Anomalous dielectric constant and AC conductivity in mixed transition-metal-ion xFe₂O₃-(20-x)MnO₂-80TeO₂ glass system

ABSTRACT

Glasses with xFe_2O_3 -(20-x)MnO₂-80TeO₂ (x=2, 5, 10, 15, and 20 mol%) composition were prepared by meltquenching technique to investigate the effects of mixed-transition metal ion Fe^{2} ^{+/3} ⁺//Mn³ ^{+/4} ⁺ on AC conductivity and dielectric properties using impedance spectroscopy. Dielectric constant showed strong variation with Fe₂O₃ at a frequency \geq 10 kHz, where \acute{e} decreased to a minimum value at x =10 mol% before increasing for x> 10%. The decrease in \acute{e} may be attributed to some form of hindrance effect on heavy dipoles caused by the mixed transition-ion effect (MTE). Meanwhile, variation of AC conductivity with Fe₂O₃ showed non-linear increase for x \leq 10 mol% before dropping to a minimum at 15 mol% Fe₂O₃. This result was attributed to Anderson localization because of the disorder in the glass system. Conductivity analysis showed that the conduction mechanism at the dispersion region for x = 2 mol% followed the correlated barrier hopping (CBH) model, while the mechanism transformed to the overlapping large polaron tunnelling (OLPT) model at higher Fe₂O₃, content (x > 2 mol%). The electric modulus of the investigated samples showed asymmetric peak of the imaginary part of electric modulus (M¢¢), which reflected a non-Debye type relaxation.

Keyword: Glasses; Dielectric properties; Electrical conductivity; Transport properties; Mixed transition-ion effect