EFFECTS OF EMPTY FRUIT BUNCH COMPOST AND ARBUSCULAR MYCORRHIZA ON NUTRIENT UPTAKE AND GROWTH OF GRAIN MAIZE

NORAINI MD JAAFAR

FP 2007 30
EFFECTS OF EMPTY FRUIT BUNCH COMPOST AND ARBUSCULAR MYCORRHIZA ON NUTRIENT UPTAKE AND GROWTH OF GRAIN MAIZE

NORAINI MD JAAFAR

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2007
EFFECTS OF EMPTY FRUIT BUNCH COMPOST AND ARBUSCULAR MYCORRHIZA ON NUTRIENT UPTAKE AND GROWTH OF GRAIN MAIZE

NORAINI MD JAAFAR

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2007
EFFECTS OF EMPTY FRUIT BUNCH COMPOST AND ARBUSCULAR MYCORRHIZA ON NUTRIENT UPTAKE AND GROWTH OF GRAIN MAIZE

By

NORAINI MD JAAFAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2007
DEDICATION

To my beloved father and mother

Tn. Haji Md Jaafar @ Ahmad Jaafar Hj Din
Pn. Hajjah Azima Abdul Aziz

To my dearest husband and daughter

Mohd Hanafiah Bin Omar
Ainin Sofiya Bt Mohd Hanafiah

To dearly missed my late grandmother,

Mariam Bt Abdullah @ Koong Gooi Too

To my mother in law and my family
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF EMPTY FRUIT BUNCH COMPOST AND ARBUSCULAR MYCORRHIZA ON NUTRIENT UPTAKE AND GROWTH OF GRAIN MAIZE

By

NORAINI MD JAAFAR

October 2007

Chairman : Associate Professor Radziah Othman, PhD
Faculty : Agriculture

The current interest in reducing the application of chemical fertilizer and increasing demand for combined effects of beneficial fungi and organic compost can have great impact on crop production and sustainable agriculture. Laboratory and glasshouse experiments were conducted to determine the effects of different rates of empty fruit bunch (EFB) compost and arbuscular mycorrhizal (AM) activity on plant growth, nutrient uptake, soil chemical and microbiological properties. An incubation experiment was conducted under laboratory condition to determine the effects of different rate of empty fruit bunch compost (EFBC) on nutrient release, changes in soil chemical properties and microbial population. Unsterilized Serdang series soil was amended with 0, 2.5 and 7.5% EFBC and soil was sampled at 3, 7, 14, 28, 56 and 84 day. Results showed that increasing rate of EFBC had significantly (P<0.05) improved the soil chemical properties in which higher soil pH, total N, ammonium-N and nitrate-N, soil available P, C, K, Ca and Mg was found in soil amended with
7.5% EFBC. Higher rate of EFB significantly (P<0.05) resulted in higher populations of soil fungi, bacteria and actinomycetes. This study indicated that addition of EFBC to soil may be an alternative method in improving the nutrients availability in highly weathered soils such as Serdang series soil. Applying EFBC as organic amendment in highly weathered soils, however, may require addition of effective or beneficial microorganisms such as AM to fully benefit the soil.

A glasshouse experiment was then conducted to assess the effects of combined application of EFBC and AM on the performance of AM in improving growth of grain maize and soil properties. Soil was treated with 3 rates of EFBC (0, 2.5 and 7.5% EFBC) with and without AM. Plants and soil were sampled at 7, 14, 28 and 56 days after planting (DAP) and analyzed for plant growth, nutrient uptake, soil chemical and microbiological properties. Growth of grain maize was significantly (P<0.05) affected by EFBC and AM application. Plants inoculated with AM were able to absorb more nutrients released from EFBC than the nonmycorrhizal plants. Mycorrhizal plants also showed lower requirement of EFBC than nonmycorrhizal plants. Application of 2.5% EFBC with AM gave better (P<0.05) shoot maize biomass and root biomass than nonmycorrhizal plants. After 56 DAP, AM inoculation increase in maize plant biomass by 60% compared to plants without AM. Inoculation with AM and application of EFBC also increased the uptake of N, P, K, Ca and Mg by maize. Application of EFBC stimulated AM development throughout 56 DAP.
There was 60% spore production in soils with EFBC than the control soil. Application of EFBC also improved soil nutrients and enhanced microbial activities which may induce the mycorrhizal symbiosis with plant roots. This can be observed in increasing mycorrhizal spore production with increasing EFBC rate. However, the highest root infections in 7.5% EFBC+M was observed to be insignificantly (P>0.05) different to that in 2.5% EFBC+M and did not result in the highest plant growth. Lower rate of EFBC (2.5% EFBC) having intermediate values of AM spores production (300 spores 10 g soil\(^{-1}\)) and percentage of infection (69.68%) promoted highest plant growth at 56 DAP. Application of 2.5% EFBC was sufficient for mycorrhizal plants to attain the highest growth compared to the highest EFBC application rate of 7.5% EFBC required by nonmycorrhizal plants. The results suggest that lower compost rate was sufficient to stimulate plant growth when AM is being inoculated into soil. Inoculation of beneficial AM helps to reduce the optimum rate of compost application and the production cost. The study also showed that combined application of AM and EFBC have the potential to be applied for improved maize production in highly weathered soil.
KESAN KOMPOS TANDAN BUAH KOSONG DAN MIKORIZA ARBUSKUL
TERHADAP PENGAMBILAN NUTRIEN DAN PERTUMBUHAN JAGUNG
BIJIRIN

Oleh

NORAINI MD JAAFAR

Oktober 2007

Pengerusi : Profesor Madya Radziah Othman, PhD

Fakulti : Pertanian

Minat masa kini dalam mengurangkan penggunaan racun kimia dan permintaan
meningkat untuk gabungan kesan kulat berguna dan kompos organik boleh memberi
kesan pada pengeluaran tanaman dan pertanian lestari. Kajian makmal dan rumah
kaca telah dijalankan untuk mengenalpasti kesan-kesan kadar kompos tandan buah
kosong (KTBK) yang berbeza serta aktiviti mikoriza arbuskul (MA) terhadap
pertumbuhan pokok, pengambilan nutrien, sifat kimia dan mikrobiologi tanah. Kajian
pengeraman dijalankan dalam keadaan makmal untuk mengenalpasti kesan kadar
KTBK terhadap pembebasan nutrien perubahan kimia dan populasi mikrob tanah.
Tanah siri Serdang yang tidak disteril digaulkan dengan 0%, 2.5% dan 7.5% KTBK
dan tanah disampel pada hari ke-3, 7, 14, 28, 56 dan 84. Keputusan mendapati
peningkatan kadar KTBK memperbaiki (P<0.05) keadaan kimia tanah di mana nilai
pH tanah, nitrogen, ammonium-N, nitrat-N, fosforus, karbon, K, Ca serta Mg tanah
yang lebih tinggi dijumpai dalam tanah yang digaulkan dengan 7.5% KTBK. Peningkatan paras KTBK juga meningkatkan populasi kulat, bakteria dan aktinomisit dalam tanah. Kajian ini mendapati penambahan KTBK kepada tanah mungkin merupakan kaedah alternatif dalam memperbaiki kedapatan nutrien dalam tanah terluluwawa seperti tanah Siri Serdang. Bagaimanapun, penambahan KTBK kepada tanah tinggi luluwawa mungkin memerlukan penambahan mikroorganisma berkesan atau berguna seperti MA untuk memberi manfaat sepenuhnya pada tanah.

Kajian rumah kaca dijalankan untuk mengenalpasti kesan-kesan kombinasi KTBK dan kulat MA terhadap keupayaan MA dalam meningkatkan pertumbuhan pokok dan sifat tanah. Tanah dirawat dengan 3 kadar KTBK (0%, 2.5% dan 7.5% KTBK), dengan MA atau tanpa inokulasi MA. Pokok jagung dan tanah disampel pada 7, 14, 28 dan 56 hari selepas ditanam (HST) dan dianalisa untuk pertumbuhan pokok, pengambilan nutrien, sifat kimia dan mikrobiologi tanah. Pertumbuhan pokok jagung dipengaruhi secara beerti (P<0.05) oleh aplikasi KTBK dan MA. Pokok yang diinokulasi dengan MA dapat menyerap lebih nutrien yang dibebaskan dari KTBK berbanding pokok tidak bermikoriza. Pokok bermikoriza juga menunjukkan keperluan KTBK yang lebih rendah berbanding pokok tanpa mikroriza. Aplikasi 2.5% KTBK dan AM memberikan nilai tertinggi biomas bahagian atas dan akar pokok jagung yang lebih baik berbanding pokok tidak bermikoriza. Selepas 56 hari ditanam, inokulasi MA meningkatkan 60% biomas pokok jagung berbanding pokok
tanpa MA. Inokulasi MA dan aplikasi KTBK turut meningkatkan pengambilan nutrien N, P, K, Ca dan Mg oleh pokok jagung. Aplikasi KTBK meransang pertumbuhan MA sepanjang 56 HST. Terdapat 60% penghasilan spora di dalam tanah mengandungi KTBK berbanding kawalan. Aplikasi KBTK juga memperbaiki nutrien tanah dan meningkatkan aktiviti mikrob tanah yang mungkin mendorong simbiosis mikoriza dengan akar pokok. Ini dapat dilihat dalam peningkatan pengeluaran spora kulat mikoriza dengan peningkatan kadar KTBK. Bagaimanapun, jangkitan pada kadar yang tertinggi dalam 7.5% KTBK+M didapati tidak berbeza secara beerti (P>0.05) dengan yang terdapat pada 2.5% KTBK+M serta tidak memberikan pertumbuhan pokok tertinggi. Kadar KTBK yang lebih rendah (2.5% KTBK) yang mempunyai nilai sederhana dalam penghasilan spora MA (300 spora 10 g tanah⁻¹) dan peratus jangkitan (69.68%) memberikan pertumbuhan pokok tertinggi pada 56 HST. Aplikasi 2.5% KTBK adalah mencukupi untuk tumbuhan bermikoriza mencapai pertumbuhan tertinggi berbanding kadar KTBK yang lebih tinggi (7.5% KBTK) yang diperlukan oleh pokok tanpa mikoriza. Kajian menunjukkan yang kadar kompos yang lebih rendah adalah mencukupi untuk meransang pertumbuhan pokok apabila MA diinokulasi pada tanah. Inokulasi kulat berguna MA menolong mengurangkan kadar optimum kompos yang diberikan dan kos pengeluaran. Kajian juga mendapati kombinasi KBTK dan MA mempunyai potensi diaplikasi pada tanah untuk meningkatkan pengeluaran tanaman jagung pada tanah yang tinggi luluhawa.
ACKNOWLEDGEMENTS

Alhamdullilah.

First and foremost, all praises and thanks are to Allah, the Almighty, by whose Grace and Will, I was able to complete this research and thesis.

I wish to extend my special thanks and express my gratitude to my supervisory chairman, Assoc. Prof. Dr. Radziah Othman, and supervisory committee, Assoc. Prof. Dr. Mahmud Tg. Muda and my former supervisor, Prof. Dr. Azizah Hashim, without whom this Master’s project would not have been accomplished. All their patience, guidance, and constructive comments, criticisms and suggestions have been valuable throughout this research till completion of this thesis.

Special thanks to Assoc. Prof. Dr. Anuar and Prof. Dr. Zulkifli for their guidance in statistical and microbiological analyses. I would also like to express my sincere thanks to staff and management of Soil Microbiology Lab for their kind assistance and equipments provided for the laboratory and glasshouse studies. Thanks are also extended to all staff of the Land Management Department and particularly; Pn Zarinah, En.Zul Duaji, En. Din, En. Jai, En. Mahyudin, Pn. Fauzaiah, En Jamil, Pn.Zabedah and En.Ramli for their assistance.
I would like to extend my sincere thanks to the local fertilizer company for providing the compost for my studies. My deepest gratitude and love are also due to members of my family, my parents Hj. Md Jaafar Hj. Din and Hajjah Azima Abdul Aziz, beloved husband Mohd Hanafiah Omar and my daughter Ainin Sofiya who stood by me during the trials and turbulence of this study. Special thanks to my twin sister, Dr. Norhayati and her husband, my brothers Muhammad and Rashidi, for their full support throughout this research. My thanks to the other family members especially my mother in law, Bedah Md Salleh and Mak Uda for their help in taking care of Ainin. I deeply thanked my late grandmother who was always supported me for the past 27 years. Her spirit and love remain forever in my heart. My thanks to all my colleagues; Dr. Osumanu, Dr. Jalloh, Sheri, Yan, Ina, Mali, Ziana, Ilani, Palie, Wanie, Umme, Siti Zaharah, Rehan, K.Susi, K.Sabrina, Negash, Fara, Pooh, Zila, Zu, Hartini, Martini, Aizat and Azizul for their full support and kind assistance. I truly treasure the friendship and ukkhuwah. Finally, I would like to extend my deepest appreciation to all who have contributed in one way or another to the completion of this thesis.
I certify that an Examination committee has met on 4th October 2007 to conduct the final examination of Noraini Md Jaafar on her Master of Science thesis entitled “Effects of Empty Fruit Bunch Compost and Arbuscular Mycorrhiza on Nutrient Uptake and Growth of Grain Maize” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the Master of Science.

Members of the Examination Committee were as follows:

Zulkifli Shamsuddin, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Rosenani Abu Bakar, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Zainal Abidin Mior Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Baharuddin Salleh, PhD
Professor
Centre of Life Science Studies
University Science Malaysia
(Internal Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 February 2008
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mahmud Tg. Muda Mohamed, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 February 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any degree at Universiti Putra Malaysia or at any other institution.

NORAINI MD JAFAFAR

Date: 7 January 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION 1

2. LITERATURE REVIEW 6
 2.1 Oil Palm Wastes 6
 2.2 Utilization of EFB 6
 2.3 Empty fruit bunch (EFB) Compost 8
 2.4 Nutrients in Compost 10
 2.5 Factors Affecting Decomposition of Organic matter and Nutrient Release 11
 2.5.1 Soil Physico-Chemical Factor 11
 2.5.2 Substrate Quality 13
 2.5.3 Soil Biological Factors 15
 2.6 Benefits of Organic fertilizer 16
 2.6.1 Improvement of Soil Physical Properties 16
 2.6.2 Improvement of Microbial Properties 17
 2.6.3 Improvement of Soil Chemical Properties 18
 2.6.4 Improvement of Plant Growth 19
 2.7 Arbuscular Mycorrhiza (AM) 19
 2.7.1 Influence of Soil Physical Properties 24
 2.7.2 Influence of Soil Chemical Properties 26
 2.7.3 Influence of Soil Biological Properties 30
 2.7.4 Effects of AM on Nutrient Release and Uptake 31
 2.7.5 Effects of AM on Plant Growth 33
 2.7.6 Effects of AM as Biological Protector 35
 2.7.7 Effects of AM on Soil Water uptake by Plants 36
 2.7.8 Effects of AM on Soil Physical Properties 37
 2.8 Grain Maize and Organic Fertilization 38
3 EFFECTS OF EFB COMPOST APPLICATION RATES ON THE CHEMICAL AND MICROBIOLOGICAL PROPERTIES OF A HIGHLY WEATHERED SOIL

3.1 Introduction 40
3.2 Materials and Methods 44
3.2.1 Soil and EFBC Preparation 44
3.2.2 Chemical analysis of EFBC and soil 44
3.2.3 Incubation Technique and Experimental Design 48
3.2.4 Soil Chemical Analysis and Microbial Populations 49
3.2.5 Statistical Analysis 50
3.3 Results 50
3.3.1 Effect of EFBC on Soil Chemical Properties 50
3.3.2 Effect of EFBC on Soil Microbial Population 62
3.3.3 Correlation Analysis 65
3.4 Discussion 67
3.5 Conclusion 73

4 EFFECTS OF EFB COMPOST AND ARBUSAUCULAR MYCORRHIZA ON GROWTH AND NUTRIENT UPTAKE OF GRAIN MAIZE (Putra J-58)

4.1 Introduction 74
4.2 Materials and Methods 78
4.2.1 Soil and EFBC Preparation 78
4.2.2 Experimental Design 78
4.2.3 Mycorrhizal Inoculation 79
4.2.4 Plant Sowing, Maintenance and Harvesting 79
4.2.5 Soil and Plant Tissue Analysis 80
4.2.6 Plant Tissue Nutrient Uptake 80
4.2.7 AM Root Infection And Spore Count 81
4.2.8 Statistical Analysis 82
4.3 Results 82
4.3.1 Effects EFBC and AM on Plant Growth 82
4.3.2 Effects EFBC and AM on Plant Nutrients and Uptake 87
4.3.3 Effects of EFBC and AM on Soil Chemical Properties 100
4.3.4 Effects of EFBC and AM on Soil Microbial Properties 110
4.3.5 Correlation Analysis 115
4.4 Discussion 118
4.5 Conclusion 128

5 GENERAL DISCUSSION 129

6 CONCLUSION 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>136</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>159</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>178</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>101</td>
</tr>
<tr>
<td>9</td>
<td>111</td>
</tr>
<tr>
<td>10</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effect of EFBC rates on soil pH over a period of 84 days</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>Effect of EFBC rates on soil total N over a period of 84 days</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Effect of EFBC rates on soil ammonium-N over a period of 84 days</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>Effect of EFBC rates on soil nitrate-N over a period of 84 days</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>Effect of EFBC rates on soil total mineralized N over a period of 84 days</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>Effects of EFBC rates on soil available phosphorus over a period of 84 days</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>Effect of EFBC rates on soil carbon over a period of 84 days</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>Effects of EFBC rates on soil exchangeable-K over a period of 84 days</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Effect of EFBC rates on soil exchangeable-Ca over a period of 84 days</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>Effect of EFBC rates on soil exchangeable-Mg over a period of 84 days</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>Effect of EFBC rates on soil fungal population over a period of 84 days</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Effect of EFBC rates on soil bacterial population over a period of 84 days</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>Effect of EFBC rates on soil actinomycetes population over a period of 84 days</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>Effects of EFBC and AM on maize shoot biomass at different growth periods</td>
<td>83</td>
</tr>
<tr>
<td>15</td>
<td>Effects of EFBC and AM on root biomass at different growth periods</td>
<td>85</td>
</tr>
</tbody>
</table>
16 Effects of EFBC and AM on plant root : shoot ratio at different growth periods
17 Effects of EFBC and AM on N concentration of maize plant at different growth periods
18 Effects of EFBC and AM on N uptake by maize at different growth periods
19 Effect of AM at different rates of EFBC on N uptake by maize at 56 DAP
20 Effects of EFBC and AM on P concentration of maize at different growth periods
21 Effects of EFBC and AM on P uptake by maize at different growth periods
22 Effect of AM at different rates of EFBC on P uptake by maize at 56 DAP
23 Effects of EFBC and AM on K concentration of maize at different growth periods
24 Effects of EFBC and AM on K uptake by maize at different growth periods
25 Effect of AM at different rates of EFBC on K uptake by maize at 56 DAP
26 Effects of EFBC and AM on Ca concentration of maize at different growth periods
27 Effects of EFBC and AM on Ca uptake by maize at different growth periods
28 Effect of AM at different rates of EFBC on Ca uptake by maize at 56 DAP
29 Effects of EFBC and AM on Mg concentration of maize at different growth periods
30 Effects of EFBC and AM on Mg uptake by maize at different growth periods
31 Effects of AM at different rates of EFBC on Mg uptake by maize at 56 DAP
32 Effects of EFBC and AM on soil pH at different growth periods
33 Effects of EFBC and AM on soil organic carbon at different growth periods
34 Effects of EFBC and AM on soil total nitrogen at different growth periods
35 Effects of EFBC and AM on soil available phosphorus at different growth periods
36 Effects of EFBC and AM on soil ammonium-N at different growth periods
37 Effects of EFBC and AM on soil nitrate-N at different growth periods
38 Effects of EFBC and AM on soil exchangeable-K at different growth periods
39 Effects of EFBC and AM on soil exchangeable-Ca at different growth periods
40 Effects of EFBC and AM on soil exchangeable-Mg at different growth periods
41 Effects of EFBC and AM on mycorrhizal root infection at different growth periods
42 Effects of EFBC and AM on mycorrhizal spores at different growth periods
43 Effects of EFBC and AM on soil fungal population at different growth periods
44 Effects of EFBC and AM on soil bacteria population at different growth periods
45 Effects of EFBC and AM on soil actinomycetes population at different growth periods
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The vesicles in the roots infected by AM Glomus intraradices</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>The phases of AM development in the root and soil systems</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Effects of EFBC on root biomass of mycorrhizal plants at 56 DAP</td>
<td>85</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>AM</td>
<td>Arbuscular Mycorrhiza</td>
</tr>
<tr>
<td>AMF</td>
<td>Arbuscular Mycorrhiza Fungi</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
</tbody>
</table>
| Cf
| Colony Forming unit |
| C:N | Carbon to Nitrogen ratio |
| CRD | Completely Randomized Design |
| DOA | Department of Agriculture |
| DRMT | Duncan’s Multiple Range Test |
| ECEC | Effective cation exchange capacity |
| EFB | Empty Fruit Bunches |
| EFBC | Empty Fruit Bunch Compost |
| FFB | Fresh Fruit Bunches |
| MARDI | Malaysian Agriculture Research and Development Institute |
| MINT | Malaysian Institute of Nuclear Technology |
| MPOB | Malaysian Palm Oil Board |
| POME | Palm Oil Mill Effluent |
| R:S | Root to Shoot ratio |
| SAS | Statistical Analysis System |