UNIVERSITI PUTRA MALAYSIA

EFFECTS OF FEEDING METABOLITES FROM *LACTOBACILLUS PLANTARUM* STRAINS ON LIPID METABOLISM, GUT MORPHOLOGY AND GROWTH PERFORMANCE OF BROILER CHICKENS

NGUYEN TIEN THANH

FP 2008 6
EFFECTS OF FEEDING METABOLITES FROM LACTOBACILLUS PLANTARUM STRAINS ON LIPID METABOLISM, GUT MORPHOLOGY AND GROWTH PERFORMANCE OF BROILER CHICKENS

By

NGUYEN TIEN THANH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

July 2008
DEDICATION

Dedicated to my Dearest Mother, my beloved family and my brother and sisters
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

EFFECTS OF FEEDING METABOLITES FROM LACTOBACILLUS PLANTARUM STRAINS ON LIPID METABOLISM, GUT MORPHOLOGY AND GROWTH PERFORMANCE OF BROILER CHICKENS

By

NGUYEN TIEN THANH

July 2008

Chairman: Associate Professor Loh Teck Chwen, PhD
Faculty: Agriculture

Four experiments were conducted to study the effects of feeding metabolite combinations produced from six strains of L. plantarum on the performance of broiler chickens. The inhibitory activity of different combinations of metabolites produced by locally isolated L. plantarum against various pathogens was studied in the first experiment. Sixty-three combinations of metabolites obtained from 6 strains of L. plantarum: UL4, TL1, RS5, RI11, RG14 and RG11 were equally and homogenously mixed. The inhibitory activity was then determined against 5 selected indicators, which are E. coli, L. monocytogenes, S. typhimurium, Vancomycin resistant enterococci (VRE) and Pediococcus acidilactici. The inhibitory activity was measured based on the diameter of inhibitory zone. Four combinations with the highest inhibitory scores were identified. The combination of four strains RS5, RI11, RG14 and RG11 has given the highest score, followed by the combinations of TL1, RG14 and RG11 strains, combinations of TL1, RI11 and RG11 strains, and combinations of TL1, RS5, RI11 and RG14 strains. These results indicate that
different combinations of metabolites had different antibacterial activity, which could be used in food and feed industries. Combinations of different metabolites further enhance the antimicrobial activity.

Four combinations of metabolites with the highest inhibitory activity were used in the following experiment to study the performance of broiler chickens. A total of 432 day-old male Ross broiler chicks were raised to 42 days of age in deep litter system. Each pen consisted of 12 chicks and was randomly allocated to the open house with wood shavings litter. The birds were vaccinated (IB-ND live vaccine, Fort Dodge, USA) against infectious bronchitis (IB) and Newcastle disease (ND). The birds were also vaccinated with IBD vaccine (MyVac UPM93, Malaysia) against infectious bursal disease (IBD) on day 14. Wing band was applied to all of the birds for identification. Water and feed were provided ad libitum. The feed intake and body weight were recorded weekly. The starter and finisher diets were offered to the birds from 0 - 21 and 22 - 42 days of age, respectively. The dietary treatments consisted of: (i) corn-soybean based diet without antibiotic (-ve control) diet; (ii) basal diet with neomycin and oxytetracyclin (+ve control); (iii) basal diet supplemented with 0.3% metabolite combinations of *L. plantarum* RS5, RI11, RG14 and RG11 (Com3456); (iv) basal diet supplemented with 0.3% metabolite combinations of *L. plantarum* TL1, RG14 and RG11 (Com256); (v) basal diet supplemented with 0.3% metabolite combinations of *L. plantarum* TL1, RI11 and RG11 (Com246); (vi) basal diet supplemented with 0.3% metabolite combinations of *L. plantarum* TL1, RS5, RG14 and RG11 (Com2456). Greater final body weight (BW), weight gain (WG), average daily gain (ADG), volatile fatty acids (VFA) and lower feed conversion ratio (FCR) were significantly (p<0.05) found in the birds fed with the 4 metabolite combinations.
Supplementation of metabolites combination also increased faecal lactic acid bacteria (LAB) population, villi height of small intestine and lowered plasma and meat cholesterol and faecal Enterobacteriaceae (ENT) population.

In the third experiment, the effect of feeding different dosages of Com3456 obtained from the second experiment on the performance of broiler chickens was studied. A total of 504 day-old male Ross broiler chicks were grouped into 7 treatments and offered with different diets: (i) standard corn-soybean based diet (negative control); (ii) standard corn-soybean based diet + neomycin and oxytetracycline (positive control); (iii) standard corn-soybean based diet + 0.1% metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456); (iv) standard corn-soybean based diet + 0.2% of Com3456; (v) standard corn-soybean based diet + 0.3% of Com3456 (vi) standard corn-soybean based diet + 0.4% of Com3456 and (vii) standard corn-soybean based diet + 0.5% of Com3456. Supplementation of Com3456 with different dosages improved growth performance, reduced ENT and increased LAB count, lowered plasma and meat cholesterol, and increased villi height of small intestine and volatile fatty acids (VFA). Nevertheless, abdominal fat deposition was not affected by Com3456 metabolites. Only slight increase of antibody titers against Newcastle disease, infectious bronchitis and infectious bursal disease was found in those birds supplemented with the metabolites. Treatment with 0.2% Com3456 had the best results with minimal cost, especially in terms of growth performance, FCR and plasma and meat cholesterol reduction among other dosages. These results indicate that 0.2% is optimum dosages to be included in the diets of broiler chickens in order to replace antimicrobial growth promoters (AGP).
In the last experiment, the very low-density lipoprotein (VLDL) lipid profiles, intestinal LAB count and bile salts deconjugation of LAB were studied. The results showed that metabolite combinations supplemented in broilers feed reduced free cholesterol and cholesterol esters in VLDL particles and increased LAB count in digesta of small intestine. The results also suggest that LAB are able to deconjugate bile salts and lead to the increase of cholesterol utilization for synthesizing new conjugated bile salts. These properties of metabolite combinations in the diets of broiler chickens contribute to the reduction of cholesterol in plasma and meat.
KESAN PEMBERIAN METABOLIT DARIPADA STRAIN
LACTOBACILLUS PLANTARUM TERHADAP METABOLISME LIPID,
MORPHOLOGI SALUR GASTRO-USUS DAN PRESTASI
PERTUNBAHAN AYAM PEDAGING

Oleh

NGUYEN TIEN THANH

July 2008

Pengerusi: Profesor Madya Loh Teck Chwen, PhD
Fakulti: Pertanian

Empat eksperimen telah dijalankan untuk mengkaji kesan kombinasi metabolit yang dihasilkan daripada 6 strain *L. plantarum* ke atas prestasi ayam pedaging. Aktiviti perencat daripada kombinasi metabolit berlainan yang dihasilkan melalui pemencilan *L. plantarum* terhadap pelbagai patogen telah dikaji dalam eksperimen pertama. Enam puluh tiga kombinasi metabolit diperolehi daripada enam strain *L. plantarum*: UL4, TL1, RS5, RI11, RG14 dan RG11 yang dicampur secara sekata dan homogenus. Aktiviti perencat telah dijalankan ke atas 5 petunjuk terpilih, iaitu *E. coli*, *L. monocytogenes*, *S. typhimurium*, Vancomycin resistan enterococci (VRE) dan *Pediococcus acidilactici*. Aktiviti perencat ditindakan berdasarkan kepada diameter zon perencat. Empat kombinasi metabolit dengan skor perencat tertinggi telah dikenal pasti. Kombinasi bagi empat strain RS5, RI11, RG14 dan RG11 menunjukkan skor tertinggi, diikuti dengan kombinasi strain TL1, RG14 dan RG11, kombinasi strain TL1, RI11 dan RG11, dan kombinasi strain TL1, RS5, RI11 dan RG14. Keputusan ini menunjukkan perbezaan kombinasi metabolit yang berbeza
menyebabkan berbezaan aktiviti antibakteria, maklumat maklumat ini boleh diguna
pakai dalam industri makanan manusia dan makanan haiwan. Pada umunia
kombinasi metabolit ini akan mempertingkatkan aktiviti antimikrob.

Empat kombinasi metabolit dengan aktiviti perencat tertinggi telah digunakan dalam
eksperimen kedua untuk mengkaji prestasi ayam pedaging. Sejumlah 432 ekor ayam
pedaging Ross jantan yang diperoleh dari sebuah syarikat tempatan telah ditemnark
dari umur satu hari hingga 42 hari menggunakan sistem sarap. Setiap reban terdiri
daripada 12 anak ayam yang ditempatkan secara rawak dalam sistem rumah terbuka
dengan menggunakan sarap tebal berasaskan habuk kayu. Ayam disuntikkan dengan
vaksin (IB-ND vaksin hidup, Fort Dodge, USA) IBD dan ND. Ayam pedaging ini
juga diberikan vaksin IBD (MyVac UPM93, Malaysia) pada hari ke-14. ‘Wing
banding’ juga dikenakan kepada semua ayam bagi memudahkan pengecaman. Air
dan makanan dibekalkan secara ad libitum. Makanan dan berat badan ditimbang
setiap minggu. Makanan permulaan dan penghabisan masing-masing diberikan
tepi ayam dari 0-21 dan 22-42 hari. Rawatan terdiri daripada: (i) diet berasaskan
jagung-kacang soya tanpa antibiotik (kawalan -ve); (ii) diet ditambahkan antibiotik
(kawalan +ve); (iii) diet asas ditambahkan dengan 0.3% kombinasi metabolit L.
plantarum RS5, RI11, RG14 dan RG11 (Com3456); (iv) diet asas ditambahkan
dengan 0.3% kombinasi metabolit L. plantarum TL1, RG14 dan RG11 (Com 256);
(v) diet asas ditambahkan dengan 0.3% kombinasi metabolit L. plantarum TL1, RI11
dan RG11 (Com 246) dan (vi) diet asas ditambahkan dengan 0.3% kombinasi
metabolit L. plantarum TL1, RI11, RG14 dan RG11 (Com 2456). Kelebihan berat
badan akhir, pertambahan berat badan, purata pertambahan berat harian, VFA dan
kadar pertukaran makanan yang lebih rendah diperoleh daripada kumpulan ayam
yang diberikan metabolit. Pemberian kombinasi metabolit juga meningkatkan populasi bakteria asid laktik tinja, ketinggian vilus usus kecil di samping merendahkan kolesterol plasma dan populasi ENT tinja.

Dalam eksperimen ketiga, kesan dos Com3456 yang berlainan yang diperolehi daripada eksperimen kedua telah dikaji ke atas prestasi ayam pedaging. Sejumlah 504 ekor ayam pedaging Ross jantan dibahagikan kepada 7 kumpulan melalui dan diberikan rawatan pemberian diet yang berbeza seperti berikan: (i) diet kawalan berasaskan jagung-kacang soya (kawalan negatif); (ii) diet kawalan berasaskan jagung-kacang soya + neomycin dan oxytetracyclin (kawalan positif); (iii) diet kawalan berasaskan jagung-kacang soya + 0.1% kombinasi metabolit L. plantarum strain RS5, RI11, RG14 dan RG11 (Com3456); (iv) diet kawalan berasaskan jagung-kacang soya + 0.2% kombinasi metabolit Com3456; (v) diet kawalan berasaskan jagung-kacang soya + 0.3% kombinasi metabolit Com3456; (vi) diet kawalan berasaskan jagung-kacang soya + 0.4% kombinasi metabolit Com3456 dan (vii) diet kawalan berasaskan jagung-kacang soya + 0.5% kombinasi metabolit Com3456.

Pemberian Com3456 yang berlainan dos meningkatkan prestasi pertumbuhan, merendahkan ENT dan meningkatkan bilangan LAB, merendahkan kolesterol plasma dan daging, serta meningkatkan ketinggian vilus usus kecil dan VFA. Walau bagaimana pun, pertambahan lemak abdomen tidak dipengaruhi oleh metabolit. Hanya sedikit peningkatan pada antibodi titer "Newcastle disease", "infection bronchitis" dan "infectious bursal disease" dijumpai pada ayam yang diberikan metabolit. Rawatan dengan 0.2% Com3456 memberi keputusan yang terbaik, terutamanya dari segi prestasi pertumbuhan, kadar pertukaran makanan dan penurunan kolesterol plasma dan daging dibandingkan dengan dos lain. Keputusan
menunjukkan bahawa 0.2% merupakan optimum untuk menggantikan AGP di dalam diet ayam pedaging.

Dalam eksperimen terakhir, profil lemak VLDL, bilangan LAB dalam usus dan "bile salt deconjugation" oleh LAB telah dikaji. Keputusan menunjukkan kombinasi metabolit dalam makanan ayam pedaging dapat merendahkan "free cholesterol" dan "cholesterol ester" di dalam VLDL serta meningkatkan LAB dalam "digesta" usus kecil. Keputusan ini juga mencadangkan LAB berupaya untuk "menyahkonjugat bile salts" serta menggalakkan penggunaan kolesterol untuk mensitesiskan "bile salts" konjugat baru. Kandungan daripada kombinasi metabolit dalam diet ayam pedaging menyumbang kepada penurunan kolesterol dalam plasma dan daging.
ACKNOWLEDGEMENTS

I would like to express my profound gratitude to Associate Professor Dr. Loh Teck Chwen, chairman of the supervisory committee for granting Graduate Research Assistantship and his beneficial advice, guidance, scientific criticism and invaluable suggestion during the study.

I also wish to express my deep gratitude and appreciation to members of the supervisory committee: Professor Dr. Mohd Hair Bejo, Associate Professor Dr. Azhar Kasim and Associate Professor Dr. Foo Hooi Ling for their guidance, concern, patience, inspiring and constructive comments throughout the course of the study.

Deep appreciation is also extended to School of Graduate Studies, Universiti Putra Malaysia for granting Graduate Research Fellowship and providing excellent services and support. Special thanks to Prof. Raha, Head of Department, Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Dr. Goh Yong Meng from Physiology Laboratory, Faculty of Veterinary Medicine for the supports. I wish to thank all lecturers and staffs from the Department of Animal Science, Faculty of Agriculture, UPM for their support. Thanks are also due to staffs of Fermentation Unit, Bacteriology Laboratory, Faculty of Biotechnology and Biomolecular Sciences, Microbiology and Pathology Laboratory 1, Faculty of Veterinary Medicine, Food Engineering Laboratory, Faculty of Food Science, UPM for the enthusiastic supports. Thanks to Hamidah Binti Ali Kamarulzaman for translating the abstract. Thanks to Dr. Le Ngoc Thach for the support.

Sincere thanks and appreciation is also extended to my institution, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City for the supports. Finally, the deepest gratitude goes to my dearest Mom, who dedicated her whole life to her children and passed away in 1992, my beloved wife for taking care of our children during the study leave, my brother Nguyen Tien Dai and sisters for the support during my absence.
I certify that an Examination Committee met on 28 July, 2008 to conduct the final examination of Nguyen Tien Thanh on his PhD of Agriculture Science thesis entitled “Effects of Feeding Metabolites from Lactobacillus Plantarum Strains on Lipid Metabolism, Gut Morphology and Growth Performance of Broiler Chickens” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 a Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Halimatun Yaakub, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Abdul Razak Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Awis Qurni Sazili, PhD
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Wan Zahari Mohamed, PhD
Malaysia Agricultural Research Development Institute
(Independent Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: ___________ 2008
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of PhD of Agriculture Science. The members of the Supervisory Committee were as follows:

Loh Teck Chwen, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Hair Bejo, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Azhar Bin Kasim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 September 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NGUYEN TIEN THANH
Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxiii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

I INTRODUCTION

II LITERATURE REVIEW

2.1 Antimicrobial Growth Promoters in Animal Production
 2.1.1 Antibiotic Resistance of Bacteria 4
 2.1.2 Mode of Action and Benefits of Antimicrobial Growth Promoters 5

2.2 Background of Lactic Acid Bacteria
 2.2.1 Basic Characteristics 6
 2.2.2 Classification 7

2.3 Lactic Acid Bacteria Fermentation
 2.3.1 Fermentation 9
 2.3.2 Pathways of Lactic Acid Bacteria Fermentation 10
 2.3.3 Benefits of Basic Fermentative Metabolites 12

2.4 Lactic Acid Bacteria Roles in The Gut
 2.4.1 Benefits of Lactic Acid Bacteria in Lowering Cholesterol 20
 2.4.2 Lactic Acid Bacteria in Enhancing Immunity 23
 2.4.3 Lactic Acid Bacteria in Reducing Enterobacteriaceae Population 25

2.5 Chicken Intestinal Morphology
 2.5.1 General Overview 26
 2.5.2 Crypts and Villi 28
 2.5.3 Factors Affecting Villi Height 29

2.6 Bile Metabolism
 2.6.1 Bile Synthesis, Storage and Secretion 30
 2.6.2 Bile Acids Conjugation and Its Functions 32
 2.6.3 Enterohepatic Circulation 34
 2.6.4 Bacterial Alteration of Bile Acids 34

2.7 Lipid Metabolism
 2.7.1 General Background 36
 2.7.2 Intestinal Uptake of Lipids 36
 2.7.3 Cholesterol and Its Metabolism 38
 2.7.4 Lipoprotein Complexes 42
2.7.5 Very Low-density Lipoprotein Metabolism 43
2.7.6 Fat Tissue in Broiler Chickens 47
2.8 Microbial Community in Gastrointestinal Tract 48
2.8.1 General Information 48
2.8.2 pH Value in Chicken Gastrointestinal Tract 50
2.8.3 Microflora in Different Parts of Chicken Gastrointestinal Tract 52
2.9 Chicken Maternal Antibody and Antibody Response 54

III INHIBITORY ACTIVITY OF DIFFERENT METABOLITE COMBINATIONS FROM STRAINS OF LACTOBACILLUS PLANTARUM AGAINST PATHOGENS 55
3.1 Introduction 55
3.2 Materials and Methods 57
 3.2.1 Treatments and Experimental Design 57
 3.2.2 Strains, Media and Metabolite Preparation 57
 3.2.3 Agar-well Diffusion Method 59
 3.2.4 Large-scale Fermentation Profile 59
 3.2.5 Assessment of Inhibitory Zone Diameter 62
 3.2.6 Data Analysis 63
3.3 Results 63
 3.3.1 Inhibitory Test Results of Metabolites against Bacterial Strains 63
 3.3.2 Characteristics of Metabolites from Lactobacillus plantarum Strains 69
3.4 Discussion 74
 3.4.1 Antimicrobial Activity of Metabolite Combinations 74
 3.4.2 Characteristics of Metabolites from Lactobacillus plantarum Strains 77
3.5 Conclusions 78

IV EFFECTS OF FEEDING DIFFERENT METABOLITE COMBINATIONS PRODUCED BY LACTOBACILLUS PLANTARUM ON THE PERFORMANCE OF BROILER CHICKENS 79
4.1 Introduction 79
4.2 Materials and Methods 80
 4.2.1 Broiler chickens and Experimental Design 80
 4.2.2 Data and Sample Collection 81
 4.2.3 Faecal Lactic Acid Bacteria and Enterobacteriaceae Count 83
 4.2.4 Small Intestine Histology 84
 4.2.5 Total Plasma Cholesterol Level 85
 4.2.6 Meat Cholesterol Determination 85
 4.2.7 Volatile Fatty Acid Determination 87
 4.2.8 pH Determination 88
 4.2.9 Serological Assay 88
 4.2.10 Data Analysis 89
4.3 Results 89
 4.3.1 Growth Performance 89
4.3.2 Faecal Lactic Acid Bacteria and Enterobacteriaceae Count
4.3.3 Small Intestinal Villi Height and Crypt Depth
4.3.4 Plasma and Meat Cholesterol
4.3.5 Relationship of Plasma and Meat Cholesterol and Faecal Microflora Count
4.3.6 Faecal Volatile Fatty Acids
4.3.7 Faecal pH
4.3.8 Abdominal Fat Pad Weight
4.3.9 Antibody Titers against IBD, ND and IB

4.4 Discussion
4.4.1 Growth Performance
4.4.2 Lactic Acid Bacteria and Enterobacteriaceae Population
4.4.3 Villi Height and Crypt Depth
4.4.4 Plasma and Meat Cholesterol
4.4.5 Faecal pH and Volatile Fatty Acids
4.4.6 Abdominal Fat Pad Weight
4.4.7 Antibody Titers against IBD, ND and IB

4.5 Conclusions

5.1 Introduction
5.2 Materials and Methods
5.2.1 Animal and Experimental Design
5.2.2 Data and Sample Collection
5.2.3 Data Analysis
5.3 Results
5.3.1 Growth Performance
5.3.2 Faecal Lactic Acid Bacteria and Enterobacteriaceae Count
5.3.3 Intestinal Villi Height and Crypt Depth
5.3.4 Plasma and Meat Cholesterol
5.3.5 Relationship of Plasma and Meat Cholesterol and Faecal Microflora Count
5.3.6 Faecal Volatile Fatty Acids
5.3.7 Faecal pH
5.3.8 Abdominal Fat Pad Weight
5.3.9 Antibody Titer against IBD, ND and IB

5.4 Discussion
5.4.1 Growth Performance
5.4.2 Lactic Acid Bacteria and Enterobacteriaceae Count
5.4.3 Villi Height and Crypt Depth
5.4.4 Plasma and Meat Cholesterol
5.4.5 Faecal pH and Volatile Fatty Acids
5.4.6 Abdominal Fat Pad Weight
5.4.7 Antibody Titers against IBD, ND and IB

5.5 Conclusions
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Major lactic acid bacteria in fermented products</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Characteristics and functions of the major lipoproteins in chicken</td>
<td>44</td>
</tr>
<tr>
<td>2.3 pH of the digestive tract contents of avian species</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Various metabolites and their combinations produced from Lactobacillus plantarum</td>
<td>58</td>
</tr>
<tr>
<td>3.2a Inhibitory score rank of 63 combinations of metabolites produced by 6 strains of Lactobacillus plantarum against pathogens</td>
<td>66</td>
</tr>
<tr>
<td>3.2b Inhibitory score rank of 63 combinations of metabolites produced by 6 strains of Lactobacillus plantarum against pathogens (cont.)</td>
<td>67</td>
</tr>
<tr>
<td>3.2c Inhibitory score rank of 63 combinations of metabolites produced by 6 strains of Lactobacillus plantarum against pathogens (cont.)</td>
<td>68</td>
</tr>
<tr>
<td>3.3 Average inhibitory zone of 63 combinations of metabolites produced by 6 strains of Lactobacillus plantarum against different pathogens</td>
<td>69</td>
</tr>
<tr>
<td>3.4 Average optical density of different Lactobacillus plantarum strains culture during 24 hours of fermentation</td>
<td>71</td>
</tr>
<tr>
<td>3.5 Average pH of different Lactobacillus plantarum strains culture during 24 hours of fermentation</td>
<td>72</td>
</tr>
<tr>
<td>4.1 Percentage composition of starter diet</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Percentage composition of finisher diet</td>
<td>83</td>
</tr>
<tr>
<td>4.3 Faecal lactic acid bacteria and Enterobacteriaceae count at weeks 3 and 6 of treatments supplemented with different metabolite combinations</td>
<td>91</td>
</tr>
<tr>
<td>4.4 Villi height and crypt depth in small intestine at weeks 3 and 6 of treatments supplemented with different metabolite combinations</td>
<td>95</td>
</tr>
<tr>
<td>4.5 The correlation coefficient and p-value between body weight and villi height at weeks 3 and 6</td>
<td>97</td>
</tr>
<tr>
<td>4.6 Plasma and meat cholesterol at weeks 3 and 6 of treatments supplemented with different metabolite combinations</td>
<td>99</td>
</tr>
</tbody>
</table>
4.7 Pearson correlation coefficients (r) and p-value of cholesterol, lactic acid bacteria and *Enterobacteriaceae* count

4.8 Faecal volatile fatty acid at weeks 3 and 6 of treatments supplemented with different metabolite combinations

4.9 Faecal pH at weeks 3 and 6 of treatments supplemented with different metabolite combinations

4.10 Abdominal fat pad weight and relative percentage compared to body weight at weeks 3 and 6 of treatments supplemented with different metabolite combinations

4.11 Antibody titers of IBD, ND and IB at weeks 4 and 5 treatments supplemented with different metabolite combinations

5.1 Percentage composition of starter diet

5.2 Percentage composition of finisher diet

5.3 Faecal lactic acid bacteria and *Enterobacteriaceae* count at weeks 3 and 6 of treatments supplemented with different dosages of metabolites from Com3456

5.4 Villi height and crypt depth in small intestine at weeks 3 and 6 of treatments supplemented with different dosages of metabolites from Com3456

5.5 Correlation coefficient between body weight and villi height of duodenum, jejunum and ileum

5.6 Plasma and meat cholesterol at weeks 3 and 6 of treatments supplemented with different dosages of metabolites from Com3456

5.7 Pearson correlation coefficients (r) and p-value of cholesterol, lactic acid bacteria and *Enterobacteriaceae* count

5.8 Faecal volatile fatty acid at weeks 3 and 6 of treatments supplemented with different dosages of metabolites from Com3456

5.9 Faecal pH at weeks 3 and 6 of treatments supplemented with different dosages of metabolites from Com3456

5.10 Abdominal fat weight and percentage compared to body weight at weeks 3 and 6 of treatments supplemented with different dosages of metabolites from Com3456
5.11 Antibody titers of IBD, ND and IB at weeks 3 and 6 of treatments supplemented with different dosages of metabolites from Com3456

6.1a Very low-density lipoprotein lipid profile of treatments supplemented with different metabolite combinations

6.1b Very low-density lipoprotein lipid profile of treatments supplemented with different dosages of metabolites from Com3456

6.2 Pearson correlation coefficients (r) and significance value between Very low-density lipoprotein lipids, cholesterol and abdominal fat deposition

6.3 Lactic acid bacteria count in small intestine digesta of treatments supplemented with different dosages of metabolites from Com3456

6.4 Deconjugated bile acid released by bile salts deconjugation by lactic acid bacteria in treatments supplemented with different dosages of metabolites from Com3456
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Genus of lactic acid bacteria</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Fermentative pathways</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanism of organic acid to pass through the cell membrane</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>The effect of antimicrobial peptides with different levels of their concentration</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>The gastrointestinal tract of chickens</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>The biosynthetic pathway of bile acids</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Circulation of bile acids</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Lipid metabolism in birds</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Chemical structure of cholesterol</td>
<td>39</td>
</tr>
<tr>
<td>2.10</td>
<td>The biosynthesis pathway of cholesterol, triacylglycerol and phospholipid</td>
<td>41</td>
</tr>
<tr>
<td>2.11</td>
<td>The transport of triacylglycerol and cholesterol by lipoprotein in chickens</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Bacteriocin activity of metabolites from Lactobacillus plantarum strains culture</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>The content of acetic acid in metabolites of the 6 strains</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Growth performance of broiler chickens</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Growth performance of broiler chickens</td>
<td>122</td>
</tr>
<tr>
<td>6.1</td>
<td>The principle of the reaction in triacylglycerol assay</td>
<td>150</td>
</tr>
<tr>
<td>6.2</td>
<td>The principle of reaction in total cholesterol assay</td>
<td>151</td>
</tr>
<tr>
<td>6.3</td>
<td>The principle of reaction in free cholesterol assay</td>
<td>151</td>
</tr>
<tr>
<td>6.4</td>
<td>The principle of reaction in phospholipid assay</td>
<td>152</td>
</tr>
<tr>
<td>7.1</td>
<td>Possible mechanism of cholesterol reduction in plasma and meat</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Inhibitory activity of metabolite combinations against pathogens</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Measurement of ileal villi height and crypt depth</td>
<td>96</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

3βHSD 3β-hydroxysteroid dehydrogenase/isomerase
4MV 4-methyl-valeric acid
ADG Average daily gain
ADP Adenosine diphosphate
AGP Antimicrobial growth promoters
AKR1C4 3α-hydroxysteroid dehydrogenase
AKR1D1 $\Delta^{4,3}$-oxosteroid-5β-reductase
Apo Apolipoprotein
ATP Adenosine triphosphate
AU Arbitrary unit
BSH Bile salt hydrolase
BW Body weight
CA Cholic acid
CDCA Chenodeoxycholic acid
CE Cholesterol esters
CFS Cell-free supernatant
CFU Colony-forming unit
Com3456 Metabolite combination from *L. plantarum* RS5, RI11, RG14 and RG11
Com246 Metabolite combination from *L. plantarum* TL1, RI11 and RG11
Com2456 Metabolite combination from *L. plantarum* TL1, RI11, RG14 and RG11
Com256 Metabolite combination from *L. plantarum* TL1, RG14 and RG11
CYP27A1 Sterol 27-hydroxylase