Cryptanalysis on prime power RSA modulus of the form *N=prq*

Abstract

Let $\langle N = p^r q \rangle$ be an RSA prime power modulus for $\langle r | geq 2 \rangle$ and $\langle q . This paper propose three new attacks. In the first attack we consider the class of public exponents satisfying an equation <math>\langle e X - N Y = u p^r + \frac{q^r}{u} + Z \rangle$ for suitably small positive integer $\langle u \rangle$. Using continued fraction we show that $\langle \frac{q^r}{u} + Z \rangle$ and leads to the convergents of the continued fraction expansion of $\langle \frac{r}{v} + Z \rangle$ and leads to the successful factorization of $\langle p^r q \rangle$. Moreover we show that the number of such exponents is at least $\langle N^{r} + 3 + 2(r+1) \rangle$, where $\langle \frac{r+3}{2(r+1)} \rangle$ and third attacks works when $\langle k \rangle$ RSA public keys $\langle (N_i, e_i) \rangle$ are such that there exist $\langle k \rangle$ relations of the shape $\langle e_i x - N_i y_i = p_i^r u + \frac{r_i^r}{u} + z_i^i \rangle$ or of the shape $\langle e_i x_i - N_i y = p_i^r u + \frac{r_i^r}{u} + z_i^i \rangle$ where the parameters $\langle x \rangle$, $\langle x_i \rangle$, $\langle y \rangle$, $\langle y_i \rangle$, $\langle z_i \rangle$ are suitably small in terms of the prime factors of the moduli. We apply the LLL algorithm, and show that our strategy enable us to simultaneously factor the $\langle k \rangle$ prime power RSA moduli $\langle N_i \rangle$.

Keyword: Continued fraction; Diophantine approximations; Factorization; LLL algorithm; RSA prime power; Simultaneous