical process control. The \bar{x} chart, \bar{R} chart and C_p, and C_{pk} are examined for the possibility of being used to detect the state of control of the covariates in the two competing risks models (Cox’s with Weibull distribution (PHW2) and modification of weighted score function (MW)). The result of this study indicates that both models are successful in investigating the causes of failure for statistical process control. However, the results from the real data sets which involves the measurement of stress against three covariates (aluminum, wood and plastic) showed that the tubes wrapped on plastic mandrel have excellent crashworthiness performance with respect to the \bar{x} chart, \bar{R} chart, C_p, and C_{pk}.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MODEL RISIKO BERSAING PARAMETRIK DAN SEMIPARAMETRIK BAGI KAWALAN PROSES BERSTATISTIK DENGAN ANALISIS KEBOLEHPERCAYAAN

Oleh

FAIZ AHMED MOHAMED ELFAKI

Julai 2004

Pengerusi: Profesor Madya Isa Daud, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Kajian di dalam tesis ini adalah berkaitan dengan pembangunan teknik bagi penilaian kawalan proses berstatistik bagi data yang mengandungi cerapan tertapis. Pelbagai model regresi dengan data tertapis dibincangkan dan tumpuan kajian adalah pada empat model risiko bersaing iaitu dua model berparameter Cox (Cox dengan taburan Weibull dan Cox dengan taburan eksponen) dan dua model semi-berparameter Cox (fungsi skor berpemberat (W) dan tapisan lengkap (CC)). Algoritma Pemaksimuman Jangkaan (EM) digunakan bagi menganggar parameter model tersebut. Data yang dijana dengan masa kegagalan bertaburan eksponen digunakan bagi tujuan perbandingan lanjut kedua-dua model parametrik. Daripada kajian simulasi untuk kes ini, dapat disimpulkan bahawa taburan Weibull menjelaskan dengan baik sifat model berbanding taburan eksponen dari segi nilai min anggaran parameter, kepincangan dan ralat punca min kuasa dua. Plot fungsi taburan kemandirian

v
melawan masa kegagalan digunakan untuk melihat pola-pola kemandirian ramalan bagi dua jenis kegagalan.

Kajian dijalankan juga untuk mengetahui penyebab kegagalan bagi kawalan proses berstatistik. Carta \bar{x}, carta \bar{R}, C_p dan C_{pk} dipertimbangkan bagi kemungkinan digunakan untuk mengesakan keadaan kawalan kovariat dua model risiko bersaing (Cox dengan taburan Weibull (PHW2) dan fungsi skor berpemberat terubahsuai (MW)). Keputusan kajian menunjukkan kedua-dua model dapat memeriksa penyebab kegagalan bagi kawalan proses berstatistik dengan jayanya. Walau bagaimanapun, hasil kajian daripada set data sebenar yang melibatkan ukuran tegangan melawan tiga kovariat (aluminum, kayu dan plastik) menunjukkan bahawa tiub-tiub yang dibalut plastik ‘mandrel’ memberikan pencapaian ‘crashworthiness’ yang cemerlang berdasarkan carta \bar{x}, carta \bar{R}, C_p dan C_{pk}.
ACKNOWLEDGEMENTS

Praise be to ALLAH for giving me the strength and patience to complete this work. I would like to single out the particular and tremendous contribution of Associate Prof. Dr. Isa Bin Daud, the chairman of supervisory committee, for his persistent inspiration, constant guidance, wise counseling, encouragement, kindness and various logistic supports during all the stages of my study. His command on the subject matter, together with his research experiences, have been highly valuable to my study. His enthusiasm and patience have left a feeling of indebtedness which can not be fully expressed.

My deepest appreciation and sincere gratitude also to Associate Prof. Dr. Noor Akma Ibrahim, the committee member, for her kind cooperation and thoughtful suggestions. I owe a great deal of gratitude and appreciation to Associate Prof. Dr. Mat Yusoff Abdullah, another member of the supervisory committee, for his supervision and helpful comments.

My gratitude also goes to the authorities of IRPA project with code number 54064 which is led by Associate Prof. Dr. Isa Bin Daud for giving me the financial assistance through the Graduate Assistantship scheme.

I also would like expand my thanks to all the members of Mathematics Department, University Putra Malaysia, for their kind assistance during my studies, and making my stay a memorable one. This particularly goes to Prof. Dr. Malik Hj Abu Hassan, Head of the Mathematics Department, Puan Fauziah Bt Maarof, Associate Prof. Dr.
Harun Bin Budin and Associate Prof. Dr. Fudziah Ismail. For my friends Safe Alzibar, Iing Lukman, Kalid Osman, Dr. Hassan Doka, Yasin Mohd, Salah Madni, Mohd Abdu Halim, Dr. Elsadig Mahdi, Ahmed Hurirah, Razimah Abdul Razak, Natrah Mohd, Norhashidah Awang, Ibrahim Elsdey, Abdu Rahman Attalah and Ali Bamagah, I extend my sincere thanks for their strong support and fast response whenever I needed their help.

Last but not the least, my heartfelt thanks should go to my wife, Salma, my beloved son Ahmed, my father Ahmed, Samirah, my brothers Abdul Gadir, Nadir, Mohd and Mustafa and my sisters Shaza, Sarah, Eltayah and Faridah, for their sacrifices, devotion and understanding, which have always been a source of inspiration and strength throughout my life up to this moment.

A lot of thanks to all of my Sudanese and Saudi Arabia friends in Malaysia and my friends in Yemen and Sudan. May Allah Subhanahu Wata’ala give a lot of rewards to them and all those concerned in my quest to obtain God given knowledge.
I certify that an Examination Committee met on 20th July, 2004 to conduct the final examination of Faiz Ahmed Mohamed Elfaki on his Doctor of Philosophy thesis entitled “Parametric and semiparametric competing risks models for statistical process control with reliability analysis)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mahendran Shitan, Ph.D
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chaiman)

Kassim Haron, Ph.D
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Rizam Abu Bakar, Ph.D
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Zainodin Hj. Jubok, Ph.D
Professor
Director
Research Activities and Conference Center
Universiti Sabah Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Isa Bin Daud, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Noor Akma Ibrahim, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Mat Yusoff Abdullah, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

FAIZ AHMED MOHAMED ELFAKI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1.1 Introduction | 1 |
1.2 Competing Risks | 4 |
1.3 Parametric Approach | 6 |
1.4 Nonparametric and Semiparametric Approach | 8 |
1.5 Concluding Remarks | 10 |
1.6 The Objectives of the Study | 11 |
1.7 Scope of the thesis | 12 |

II LITERATURE REVIEW

2.1 Parametric Competing Risks Model Based On Cox’s Model with Weibull and Exponential Distributions | 15 |
2.2 Semiparametric Competing Risks Based On Cox’s Model with Subdistribution function | 18 |
2.3 Statistical Process Control | 22 |

III COMPETING RISKS USING PARAMETRIC COX’S MODEL

3.1 Basic Definition and Concepts | 32 |
3.1.1 Location and Scale Parameters | 33 |
3.1.2 Reliability Concepts | 34 |
3.2 Parametric Estimation Procedures | 35 |
3.2.1 The Proportional Hazards Weibull Model (PHW) | 38 |
3.2.2 The Proportional Hazards Exponential Model (PHE) | 41 |
3.3 The EM algorithm | 43 |
3.4 Numerical Examples | 48 |
3.4.1 Kevlar 49 Failure Data (K49FD) | 48 |
3.4.2 Failure Crushing Time Data (FCTD) | 50 |
3.4.3 Simulation Data | 57 |
3.4.4 Simulation Results | 58 |

IV COMPETING RISKS USING COX’S MODEL FOR THE SUBDISTRIBUTION

4.1 Competing Risks Model Formulation | 66 |

xii
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>A comparison of Crowder et al. (1991) estimates with the estimates obtained under model (3.1) and (3.2) using Weibull and Exponential distribution.</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of the wood, plastic and aluminum with internal diameter 0, 10, 20 and 30 mm, obtained by modification of Cox’s model with Weibull distribution (PHW2).</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of the wood, plastic and aluminum with internal diameter 0, 10, 20 and 30 mm, obtained by modification of Cox’s model with Exponential distribution (PHE2).</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Results from simulations 1-5 comparing model (3.1) and (3.2) with Weibull distribution, under EM algorithm.</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Results from simulations 1-5 comparing model (3.1) and (3.2) with exponential distribution, under EM algorithm.</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparing the results from the first simulation obtained by modification of Fine and Gray (1999) models for the subdistribution using EM, with the one obtained by Fine and Gray (1999).</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparing the results from the second simulation obtained by modification of Fine and Gray (1999) models for the subdistribution using EM, with the one obtained by Fine and Gray (1999).</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>A comparison of Crowder et al. estimates with the estimates obtained under the modification of Fine and Gray (1999) models using EM algorithm.</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of the wood, plastic and aluminum with internal diameter 0, 10, 20 and 30 mm, obtained by modification of Fine and Gray (1999).</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of the wood, plastic and aluminum with internal diameter 0, 10, 20 and 30 mm, obtained by PHW2 model for Process Capability Index.</td>
<td>144</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of the wood, plastic and aluminum with internal diameter 0, 10, 20 and 30 mm, obtained by MW model for Process Capability Index.</td>
<td>145</td>
</tr>
<tr>
<td>5.3</td>
<td>Results of C_p, CPL, CPU and Cpk Obtained by PHW2 model for K49FD.</td>
<td>147</td>
</tr>
<tr>
<td>5.4</td>
<td>Results of C_p, CPL, CPU and Cpk Obtained by MW model for K49FD.</td>
<td>147</td>
</tr>
<tr>
<td>5.5</td>
<td>Results of C_p and Cpk obtained by PHW2 model and MW model from simulation data.</td>
<td>160</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Example of Control Chart</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Survival Function Estimates</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Survival Estimation Function From FCTD ($d_i = 0$ mm)</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Survival Estimation Function From FCTD ($d_i = 10$ mm)</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Survival Estimation Function From FCTD ($d_i = 20$ mm)</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Survival Estimation Function From FCTD ($d_i = 30$ mm)</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Survival Function Estimates</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Survival Function Estimation from sample size 15</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>Survival Function Estimation from sample size 40</td>
<td>64</td>
</tr>
<tr>
<td>3.9</td>
<td>Survival Function Estimation from sample size 60</td>
<td>64</td>
</tr>
<tr>
<td>3.10</td>
<td>Survival Function Estimation from sample size 80</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>Survival Function Estimation from sample size 100</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Typical Load-displacement curves of woven roving laminated composite tubes wound on mandrels with materials and internal diameter of 0 mm</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Load-displacement curves of woven roving laminated composite tubes wound on mandrels with different materials and internal diameter of 10 mm</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Load-displacement curves of woven roving laminated composite tubes wound on mandrels with different materials and internal diameter of 20 mm</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Load-displacement curves of woven roving laminated composite tubes wound on mandrels with materials and internal diameter of 30 mm</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Residual obtained from first type of failure for internal diameter of 0 mm</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Residual obtained from second type of failure for internal diameter of 0 mm</td>
<td>93</td>
</tr>
<tr>
<td>4.7</td>
<td>Residual obtained from first type of failure for internal diameter of 10 mm</td>
<td>93</td>
</tr>
<tr>
<td>4.8</td>
<td>Residual obtained from second type of failure for internal diameter of 10 mm</td>
<td></td>
</tr>
</tbody>
</table>
4.9 Residual obtained from first type of failure for internal diameter of 20 mm
4.10 Residual obtained from second type of failure for internal diameter of 20 mm
4.11 Residual obtained from first type of failure for internal diameter of 30 mm
4.12 Residual obtained from second type of failure for internal diameter of 30 mm

5.1 The \bar{x} chart for aluminum mandrel with internal diameter of 0 mm obtained by PHW2 model (First Risk)
5.2 The R chart for aluminum mandrel with internal diameter of 0 mm obtained by PHW2 model (First Risk)
5.3 The \bar{x} chart for plastic mandrel with internal diameter of 0 mm obtained by PHW2 model (First Risk)
5.4 The R chart for plastic mandrel with internal diameter of 0 mm obtained by PHW2 model (First Risk)
5.5 The \bar{x} chart for wood mandrel with internal diameter of 0 mm obtained by PHW2 model (First Risk)
5.6 The R chart for wood mandrel with internal diameter of 0 mm obtained by PHW2 model (First Risk)
5.7 The \bar{x} chart for aluminum mandrel with internal diameter of 0 mm obtained by PHW2 model (Second Risk)
5.8 The R chart for aluminum mandrel with internal diameter of 0 mm obtained by PHW2 model (Second Risk)
5.9 The \bar{x} chart for plastic mandrel with internal diameter of 0 mm obtained by PHW2 model (Second Risk)
5.10 The R chart for plastic mandrel with internal diameter of 0 mm obtained by PHW2 model (Second Risk)
5.11 The \bar{x} chart for wood mandrel with internal diameter of 0 mm obtained by PHW2 model (Second Risk)
5.12 The R chart for wood mandrel with internal diameter of 0 mm obtained by PHW2 model (Second Risk)
5.13 The \bar{x} chart for aluminum mandrel with internal diameter of 10 mm obtained by PHW2 model (First Risk) 124

5.14 The R chart for aluminum mandrel with internal diameter of 10 mm obtained by PHW2 model (First Risk) 125

5.15 The \bar{x} chart for plastic mandrel with internal diameter of 10 mm obtained by PHW2 model (First Risk) 125

5.16 The R chart for plastic mandrel with internal diameter of 10 mm obtained by PHW2 model (First Risk) 126

5.17 The \bar{x} control chart for wood mandrel with internal diameter of 10 mm obtained by PHW2 model (First Risk) 126

5.18 The R control chart for wood mandrel with internal diameter of 10 mm obtained by PHW2 model (First Risk) 127

5.19 The \bar{x} control chart for aluminum mandrel with internal diameter of 10 mm obtained by PHW2 model (Second Risk) 127

5.20 The R chart for aluminum mandrel with internal diameter of 10 mm obtained by PHW2 model (Second Risk) 128

5.21 The \bar{x} chart for plastic mandrel with internal diameter of 10 mm obtained by PHW2 model (Second Risk) 128

5.22 The R chart for plastic mandrel with internal diameter of 10 mm obtained by PHW2 model (Second Risk) 129

5.23 The \bar{x} chart for wood mandrel with internal diameter of 10 mm obtained by PHW2 model (Second Risk) 129

5.24 The R chart for wood mandrel with internal diameter of 10 mm obtained by PHW2 model (Second Risk) 130

5.25 The \bar{x} chart for aluminum mandrel with internal diameter of 20 mm obtained by PHW2 model (First Type) 130

5.26 The R chart for aluminum mandrel with internal diameter of 20 mm obtained by PHW2 model (First Type) 131

5.27 The \bar{x} chart for plastic mandrel with internal diameter of 20 mm obtained by PHW2 model (First Type) 131

5.28 The R chart for plastic mandrel with internal diameter of 20 mm obtained by PHW2 model (First Type) 132

5.29 The \bar{x} chart for wood mandrel with internal diameter of 20 mm obtained by PHW2 model (First Type) 132
5.30 The R chart for wood mandrel with internal diameter of 20 mm obtained by PHW2 model (First Type) 133
5.31 The \bar{x} chart for aluminum mandrel with internal diameter of 20 mm obtained by PHW2 model (Second Risk) 133
5.32 The R chart for aluminum mandrel with internal diameter of 20 mm obtained by PHW2 model (Second Risk) 134
5.33 The \bar{x} chart for plastic mandrel with internal diameter of 20 mm obtained by PHW2 model (Second Risk) 134
5.34 The R chart for plastic mandrel with internal diameter of 20 mm obtained by PHW2 model (Second Risk) 135
5.35 The \bar{x} chart for wood mandrel with internal diameter of 20 mm obtained by PHW2 model (Second Risk) 135
5.36 The R chart for wood mandrel with internal diameter of 20 mm obtained by PHW2 model (Second Risk) 136
5.37 The \bar{x} chart for aluminum mandrel with internal diameter of 30 mm obtained by PHW2 model (First Risk) 136
5.38 The R chart for aluminum mandrel with internal diameter of 30 mm obtained by PHW2 model (First Risk) 137
5.39 The \bar{x} chart for plastic mandrel with internal diameter of 30 mm obtained by PHW2 model (First Risk) 137
5.40 The R chart for plastic mandrel with internal diameter of 30 mm obtained by PHW2 model (First Risk) 138
5.41 The \bar{x} chart for wood mandrel with internal diameter of 30 mm obtained by PHW2 model (First Risk) 138
5.42 The R chart for wood mandrel with internal diameter of 30 mm obtained by PHW2 model (First Risk) 139
5.43 The \bar{x} chart for aluminum mandrel with internal diameter of 30 mm obtained by PHW2 model (Second Risk) 139
5.44 The R chart for aluminum mandrel with internal diameter of 30 mm obtained by PHW2 model (Second Risk) 140
5.45 The \bar{x} chart for plastic mandrel with internal diameter of 30 mm obtained by PHW2 model (Second Risk) 140
5.46 The R chart for plastic mandrel with internal diameter of 30 mm obtained
by PHW2 model (Second Risk)

5.47 The \bar{x} chart for wood mandrel with internal diameter of 30 mm obtained by PHW2 model (Second Risk)

5.48 The R chart for wood mandrel with internal diameter of 30 mm obtained by PHW2 model (Second Risk)

5.49 The \bar{x} chart for aluminum mandrel with internal diameter of 0 mm obtained by MW model (First Risk)

5.50 The R chart for aluminum mandrel with internal diameter of 0 mm obtained by MW model (First Risk)

5.51 The \bar{x} chart for plastic mandrel with internal diameter of 0 mm obtained by MW model (First Risk)

5.52 The R chart for plastic mandrel with internal diameter of 0 mm obtained by MW model (First Risk)

5.53 The \bar{x} chart for wood mandrel with internal diameter of 0 mm obtained by MW model (First Risk)

5.54 The R chart for wood mandrel with internal diameter of 0 mm obtained by MW model (First Risk)

5.55 The \bar{x} chart for aluminum mandrel with internal diameter of 0 mm obtained by MW model (Second Risk)

5.56 The R chart for aluminum mandrel with internal diameter of 0 mm obtained by MW model (Second Risk)

5.57 The \bar{x} chart for plastic mandrel with internal diameter of 0 mm obtained by MW model (Second Risk)

5.58 The R chart for plastic mandrel with internal diameter of 0 mm obtained by MW model (Second Risk)

5.59 The \bar{x} chart for wood mandrel with internal diameter of 0 mm obtained by MW model (Second Risk)

5.60 The R chart for plastic mandrel with internal diameter of 0 mm obtained by MW model (Second Risk)

5.61 The \bar{x} chart for aluminum mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.62 The R chart for aluminum mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.63 The \bar{x} chart for plastic mandrel with internal diameter of 10 mm
obtained by MW model (First Risk)

5.64 The R chart for plastic mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.65 The \bar{x} chart for wood mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.66 The R chart for wood mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.67 The \bar{x} chart for aluminum mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.68 The R chart for aluminum mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.69 The \bar{x} chart for plastic mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.70 The R chart for plastic mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.71 The \bar{x} chart for wood mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.72 The R chart for wood mandrel with internal diameter of 10 mm obtained by MW model (First Risk)

5.73 The \bar{x} chart for aluminum mandrel with internal diameter of 20 mm obtained by MW model (First Risks)

5.74 The R chart for aluminum mandrel with internal diameter of 20 mm obtained by MW model (First Risks)

5.75 The \bar{x} chart for plastic mandrel with internal diameter of 20 mm obtained by MW model (First Risks)

5.76 The R chart for plastic mandrel with internal diameter of 20 mm obtained by MW model (First Risks)

5.77 The \bar{x} chart for wood mandrel with internal diameter of 20 mm obtained by MW model (First Risks)

5.78 The R chart for wood mandrel with internal diameter of 20 mm obtained by MW model (First Risks)

5.79 The \bar{x} chart for aluminum mandrel with internal diameter of 20 mm obtained by MW model (Second Risks)

5.80 The R chart for aluminum mandrel with internal diameter of 20 mm obtained by MW model (Second Risks)
obtained by MW model (Second Risks) 219

5.81 The \bar{x} chart for plastic mandrel with internal diameter of 20 mm obtained by MW model (Second Risks) 220

5.82 The R chart for plastic mandrel with internal diameter of 20 mm obtained by MW model (Second Risks) 220

5.83 The \bar{x} chart for wood mandrel with internal diameter of 20 mm obtained by MW model (Second Risks) 221

5.84 The R chart for wood mandrel with internal diameter of 20 mm obtained by MW model (Second Risks) 221

5.85 The \bar{x} chart for aluminum mandrel with internal diameter of 30 mm obtained by MW model (First Risks) 222

5.86 The R chart for aluminum mandrel with internal diameter of 30 mm obtained by MW model (First Risks) 222

5.87 The \bar{x} chart for plastic mandrel with internal diameter of 30 mm obtained by MW model (First Risks) 223

5.88 The R chart for plastic mandrel with internal diameter of 30 mm obtained by MW model (First Risks) 223

5.89 The \bar{x} chart for wood mandrel with internal diameter of 30 mm obtained by MW model (First Risks) 224

5.90 The R chart for wood mandrel with internal diameter of 30 mm obtained by MW model (First Risks) 224

5.91 The \bar{x} chart for aluminum mandrel with internal diameter of 30 mm obtained by MW model (Second Risks) 225

5.92 The R chart for aluminum mandrel with internal diameter of 30 mm obtained by MW model (Second Risks) 225

5.93 The \bar{x} chart for plastic mandrel with internal diameter of 30 mm obtained by MW model (Second Risks) 226

5.94 The R chart for plastic mandrel with internal diameter of 30 mm obtained by MW model (Second Risks) 226

5.95 The \bar{x} chart for wood mandrel with internal diameter of 30 mm obtained by MW model (Second Risks) 227

5.96 The R chart for wood mandrel with internal diameter of 30 mm obtained by MW model (Second Risks) 227

5.97 The \bar{x} chart from K49FD for stress covariates obtained by PHW2 model
5.98 The R chart from K49FD for stress covariates obtained by PHW2 model (First risks) 149

5.99 The \bar{x} chart from K49FD for spool covariate obtained by PHW2 model (First risks) 150

5.100 The R chart from K49FD for spool covariate obtained by PHW2 model (First risks) 150

5.101 The \bar{x} chart from K49FD for stress covariate obtained by PHW2 model (Second risks) 151

5.102 The R chart from K49FD for stress covariate obtained by PHW2 model (Second risks) 151

5.103 The \bar{x} chart from K49FD for spool covariate obtained by PHW2 model (Second risks) 152

5.104 The R chart from K49FD for spool covariate obtained by PHW2 model (Second risks) 152

5.105 The \bar{x} chart from K49FD for stress covariates obtained by MW model (First risks) 153

5.106 The R chart from K49FD for stress covariates obtained by MW model (First risks) 153

5.107 The \bar{x} chart from K49FD for spool covariate obtained by MW model (First risks) 154

5.108 The R chart from K49FD for spool covariate obtained by MW model (First risks) 154

5.109 The \bar{x} chart from K49FD for stress covariates obtained by MW model (Second risks) 155

5.110 The R chart from K49FD for stress covariates obtained by MW model (Second risks) 155

5.111 The \bar{x} chart from K49FD for spool covariates obtained by MW model (Second risks) 156

5.112 The R chart from K49FD for spool covariates obtained by MW model (Second risks) 156

5.113 The \bar{x} chart from simulation [1,2] for first covariate obtained by PHW2 model (First risks) 159

5.114 The R chart from simulation [1,2] for first covariate obtained by PHW2
model (First risks)

5.115 The \bar{x} chart from simulation [1,2] for second covariate obtained by PHW2 model (First Risks)

5.116 The R chart from simulation [1,2] for second covariate obtained by PHW2 model (First risks)

5.117 The \bar{x} chart from simulation [1,2] for first covariate obtained by PHW2 model (Second Risks)

5.118 The R chart from simulation [1,2] for first covariate obtained by PHW2 model (Second Risks)

5.119 The \bar{x} chart from simulation [1,2] for second covariate obtained by PHW2 model (Second Risks)

5.120 The R chart from simulation [1,2] for second covariate obtained by PHW2 model (Second Risks)

5.121 The \bar{x} chart from simulation [0.5,1] for first covariate obtained by PHW2 model (First Risks)

5.122 The R chart from simulation [0.5,1] for first covariate obtained by PHW2 model (First Risks)

5.123 The \bar{x} chart from simulation [0.5,1] for second covariate obtained by PHW2 model (First Risks)

5.124 The R chart from simulation [0.5,1] for second covariate obtained by PHW2 model (First Risks)

5.125 The \bar{x} chart from simulation [0.5,1] for first covariate obtained by PHW2 model (Second Risks)

5.126 The R chart from simulation [0.5,1] for first covariate obtained by PHW2 model (Second Risks)

5.127 The \bar{x} chart from simulation [0.5,1] for second covariate obtained by PHW2 model (Second Risks)

5.128 The R chart from simulation [0.5,1] for second covariate obtained by PHW2 model (Second Risks)

5.129 The \bar{x} chart from simulation [0,0.77] for first covariate obtained by PHW2 model (First Risks)

5.130 The R chart from simulation [0,0.77] for first covariate obtained by PHW2 model (First Risks)

5.131 The \bar{x} chart from simulation [0,0.77] for second covariate obtained by PHW2 model (First Risks)