Cryptanalysis on prime power RSA modulus of the form $N=p r q$

Abstract

Let $\backslash\left(\mathrm{N}=\mathrm{p}^{\wedge} \mathrm{r} \mathrm{q} \backslash\right)$ be an RSA prime power modulus for $\backslash(\mathrm{r} \backslash$ geq $2 \backslash)$ and $\backslash(\mathrm{q}<\mathrm{p}<2 \mathrm{q} \backslash)$. This paper propose three new attacks. In the first attack we consider the class of public exponents satisfying an equation $\backslash\left(e X-N Y=u p^{\wedge} r+\backslash f r a c\left\{q^{\wedge} r\right\}\{u\}+Z \backslash\right)$ for suitably small positive integer $\backslash(\mathrm{u})$). Using continued fraction we show that $\backslash(\mid \mathrm{frac}\{\mathrm{Y}\}\{\mathrm{X}\} \backslash)$ can be recovered among the convergents of the continued fraction expansion of $\backslash(\mid f r a c\{e\}\{N\} \backslash)$ and leads to the successful factorization of $\backslash\left(N p^{\wedge} \mathrm{r} q \backslash\right)$. Moreover we show that the number of such exponents is at least $\backslash\left(\mathrm{N}^{\wedge}\{\backslash f r a c\{r+3\}\{2(\mathrm{r}+1)\}\right.$-\varepsilon $\left.\} \backslash\right)$ where $\backslash($ (varepsilon $\backslash \mathrm{geq} 0 \backslash)$ is arbitrarily small for large $\backslash(\mathrm{N})$. The second and third attacks works when $\backslash(\mathrm{k} \backslash)$ RSA public keys $\backslash\left(\left(N_{_} i, e _i\right) \backslash\right)$ are such that there exist $\backslash(k \backslash)$ relations of the shape $\backslash\left(e_{-} i x-N_{i} i y_{_} i=p _i \wedge r u+\right.$ where the parameters $\backslash(x \backslash), \backslash\left(x _i \backslash\right), \backslash(y \backslash), \backslash\left(y_{-} i\right), \backslash\left(z_{_} i \backslash\right)$ are suitably small in terms of the prime factors of the moduli. We apply the LLL algorithm, and show that our strategy enable us to simultaneously factor the $\backslash(\mathrm{k} \backslash)$ prime power RSA moduli $\backslash\left(\mathrm{N} _\mathrm{i} \backslash\right)$.

Keyword: Continued fraction; Diophantine approximations; Factorization; LLL algorithm; RSA prime power; Simultaneous

