

UNIVERSITI PUTRA MALAYSIA

REMOVAL OF BASIC AND REACTIVE DYES BY SORPTION USING ETHYLENEDIAMINE-MODIFIED RICE HULL

> ONG SIEW TENG FS 2006 43

REMOVAL OF BASIC AND REACTIVE DYES BY SORPTION USING ETHYLENEDIAMINE-MODIFIED RICE HULL

By

ONG SIEW TENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

July 2006

DEDICATED TO:

My family, Prof. Dr. C. K. Lee, P. S. Keng and friends, for all that you are and what you mean to me.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

REMOVAL OF BASIC AND REACTIVE DYES BY SORPTION USING ETHYLENEDIAMINE-MODIFIED RICE HULL

By

ONG SIEW TENG

July 2006

Chairman: Professor Lee Chnoong Kheng, PhD

Faculty : Science

The effectiveness of using ethylenendiamine modified rice hull (MRH) to remove Basic Blue 3 (BB3) and Reactive Orange (RO16) from single and binary dye solutions was investigated. The optimised modification process was treating 1.00 g of rice hull with 0.02 mol of ethylendiamine (EDA) in a "well stirred" water bath at 80°C for 2 hours. Surface morphology analysis was carried out using scanning electron microscopy (SEM) and atomic force microscopy (AFM).

Batch and column studies were performed under various experimental conditions and the parameters studied included pH, contact time, initial concentration, temperature, agitation rate, particle size, sorbent dosage, bed depth, flow-rate and sorption –desorption process.

Batch studies reveal that sorption was pH and concentration dependent. The sorption of BB3 and RO16 from single and binary dye solution was found to be

endothermic and exothermic, respectively. The kinetics of dye sorption fitted a pseudo-second order rate expression. Maximum sorption capacities calculated from the Langmuir model are 14.68 and 60.24 mg/g for BB3 and RO16, respectively in binary dye solutions. This corresponds to an enhancement of 4.5 and 2.4 folds, respectively, compared to single dye solutions. The dye uptake increased with increasing sorbent dosage.

Column studies indicate that breakthrough was bed depth, flow rate and influent concentration dependent. Unusual breakthrough curves were obtained for RO16, with very rapid initial breakthrough followed by complete retention at low flow rate, influent concentration and high bed depth. The breakthrough curves of BB3 followed the typical S shape of packed- bed systems. Theoretical breakthrough curves at different bed depths and flow rates generated by the two parameter mathematical model agreed well with the experimental data of single dye solution of BB3. In sorption-desorption process, BB3 can be recovered completely by eluting the column with 0.5 M H₂SO₄ and HCl but the column cannot be reused. However the desorption of RO16 from MRH column was unsuccessful.

The effect of initial concentrations as well as light source was investigated in the photodegradation of BB3 and RO16 using TiO_2 catalyst. Both BB3 and RO16 can be degraded using suspended TiO_2 , with either UV or sunlight as the light source.

In the removal of dyes using a combination of sorption and photodegradation, immobilized MRH and TiO_2 were used. The percentage of dye removal increased with increasing irradiation time and the maximum number of dip coatings that can

be applied was ten. MRH dip coated with TiO₂ appeared to be less efficient to remove dyes compared to separate MRH and TiO₂ plates. For all the dye solutions studied, the percentage of dye removal decreased with increasing number of usage of immobilized TiO₂. Highest percentage of dyes removal was obtained when MRH/TiO₂ glass plates were placed at a distance of 2.2 cm apart with air bubbling between them.

In the study of treatment of wastewater from textile industry, optimum pH for the sorption of dyes using MRH was in the range of 2 to 5. Uptake of dye under both batch and continuous flow conditions shows similar behavior as in synthetic solutions. However, photodegradation of the dye from the wastewater was unsuccessful.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYINGKIRAN PEWARNA BASIK DAN REAKTIF DENGAN ERAPAN MENGGUNAKAN SEKAM PADI TERUBAHSUAI ETILENADIAMINA

Oleh

ONG SIEW TENG

Julai 2006

Pengerusi: Profesor Lee Chnoong Kheng, PhD

Fakulti : Sains

Keberkesanan menggunakan sekam padi terubahsuai etilenadiamina (MRH) untuk menyingkirkan bahan pewarna Basik Biru (BB3) dan Reaktif Oren (RO16) daripada larutan secara berasingan dan gabungan telah dikaji. Keadaan optimum untuk modifikasi telah didapati dengan menindakbalaskan 1.00 g sekam padi dengan 0.02 mol etilenadiamina (EDA) di dalam kukus air pada suhu 80°C dan dikacau selama 2 jam. Analisis morphologi dijalankan dengan menggunakan mikroskopi pengimbasan elektron (SEM) dan mikroskopi daya atomik.

Kajian kelompok dan turus telah dijalankan di bawah pelbagai keadaan eksperimen dan parameter-parameter yang dikaji termasuklah pH, masa kontak, kepekatan awal, suhu, kadar pengacauan, saiz pengerap, dos pengerap, ketinggian turus, kadar aliran dan proses erap-penyaherapan.

Daripada kajian kelompok, keputusan menunjukkan erapan adalah dipengaruhi oleh pH dan kepekatan. Proses erapan BB3 dan RO16 dalam larutan secara berasingan dan gabungan masing-masing adalah endotermik dan eksotermik. Kinetik erapan pewarna adalah mengikut kadar pseudo-kedua. Kapasiti maksimum erapan yang dikira dengan menggunakan model Langmuir bagi BB3 dan RO16 masing- masing adalah 14.68 dan 60.24 mg/g dalam larutan gabungan. Kapasiti maksimum ini merupakan peningkatan sebanyak 4.5 dan 2.4 kali masingmasing berbanding dengan larutan pewarna secara berasingan. Pengambilan pewarna meningkat dengan penambahan dos pengerap.

Kajian turus menunjukkan penembusan adalah bergantung kepada ketinggian turus, kadar aliran dan kepekatan awal. Keluk penembusan yang luarbiasa telah diperolehi bagi RO16 dengan penembusan yang cepat pada peringkat awal dan diikuti dengan penahanan sepenuhnya dalam keadaan kadar aliran perlahan, kepekatan awal rendah dan ketinggian turus panjang. Keluk penembusan bagi larutan secara berasingan BB3 adalah mengikut bentuk tipikal 'S' oleh sistem turus padatan. Keluk penembusan teori yang dihasilkan dengan meggunakan model matematik dua-parameter pada ketinggian turus dan kadar aliran yang berbeza mematuhi data eksperimen bagi larutan secara berasingan BB3 boleh diperolehi semula sepenuhnya dengan menggunakan 0.5 M H₂SO₄ dan HCl sebagai eluen tetapi turus tersebut tidak dapat digunakan semula. Walau bagaimanpun, pewarna RO16 tidak berjaya dinyaherap semula daripada turus MRH.

Kesan kepekatan awal dan juga sumber cahaya telah dijalankan dalam fotodegradasi BB3 dan RO16 menggunakan mangkin TiO₂. Kedua-dua BB3 dan RO16 boleh difotodegradasikan dengan menggunakan ampaian TiO₂ dengan UV atau cahaya matahari sebagai sumber cahaya.

Dalam penyingkiran pewarna dengan menggunakan gabungan erapan dan fotodegradasi, MRH dan TiO₂ tergerak-sekat telah digunakan. Peratusan penyingkiran pewarna meningkat dengan penambahan masa sinaran dan bilangan ulangan pencelupan TiO₂ yang boleh diaplikasikan ialah 10 kali. Walau bagaimanapun, MRH yang dicelup dengan TiO₂ adalah kurang berkesan untuk penyingkiran pewarna. Dalam semua larutan pewarna yang dikaji, peratusan penggunaan TiO₂ tergerak-sekat. Peratusan tertinggi penyingkiran pewarna diperolehi dengan jarak 2.2 cm antara kepingan kaca MRH/TiO₂ dengan penggelembungan udara di antaranya.

Dalam kajian perawatan air sisa industri tekstil, pH optimum bagi erapan menggunakan MRH adalah dalam lingkungan 2 hingga 5. Erapan pewarna dari sampel air sisa tekstil dalam kedua-dua kajian kelompok dan turus menunjukkan sifat yang seakan-akan sama seperti dalam larutan sintetik. Tetapi, fotodegradasi bahan pewarna dari air sisa adalah tidak berjaya.

ACKNOWLEDGEMENTS

My deepest gratitude and sincere appreciation is owed to my supervisor, Prof. Dr. Lee Chnoong Kheng for her dedication, invaluable guidance and patience during the course of my laboratory work and throughout the completion of this thesis. Without a great supervisor like her, it would not have been possible for me to go this far.

In addition, I would like to thank my supervisory committee, Prof. Dr. Zulkarnain, Prof. Dr. Md. Jelas and Assoc. Prof. Dr. Asmah for their advice and consistent support throughout the duration of my study.

Special thanks are due to the staff of Chemistry department, especially Madam Choo for their assistance and help that have contributed towards the success of this study.

To my beloved parents and family, I would like to express my deepest affection for their support, never quantify love and understanding.

Last but not least, sincere thanks are extended to all my friends, in particular Pei Sin and Cin Hwee for their moral support and concern all the time. They deserve to have a good break from dealing with piles of my manuscript pages and journal papers scattered over the room.

Finally, financial support from Ministry of Science, Technology and Innovation of Malaysia via NSF scholarship is gratefully acknowledged.

I certify that an Examination Committee has met on 14 July 2006 to conduct the final examination of Ong Siew Teng on her Doctor of Philosophy thesis entitled "Removal of Basic and Reactive Dyes Using Ethylenediamine Modified Rice Hull and Photodegradation" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Taufiq Yap Yun Hin, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Tan Wee Tee, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Abdul Halim Abdullah, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Lim Poh Eng, PhD

Professor School of Chemical Sciences Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Lee Chnoong Kheng, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Zulkarnain Zainal, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Md. Jelas Haron, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Asmah Hj. Yahaya, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ONG SIEW TENG

Date: 1 August 2006

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS AND SYMBOLS	XXV

CHAPTER

1	INTE	RODUCTION	
	1.1	A Brief History of Colourants	1
	1.2	Classification of Colourants	1
	1.3	Dyes and Pigments	2
		1.3.1 Reactive Dye	3
		1.3.2 Cationic Dyes	6
	1.4	Basic Blue 3 and Reactive Orange 16	7
	1.5	Rice Hull	7
	1.6	Ethylenediamine	10
	1.7	Titanium Dioxide	11
	1.8	Textile Wastewater	12
	1.9	Environmental Quality (Sewage and Industrial Regulation)	13
	1.10	Existing Approaches of Dye Removal	13
		1.10.1 Coagulation/ Clarification	14
		1.10.2 Chemical Oxidation	14
		1.10.3 Biological Treatment	16
		1.10.4 Adsorption	17
		1.10.5 Photodegradation	18
	1.11	Significance of Study	19
	1.12	Objectives of Study	21
2	LITE	ERATURE REVIEW	
	2.1	Low-Cost Sorbent	22
		2.1.1 Industrial Waste Materials	22
		2.1.2 Agricultural By-Products	28
		2.1.3 Other Sorbents	33
	2.2	Photodegradation	40
		2.2.1 TiO_2 Suspension	40
		2.2.2 Immobilized TiO_2	47
3	МАТ	`ERIALS AND METHODS	
	3.1	Sorbent	54
		3.1.1 Natural Rice Hull	54
		3.1.2 Modified Rice Hull	54

	Base Treated Rice Hull	54
	Hydrochloric Acid Treated Rice Hull	54
	Quaternized Rice Hull	55
	Citric Acid Treated Rice Hull	55
	Nitrilotriacetic Acid treated Rice Hull	55
	Ethylenediamine Modified Rice Hull	56
3.2	Other Chemical Modifications of Surface Functional Groups	56
	3.2.1 Esterification of Carboxylic Groups	56
	3.2.2 Acetylation of Amino Groups	56
3.3	Reagents	57
3.4	Photocatalyst	57
3.5	Immobilized MRH Glass Plate	57
3.6	Immobilized TiO ₂ Glass Plate	57
3.7	Sorbates	58
3.8	Batch Experiments	58
	3.8.1 Comparative Study on The Uptake of Dyes	
	By Modified Rice Hull	59
	3.8.2 Effect of pH	59
	3.8.3 Effect of Initial Concentration and Contact Time	59
	3.8.4 Sorption Isotherm	60
	3.8.5 Effect of Temperature	60
	3.8.6 Effect of Agitation	60
	3.8.7 Effect of Particle Size	60
	3.8.8 Effect of Sorbent Dosage	61
3.9	Column Study	61
	3.9.1 Effect of Bed Depth	61
	3.9.2 Effect of Flow Rate	61
	3.9.3 Effect Influent Concentration	62
	3.9.4 Sorption-Desorption Study	62
3.10	Photodegradation	62
	3.10.1 Effect of Initial Concentration and Contact Time	63
	3.10.2 Effect of Light Sources	63
3.11	Comparison of the Efficiency of The Removal of Dyes	
	Between Immobilized and Suspended Systems	64
3.12	Combination of Sorption and Photodegradation	64
	3.12.1 Effect of Contact Time	65
	3.12.2 Effect of TiO ₂ Dip Coatings	65
	3.12.3 Effect of Light Sources	65
	3.12.4 Removal of Dyes By Separate TiO ₂ and MRH Plates	
	Compared To Immobilized TiO ₂ Dip Coated MRH	65
	3.12.5 Number of RepetitiveUsage	66
	3.12.6 Effect of Separation Distance Between MRH and	
	TiO_2 plates	66
	3.12.7 Effect of Air Bubbling	66
3.13	Treatment of Industrial Wastewater	66
	3.13.1 Effect of pH	67
	3.13.2 Effect of Contact Time	67
	3.13.3 Effect of Bed Depth	67
3.14	Instrumental Analysis	67

		3.14.1 Fourier-Transform Infrared Spectroscopy	68
		3.14.2 UV-vis Spectrophotometry	68
		3.14.3 Scanning Electron Microscopy	68
		3.14.4 Atomic Force Microscopy	69
4	RESU	ULTS AND DISCUSSION	
	4.1	Comparative Study on The Uptake of Dyes By	
		Modified Rice Hull	70
	4.2	Effect of Amination Processes	71
		4.2.1 Optimization of Modification of Rice Hull Using	
		Ethylenediamine	71
	4.3	Sorption Mechanism	73
	4.4	Chemical Modification of Surface Functional Groups	77
		4.4.1 Esterification of Carboxylic Groups	77
		4.4.2 Acetylation of Amino Groups	82
	4.5	Instrumental Analysis	86
		4.5.1 Fourier-Transform Infrared Spectroscopy	86
		4.5.2 Scanning Electron Microscopy	88
		4.5.3 Atomic Force Microscopy	91
	4.6	Batch Experiments	95
		4.6.1 Comparative Study on The Uptake of Dyes	
		By NRH and MRH	95
		4.6.2 Effect of pH	100
		4.6.3 Effect of Initial Concentration and Contact Time	104
		4.6.4 Sorption Kinetics	10/
		4.6.5 Effect of Agitation	126
		4.6.6 Boundary Layer Effect	130
		4.6.7 Intraparticle Diffussion	13/
		4.0.8 Sorpuon Isouterm	142
		Langmuir Isoineim	142
		Freundlich Isolnerin Druggiger Emmet and Teller (DET Theory)	143
		4.6.0 Effect of Temperature	148
		4.6.10 Effect of Particle Size	149
		4.6.11 Effect of Sorbert Docage	155
	17	Column Study	150
	4.7	4.7.1 Effect Influent Concentration	160
		4.7.2 Effect of Bed Denth	165
		4.7.3 Bed Depth Service Time Model	165
		4.7.4 Effect of Flow Rate	173
		475 Two Parameter Mathematical Model	178
		4.7.6 Sorption-Desorption Study	180
	48	Photodegradation	190
	1.0	4.8.1 Effect of Initial Concentration and Contact Time	190
		4.8.2 Kinetics Study	195
		4.8.3 Effect of Light Source	203
	4.9	Comparison of The Efficiency of The Removal of Dyes	200
		Between Immobilized and Suspended Systems	208
	4.10	Combination of Sorption and Photodegradation	212
		· · ·	

		4.10.1 Effect of Contact Time	212
		4.10.2 Effect of TiO ₂ Dip Coatings	217
		4.10.3 Effect of Light Source	223
		4.10.4 Removal of Dyes By Separate TiO ₂ and MRH Plates	
		Compared To Immobilized TiO ₂ Dip Coated MRH	226
		4.10.5 Number of Repetitive Usages	229
		4.10.6 Effect of Separation Distance Between MRH and	
		TiO_2 plates	234
		4.10.7 Effect of Air Bubbling	235
	4.11	Treatment of Industrial Wastewater	245
		4.11.1 Effect of pH	245
		4.11.2 Effect of Contact Time	247
		4.11.3 Effect of Bed Depth	249
		4.11.4 Photodegradation	249
5	CON	CLUSION	250
	Recor	nmendations for Further Studies	255
BIBL	BIBLIOGRAPHY APPENDIX		256
APPE			268
BIOD	OATA (DF THE AUTHOR	297

LIST OF TABLES

Table		Page
1.1	Properties of Basic Blue 3	8
1.2	Properties of Reactive Orange 16	8
1.3	Composition of rice hull	9
1.4	Physical and chemical properties of Ethylenediamine	11
4.1	Uptake of dyes by chemically modified rice hull	70
4.2	Uptake of dyes by MRH at various reaction temperatures and EDA concentrations for 2 hours	72
4.3	Sorption capacities and correlation coefficients based on pseudo first and second order kinetics	116
4.4	Empirical parameters for predicted q_e , k and h from C_o	122
4.5	The β_L values for BB3-MRH and RO16-MRH systems	138
4.6	Intraparticle diffusion rate constants for BB3-MRH and RO16-MRH systems	141
4.7	Langmuir and Freundlich constants for the sorption of dyes in single and binary solutions	147
4.8	BET parameters for the sorption of dyes in single and binary solutions	152
4.9	Enthalpy (ΔH°) and entropy (ΔS°) change for the sorption of BB3 and RO16 from single and binary dye solutions by MRH	155
4.10	Effect of sorbent dosage on the uptake of dyes	159
4.11	Value of erf (x)	179
4.12	Pseudo first order rate constants and correlation coefficients for the photodegradation of single and binary dye solutions	201
4.13	Pseudo first-order correlation coefficients and half-time values for the photodegradation of single and binary dye solutions with different numbers of TiO_2 dip coatings	222

LISTS OF FIGURES

Figur	Figure	
1.1	General structure of a reactive dye	
4.1	Effect of amination and esterification of NRH on the sorption of BB3 and RO16	78
4.2	Uptakes of BB3 and RO16 by MRH and E-MRH from single dye solutions	80
4.3	Uptakes of BB3 and RO16 by MRH and E-MRH from binary dye solutions	81
4.4	Uptakes of BB3 and RO16 by MRH and A-MRH from single dye solutions	84
4.5	Uptakes of BB3 and RO16 by MRH and A-MRH from binary dye solutions	85
4.6	Infrared spectra of NRH and MRH	87
4.7	SEM micrograph of NRH	89
4.8	SEM micrograph of MRH	89
4.9	SEM micrograph of MRH dip coated with TiO ₂	90
4.10	Selected white spot for EDX analysis	92
4.11	EDX analysis spectrum of the white spot in MRH dip coated with TiO_2	92
4.12	AFM image of NRH with transect line for cross-sectional analysis	93
4.13	AFM image of MRH with transect line for cross-sectional analysis	93
4.14	Surface topography of NRH	94
4.15	Surface topography of MRH	94
4.16	AFM image of MRH after sorption of BB3	96
4.17	AFM image of MRH after sorption of RO16	96
4.18	AFM image of MRH after sorption of binary dyes	97
4.19	Comparative study on the uptake of dyes by MRH and NRH	98

4.20	Effect of pH on the sorption of BB3 by NRH and MRH from single and binary dye solutions	101
4.21	Effect of pH on the sorption of RO16 by NRH and MRH from single and binary dye solutions	103
4.22	Effect of initial concentration and contact time on BB3 sorption from single dye solutions by MRH	105
4.23	Effect of initial concentration and contact time on RO16 sorption from single dye solutions by MRH	106
4.24	Effect of initial concentration and contact time on BB3 sorption from binary dye solutions by MRH	108
4.25	Effect of initial concentration and contact time on RO16 sorption from binary dye solutions by MRH	109
4.26	Pseudo-first order kinetics of BB3 from single dye solutions	111
4.27	Pseudo-first order kinetics of RO16 from single dye solutions	112
4.28	Pseudo-first order kinetics of BB3 from binary dye solutions	113
4.29	Pseudo-first order kinetics of RO16 from binary dye solutions	114
4.30	Pseudo-second order kinetics of BB3 from single dye solutions	117
4.31	Pseudo-second order kinetics of RO16 from single dye solutions	118
4.32	Pseudo-second order kinetics of BB3 from binary dye solutions	119
4.33	Pseudo-second order kinetics of RO16 from binary dye solutions	120
4.34	Typical plots of comparison between the measured and pseudo second-order modeled time profiles for BB3 sorption from single dye solutions by MRH	124
4.35	Typical plots of comparison between the measured and pseudo second-order modeled time profiles for RO16 sorption from single dye solutions by MRH	125
4.36	Typical plots of comparison between the measured and pseudo second-order modeled time profiles for BB3 sorption from binary dye solutions by MRH	127
4.37	Typical plots of comparison between the measured and pseudo second-order modeled time profiles for RO16 sorption from binary dye solutions by MRH	128

4.38	Effect of agitation rate on BB3 and RO16 uptake by MRH from single dye solutions	129
4.39	Effect of agitation rate on BB3 and RO16 uptake by MRH from binary dye solutions	131
4.40	Boundary layer effect on the sorption of BB3 from single dye solutions by MRH	133
4.41	Boundary layer effect on the sorption of RO16 from single dye solutions by MRH	134
4.42	Boundary layer effect on the sorption of BB3 from binary dye solutions by MRH	135
4.43	Boundary layer effect on the sorption of BB3 from binary dye solutions by MRH	136
4.44	Intraparticle diffusion of BB3 and RO16 from single dye solutions in MRH	139
4.45	Intraparticle diffusion of BB3 and RO16 from single dye solutions in MRH	140
4.46	Langmuir isotherms for the sorption of BB3 and RO16 by MRH from single and binary dye solutions	145
4.47	Freundlich isotherms for the sorption of BB3 and RO16 by MRH from single and binary dye solutions	146
4.48	BET isotherms for the sorption of BB3 and RO16 from single and binary dye solutions	150
4.49	Effect of temperature on the sorption of BB3 and RO16 by MRH from single and binary dye solutions	151
4.50	Van't Hoff plots for the sorption of BB3 and RO16 from single and binary dye solutions by MRH	154
4.51	Effect of particle size for the uptake of BB3 and RO16 from single dye solutions by MRH	156
4.52	Effect of particle size for the uptake of BB3 and RO16 from binary dye solutions by MRH	158
4.53	Breakthrough curves of BB3 in single dye solution at different initial concentrations at a flow rate of 10 ml/min	161

4.54	Breakthrough curves of BB3 and RO16 in binary dye solutions at different initial concentrations at a flow rate of 10 ml/min	162
4.55	Breakthrough curves of RO16 in single dye solutions at different initial concentrations at a flow rate of 10 ml/min	164
4.56	Breakthrough curves of BB3 in single dye solutions at different bed depths at a flow rate of 10 ml/min	166
4.57	Breakthrough curves of RO16 in single dye solutions at different bed depths at a flow rate of 10 ml/min	167
4.58	Breakthrough curves of BB3 and RO16 in binary dye solutions at different bed depths at a flow rate of 10 ml/min	169
4.59	BDST plots of single BB3-MRH systems in single dye solutions at a flow rate of 10 ml/min	171
4.60	BDST plots of BB3-MRH systems in binary dye solutions at a flow rate of 10 ml/min	172
4.61	Breakthrough curves of BB3 in single dye solutions at different flow rates at a bed depth of 11.5 cm	174
4.62	Breakthrough curves of BB3 in binary dye solutions at different flow rates at a bed depth of 11.5 cm	175
4.63	Breakthrough curves of RO16 in single dye solutions at different flow rates at a bed depth of 11.5 cm	176
4.64	Breakthrough curves of RO16 in binary dye solutions at different flow rates at a bed depth of 11.5 cm	177
4.65	Theoretical (two parameter model) and experimental breakthrough curves of BB3 from single dye solutions at different bed depths at a flow rate of 10 ml/min	181
4.66	Theoretical (two parameter model) and experimental breakthrough curves of BB3 from binary dye solutions at different bed depths at a flow rate of 10 ml/min	182
4.67	Theoretical (two parameter model) and experimental breakthrough curves of BB3 from single dye solutions at different flow rates at a bed depth of 11.5 cm	183
4.68	Theoretical (two parameter model) and experimental breakthrough curves of BB3 from binary dye solutions at different flow rates at a bed depth of 11.5 cm	184

4.69	Elution process of BB3 from single dye solutions in MRH column using 0.5 M H_2SO_4 and 0.5 M HCl	185
4.70	Elution process of BB3 from single dye solutions in MRH column using $0.1 \text{ M H}_2\text{SO}_4$ and 0.1 M HCl	186
4.71	Formation of hydrogen bond between the MRH and RO16	189
4.72	Effect of initial concentration and contact time for the photodegradation of BB3 from single dye solutions	191
4.73	Effect of initial concentration and contact time for the photodegradation of RO16 from single dye solutions	192
4.74	Effect of initial concentration and contact time for the photodegradation of BB3 from binary dye solutions	193
4.75	Effect of initial concentration and contact time for the photodegradation of RO16 from binary dye solutions	194
4.76	First order kinetics for the photodegradation of BB3 from single dye solutions at different initial concentration and contact time	197
4.77	First order kinetics for the photodegradation of RO16 from single dye solutions at different initial concentration and contact time	198
4.78	First order kinetics for the photodegradation of BB3 from binary dye solutions at different initial concentration and contact time	199
4.79	First order kinetics for the photodegradation of RO16 from binary dye solutions at different initial concentration and contact time	200
4.80	Effect of light sources for the photodegradation of BB3 in single dye solutions	204
4.81	Effect of light sources for the photodegradation of RO16 in single dye solutions	205
4.82	Effect of light sources for the photodegradation of BB3 in binary dye solutions	206
4.83	Effect of light sources for the photodegradation of RO16 in binary dye solutions	207
4.84	Comparison of efficiency between immobilized and suspended system in the removal of BB3 from single dye solutions	209

4.85	Comparison of efficiency between immobilized and suspended system in the removal of RO16 from single dye solutions	210
4.86	Effect of contact time in the removal of BB3 from single dye solutions	213
4.87	Effect of contact time in the removal of RO16 from single dye solutions	214
4.88	Effect of contact time in the removal of BB3 from binary dye solutions	215
4.89	Effect of contact time in the removal of RO16 from binary dye solutions	216
4.90	Effect of TiO_2 dip coatings in the removal of BB3 from single dye solutions	218
4.91	Effect of TiO_2 dip coatings in the removal of RO16 from single dye solutions	219
4.92	Effect of TiO_2 dip coatings in the removal of BB3 from binary dye solutions	220
4.93	Effect of TiO_2 dip coatings in the removal of RO16 from binary dye solutions	221
4.94	Effect of light sources for the photodegradation of BB3 and RO16 from single dye solutions	224
4.95	Effect of light sources for the photodegradation of BB3 and RO16 from binary dye solutions	225
4.96	Comparison between immobilized TiO_2 and MRH and immobilized MRH dip coated with TiO_2 in the removal of BB3 and RO16 from single dye solutions	227
4.97	Comparison between immobilized TiO_2 and MRH and immobilized MRH dip coated with TiO_2 in the removal of BB3 and RO16 from binary dye solutions	228
4.98	Repetitive usage of dip coated TiO_2 in the removal of BB3 from single dye solutions	230
4.99	Repetitive usage of dip coated TiO_2 in the removal of RO16 from single dye solutions	231

4.100	Repetitive usage of dip coated TiO_2 in the removal of BB3 from binary dye solutions	232
4.101	Repetitive usage of dip coated TiO_2 in the removal of RO16 from binary dye solutions	233
4.102	Effect of MRH/ TiO ₂ separation distance in the removal of BB3 from single dye solutions	236
4.103	Effect of MRH/ TiO ₂ separation distance in the removal of RO16 from single dye solutions	237
4.104	Effect of MRH/ TiO ₂ separation distance in the removal of BB3 from binary dye solutions	238
4.105	Effect of MRH/ TiO ₂ separation distance in the removal of RO16 from binary dye solutions	239
4.106	Effect of air bubbling in the removal of BB3 from single dye solutions	240
4.107	Effect of air bubbling in the removal of RO16 from single dye solutions	241
4.108	Effect of air bubbling in the removal of BB3 from binary dye solutions	242
4.109	Effect of air bubbling in the removal of RO16 from binary dye solutions	243
4.110	Effect of pH in the colour removal by MRH from textile wastewater	246
4.111	Effect of contact time in the colour removal by MRH from textile wastewater	248
4.112	Breakthrough curves of textile wastewater at different bed depths at a flow rate of 10ml/min	250

