GENETIC PERFORMANCE OF OIL PALM
(Elaeis guineensis Jacq.) PROGENIES FROM DIFFERENT DURA SOURCES IN CROSSES WITH AVROS PISIFERA

NOH BIN AHMAD

FP 2007 16
GENETIC PERFORMANCE OF OIL PALM
(Elaeis guineensis Jacq.) PROGENIES FROM DIFFERENT DURA SOURCES IN CROSSES WITH AVROS PISIFERA

NOH BIN AHMAD

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2007
GENETIC PERFORMANCE OF OIL PALM  
(*Elaeis guineensis* Jacq.) PROGENIES FROM DIFFERENT  
*DURA* SOURCES IN CROSSES WITH AVROS *PISIFERA*

by

NOH BIN AHMAD

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2007
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

GENETIC PERFORMANCE OF OIL PALM
(Elaeis guineensis Jacq.) PROGENIES FROM DIFFERENT DURA SOURCES IN CROSSES WITH AVROS PISIFERA

By

NOH BIN AHMAD

June 2007

Chairman: Assoc. Prof. Mohd. Rafii bin Yusop, PhD
Faculty: Agriculture

A total of 40 oil palm (Elaeis guineensis Jacq.) Dura x Pisifera (DxP) progenies derived from the North Carolina Mating Design 1 (NCM1) were evaluated at the MPOB Research Station, Keratong, Pahang in inland soils predominantly of Serdang Series. The Dura sources in this study originated from the Sabah Breeding Programme (SBP) and were crossed with male parents of AVROS Pisifera materials, the descendant of BM119 of Oil Palm Research Station (OPRS) (now Golden Hope), Banting, Selangor. They were laid down in a Randomised Complete Block Design (RCBD) with three replicates, with 16 palms/progeny/replicate in 1994. The materials were evaluated for bunch yield, bunch quality and vegetative traits. The objectives of the study were to evaluate the performance of different Dura sources for bunch yield, bunch quality components and vegetative traits, to estimate genetic variability and heritability, and to assess the phenotypic correlation among the traits. Potential genotypes with high yield were selected for breeding and seed production. Analysis of variance (ANOVA) showed that the Dura sources were not significantly different for bunch yield and yield components, indicating the lack of genetic variability for these
characters. However, ANOVA showed greater variability in the bunch quality components of the *Dura* sources such as mesocarp to fruit ratio (M/F), shell to fruit ratio (S/F), kernel to fruit ratio (K/F) and kernel yield (KY). Significant differences among the *Dura* sources were also observed in the vegetative traits viz petiole cross-section (PCS), rachis length (RL) and leaflet number (LN). The results indicate that there was still genetic variability among the *Dura* sources for those traits, even though the materials had undergone many cycles of selection. Three *Dura* sources DS1 (Banting x Banting), DS2 (Elmina x Elmina) and DS4 (H.Est x H.Est) were identified to be good candidates for further breeding and seed production with FFB yield of more than 130 kg/p/yr and oil yield (OY) of more than 31 kg/p/yr or more than 4.5 tons/ha/yr. ANOVA showed that the *Pisifera* item in the half-sib families was not significant for most of the traits studied except fruit to bunch ratio (F/B), kernel to bunch ratio (K/B), kernel yield (KY), leaflet length (LL), leaf area (LA) and leaf area index (LAI). This was expected as the AVROS *Pisifera* used as males were derived from a small population and they were highly inbred. However, greater variation was observed in the *dura within pisifera* item. Heritability estimates for bunch yield and its components were generally low, with $h_p^2$ of 0-14% and $h_d^2$ of 3-32%. Higher estimates were observed in some of the bunch quality components with $h_p^2$ of 0-36% and $h_d^2$ of 0-64%. Generally, vegetative characters had high heritability values, with $h_p^2$ of 0-45% and $h_d^2$ of 9-72%. Phenotypic correlations among the bunch yield components indicate that there exist strong and positive correlation between fresh fruit bunch (FFB) and bunch number (BNO), thus selecting for one character will also improve the other. However, there was also strong negative correlation between BNO and average bunch weight (ABW), indicating that increasing ABW would decrease the BNO and vice versa. This can be an obstacle in the effort to increase bunch yield as the traits cannot
be improved simultaneously in the same palm. In this study, it was noted that high FFB yield can be obtained through high BNO and medium ABW. Correlations among bunch quality components and vegetative characters were also observed in this study. Oil yield (OY) correlated positively with bunch yield and its components and also with trunk height (HT). Selecting palms for high OY would also select for vigorous growing palm. Reasonably good general combining ability (GCA) for FFB was observed in three Pisiferas, P1 (0.174/211), P3 (0.174/498) and P11 (0.12/308). For oil to bunch (O/B), the good combiners were P1 (0.174/211), P10 (0.182/305) and P11 (0.12/308). The good combiners for vegetative traits were P6 (0.182/30), P8 (0.182/230) and P9 (0.182/297). For breeding, selection for good combiners can be considered for a single trait or in combination with the others. For instance, P1 (0.174/211) and P11 (0.12/308) were good candidates in selecting for Pisiferas with good GCA for FFB yield and oil to bunch O/B but high GCA values for vegetative characters. Pisiferas P6 (0.182/30), P8 (0.182/230) and P9 (0.182/297) were the right choice to select for less vigorous growing palms since they have good GCA values for lower trunk height (HT), lower trunk diameter (DIA), small petiole cross-section (PCS) and short rachis length (RL). The advantages of having palms with these characters are that they can be planted in higher density and may also increase yield per hectare. The low variability in the materials can be overcome through introgression with other materials. Malaysian Palm Oil Board (MPOB) is actively involved in introgressing newly selected oil palm materials prospected from Africa with the Deli Dura and AVROS Pisifera to broaden the genetic base. The oil palm germplasm from Nigeria, Cameroon and Zaire after undergoing systematic evaluation and selection were being used to introgress with Deli Dura and AVROS Pisifera as part of the improvement programme. The progenies of the materials were evaluated in a number of field trials in various MPOB Research
Stations. It is expected that these materials will be able to contribute to the progress and advancement of the oil palm industry in the future.
tandan seperti nisbah mesokarpa ke buah (M/F), nisbah tempurung ke buah (S/F) dan hasil isirong (KY). Perbezaan bererti juga dikesan diantara sumber Dura untuk ciri-ciri vegetatif seperti keratan rentas petiol (PCS), panjang rachis (RL) dan bilangan lai daun (LN). Keputusan ini juga menunjukkan masih terdapat variasi untuk ciri-ciri yang dikaji walaupun sumber Dura tersebut telah melalui beberapa pusingan pemilihan yang menyebabkan variasinya makin berkurangan. Tiga sumber Dura DS1 (Banting x Banting), DS2 (Elmina x Elmina) and DS4 (H.Est x H.Est) telah dikenalpasti sebagai calon yang baik untuk pembiakbakaan dan pengeluaran bijibenih. Ketiga-tiga sumber Dura tersebut menghasilkan BTS melebihi 130 kg/pokok/tahun dan hasil minyak (OY) melebihi 31 kg/pk/tahun atau 4.5 tan/ha/tahun. Analisis varians (ANOVA) juga mendapati tiada perbezaan bererti untuk Pisifera AVROS yang digunakan sebagai induk jantan didalam famili ‘half-sib’ kecuali nisbah buah ke tandan (F/B), nisbah isirong ke tandan, hasil isirong (KY), panjang lai daun (LL), luas daun (LA) dan indeks keluasan daun (LAI). Keputusan ini adalah dijangkakan kerana Pisifera AVROS yang digunakan didalam kajian ini diperolehi dari populasi yang kecil dan telah melalui beberapa pusingan penginbredan dan menyebabkan variasi didalam ciri-ciri yang dikaji semakin berkurangan. Walau bagaimanapun, analisis varian (ANOVA) menunjukkan terdapat lebih variasi untuk komponen Dura-dalam-Pisifera berbanding pisifera. Secara umumnya anggaran heritabiliti untuk hasil tandan dan komponennnya adalah rendah, $h_p^2$ (0-4%) dan $h_d^2$ (3-32%). Anggaran heritability yang lebih tinggi dicerap disesetengah cirri mutu tandan, $h_p^2$ (0-36%) dan $h_d^2$ (0-64%). Ciri vegetatif merekodkan anggaran heritabiliti tertinggi dengan $h_p^2$ (0-45%) dan $h_d^2$ (9-72%). Korelasi fenotif diantara hasil tandan dan komponennya menunjukkan terdapat korelasi positif yang kuat diantara FFB dengan BNO, memberikan implikasi bahawa memilih salah satu ciri akan secara automatik memilih yang lain. Walau bagaimanapun, terdapat korelasi
negatif yang kuat diantara BNO and ABW, yang boleh menjadi penghalang di dalam usaha meningkatkan hasil tandan. Memilih untuk meningkatnya ABW akan mengurangkan BNO dan disebalik. Di dalam kajian ini didapati untuk mendapatkan hasil tandan yang tinggi ialah melalui BNO yang tinggi dengan ABW yang sederhana. Selain dari itu terdapat juga korelasi antara komponen mutu tandan dan ciri vegetatif. Hasil minyak (OY) didapati berkorelasi positif dengan hasil tandan dan ketinggian batang pokok. Keputusan ini mencadangkan memilih hasil yang tinggi secara tidak langsung akan juga memilih pokok yang cepat membesar. Tiga *pisifera* P1 (0.174/211), P3 (0.174/498) dan P11 (0.12/308) telah menunjukkan keupayaan bergabung (GCA) yang baik untuk hasil tandan (FFB) manakala *pisifera* P1 (0.174/211), P10 (0.182/305) dan P11 (0.12/308) untuk minyak/tandan (O/B). *Pisifera* P6 (0.182/30), P8 (0.182/230) dan P9 (0.182/297) pula telah dikenalpasti mempunyai GCA yang baik untuk ciri vegetatif. Untuk tujuan pembaikbakaan, ciri-ciri tersebut boleh dipilih secara berasingan atau bersama ciri-ciri yang lain. Sebagai contoh, *pisifera* P1 (0.174/211) dan P11 (0.12/308) merupakan calon terbaik untuk memilih induk jantan yang mempunyai keupayaan bergabung yang baik untuk ciri FFB dan O/B tetapi kurang sesuai untuk ciri-ciri vegetatif. *Pisifera* P6 (0.182/30), P8 (0.182/230) dan P9 (0.182/297) pula merupakan calon terbaik jika ingin memilih pokok-pokok yang lambat membesar kerana induk jantan berkenaan mempunyai GCA yang baik untuk ketinggian batang (HT) yang perlahan, keratan rentas petiole (PCS) yang kecil dan pelapah yang pendik (RL). Pokok renek boleh ditanam pada ketumpatan yang tinggi dan berupaya meningkatkan hasil sehektar. Kekurangan variabiliti bahan tersebut boleh diatasi melalui pengabungan dengan bahan yang lain. Lembaga Minyak Sawit Malaysia (MPOB) sedang bergiat secara aktif mengabungkan bahan germplasma kelapa sawit yang terpilih dari Afrika dengan bahan AVROS dan Deli *dura* untuk melebarkan dasar genetik bahan tersebut. Germplasma kelapa sawit dari Nigeria,
Cameroon dan Zaire setelah melalui penilaian dan pemilihan yang sistematik telah digabungkan dengan Deli *Dura* dan AVROS *Pisifera* sebagai sebahagian dari program penambahbaikan bahan tanaman yang sedia ada. Progeni hasil gabungan tersebut telah ditanam dibeberapa Stesen Penyelidikan MPOB. Bahan tersebut diharapkan dapat menyumbang kepada kemajuan industri sawit di masa akan datang.
ACKNOWLEDGEMENT

I wish to express my sincere appreciations to my supervisors Assoc. Prof. Dr. Mohd Rafii Yusop, Prof. Dr. Ghizan Saleh and Dr. A. Kushairi Din for their guidance, criticism, encouragement and suggestions during the course of this study.

I am indebted to Director General, Deputy Director General, Director of Biology and Head of Advanced Biotechnology and Breeding Centre of MPOB for their involvement in granting me the study leave and their continuous advice and support.

My gratitude also goes to the breeding staff and workers at MPOB Keratong Station for assisting me in the data collections. My thanks also due to the data processing staff at MPOB Kluang for their help in the data analyses.

I would also like to express my deepest gratitude to my parents (the late Ahmad bin Husin and Puan Che Yah bte Said) and my brothers and sister.

Last but not least, my deepest love and affections to my wife (Pn. Hijah bte Mohamed) and my sons (Ahmad Mazni, Ahmad Tarmizi, Ahmad Sabri and Ahmad Nazri) for their continuous support and patience, without which the study would have not been successfully completed.
I certify that an Examination Committee has met on 16th June, 2007 to conduct the final examination of Mr. Noh bin Ahmad on his Master of Science thesis entitled “GENETIC PERFORMANCE OF OIL PALM (Elaeis guineensis Jacq.) PROGENIES FROM DIFFERENT DURA SOURCES IN CROSSES WITH AVROS PISIFERA” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

**Zakaria Wahab, PhD**
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Chairman)

**Dato’ Idris Abdol, PhD**
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Internal Examiner)

**Mohd Said Saad, PhD**
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Internal Examiner)

**Mohamad Osman, PhD**
Associate Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(External Examiner)

____________________________________________

**HASANAH MOHD GHAZALI, PhD**
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Rafii Yusop, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Ghizan Salleh, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

A.Kushairi Din, PhD
Malaysian Palm Oil Board (MPOB)
(Member)

__________________________________________________________
AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date : 
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or at other institutions.

_________________________

NOH BIN AHMAD

DATE:
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK vi
ACKNOWLEDGEMENT x
APPROVAL xi
DECLARATION xiii
TABLES OF CONTENTS xiv
LIST OF TABLES xvii
LIST OF ABBREVIATIONS xiv

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 6
   2.1 Taxonomy and Habitat of the Oil Palm 6
   2.2 Botany of Oil Palm 7
   2.3 Oil Palm Breeding Programme in Malaysia 9
   2.4 Origin of Deli Dura Population 11
   2.5 Breeding Programme of Deli Dura Populations in Malaysia 12
      2.5.1 Serdang Avenue Dura 12
      2.5.2 Elmina Dura 14
      2.5.3 Ulu Remis Dura 14
      2.5.4 Banting Dura 15
      2.5.5 Johor Labis Dura 16
      2.5.6 Highlands Estate Dura 16
   2.6 Breeding Programme of AVROS Pisifera Population 17
   2.7 Genetics and Heritability of Traits in Oil Palm 19
   2.8 Combining Ability for Traits in Oil Palm 20
   2.9 Correlation Among Agronomic Traits 21
3 MATERIALS AND METHODS

3.1 Materials

3.2 Data Collection

3.2.1 Yield Recording

3.2.2 Bunch Analysis

3.2.3 Vegetative Measurements

3.2.4 Statistical and Genetical Analyses

3.2.5 Phenotypic Correlation Studies

3.2.6 General Combining Ability (GCA) Estimates

3.2.7 Phenotypic (PCV) and Genotypic (GCV) Coefficients of Variation

4 RESULTS

4.1 Performance of Full-Sib Families

4.1.1 Progeny Means and ANOVA on Full-Sib Families

4.1.2 Phenotypic and Genotypic Coefficients of Variation and Heritability Estimates for Full-Sib Families

4.2 Performance of Half-Sib Families

4.2.1 Yield and Yield Components

4.2.2 Bunch Quality Components

4.2.3 Vegetative Traits

4.3 Performance of Tenera (DxP) Progenies Based on Dura Sources

4.3.1 Yield and Yield Components

4.3.2 Bunch Quality Components

4.3.3 Vegetative Traits
### 4.4 Performance of *Pisiferas* and their General Combining Ability (GCA)

- 4.4.1 Yield and Yield Components 92
- 4.4.2 Bunch Quality Components 94
- 4.4.3 Vegetative Traits 99

### 4.5 Correlation Among Agronomic Traits 103

### 5 DISCUSSION 107

- 5.1 Performance of *Dura* Sources 107
- 5.2 Performance of *Pisiferas* and Combining Ability 109
- 5.3 Genetic Variability and Heritability 111
- 5.4 Relationships Among Agronomic Traits 115

### 6 CONCLUSION 117

- REFERENCES 121
- APPENDICES 129
- BIODATA OF THE AUTHOR 132
### LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Pedigree of <em>Dura</em> Parent</td>
</tr>
<tr>
<td>3.2</td>
<td>Pedigree of <em>Pisifera</em> Parent</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of <em>Dura x Pisifera</em> Progenies in Trial 0.314</td>
</tr>
<tr>
<td>3.4</td>
<td>ANOVA and Expected Mean Squares for <em>Dura</em> Sources Analysis</td>
</tr>
<tr>
<td>3.5</td>
<td>ANOVA and Expected Mean Squares for Full-sib Analysis</td>
</tr>
<tr>
<td>3.6</td>
<td>Outline of ANOVA and Expected Mean Squares for NCM 1 Analysis</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean Squares and Variance Components for Yield and Yield Component on Full-Sib Families of DXP</td>
</tr>
<tr>
<td>4.2</td>
<td>Progeny Mean for FFB Yield and Yield Components in Full-sib Families of DXP</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean Squares and Variance Components for Bunch Quality Components in Full-Sib Families of DXP in Oil Palm</td>
</tr>
<tr>
<td>4.4</td>
<td>Progeny Mean for Bunch Quality Components in Full-Sib Families</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean Squares and Variance Components for Vegetative Traits in Full-Sib Families</td>
</tr>
<tr>
<td>4.6</td>
<td>Progeny Means for Vegetative Characters in Full-Sib Families of DXP in Oil Palm</td>
</tr>
<tr>
<td>4.7</td>
<td>Phenotypic (PCV) and Genotypic (GCV) Coefficients of Variations, and Broad-Sense Heritability Estimates ($h^2_B=2t_g$) of Yield and Yield Components and Vegetative Measurements in Oil Palms</td>
</tr>
<tr>
<td>4.8</td>
<td>Mean Squares, Variance Components and Heritability Estimates for Yield and Yield Components in Oil Palm</td>
</tr>
<tr>
<td>4.9</td>
<td>Mean Squares, Variance Components and Heritability Estimates for Bunch Quality Components in Oil Palm</td>
</tr>
<tr>
<td>4.10</td>
<td>Mean Squares, Variance Components and Heritability Estimates for Vegetative Traits in Oil Palm</td>
</tr>
<tr>
<td>4.11</td>
<td>Mean Squares and Variance Components for Yield and Yield</td>
</tr>
</tbody>
</table>
Components in Oil Palm

4.12 Means of *Tenera* Based on *Dura* Sources for Yield and Yield Components of Oil Palm 81

4.13 Mean Squares and Variance Components for Bunch Quality Components of *Tenera* Based on *Dura* Sources in Oil Palm 83

4.14 Means of *Tenera* Based on *Dura* Sources for Bunch Quality Components in Oil Palm 84

4.15 Mean Squares and Variance Components for Vegetative Traits of *Tenera* Based on *Dura* Sources in Oil Palm 87

4.16 Mean Value of *Tenera* Based of *Dura* Sources for Vegetative Traits in Oil Palm 89

4.17 Means of *Teneras* with Different *Pisifera* Parents for Yield and Yield Components in Oil Palm 93

4.18 General Combining Ability (GCA) Estimates for Yield and Yield Components for *Pisifera* Parents in Oil Palm 95

4.19 Means of *Pisifera* for Bunch Quality Components 96

4.20 General Combining Ability (GCA) Estimates for Bunch Quality Components for *Pisifera* Parents in Oil Palm 98

4.21 Means of *Teneras* with Different Values Male Parents for Vegetative Traits in Oil Palm 100

4.22 General Combining Ability (GCA) Estimates on Vegetative Traits for *Pisifera* Parents in Oil Palm 102

4.23 Phenotypic Correlation Coefficients Among Characters of the DxP Progenies in Oil Palm 104
LIST OF ABBREVIATIONS

ABW    Average bunch weight
ASD    Agriculture Service and Development, Costa Rica
AVROS  Algemene Vereniging van Rubber-planter ten Oostkust van Sumatra (now known as Balai Penelitian Pekebun Medan)
BNO    Bunch number
BPRO   Breeding Populations of Restricted Origin
Cov    Covariance
df     Degree of freedom
DIA    Diameter
EMS    Expected mean squares
F/B    Fruit to bunch
FFB    Fresh fruit bunch
FP     Frond Production
GCA    General combining ability
GCV    Genotypic coefficient of variation
h^2_B  Broad-sense heritability
h^2_N  Narrow-sense heritability
HMPB   Harison Malaysia Plantations Berhad
HRU    Highlands Research Unit
HT     Trunk Height
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/B</td>
<td>Kernel to bunch</td>
</tr>
<tr>
<td>K/F</td>
<td>Kernel to fruit</td>
</tr>
<tr>
<td>kg/p/yr</td>
<td>Kilogram per palm per year</td>
</tr>
<tr>
<td>KY</td>
<td>Kernel yield</td>
</tr>
<tr>
<td>LA</td>
<td>Leaflet Area</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LL</td>
<td>Leaflet Length</td>
</tr>
<tr>
<td>LN</td>
<td>Leaflet Number</td>
</tr>
<tr>
<td>LW</td>
<td>Leaflet Width</td>
</tr>
<tr>
<td>M/F</td>
<td>Mesocarp to fruit</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysia Agricultural Research and Development Institute</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>MS</td>
<td>Mean squares</td>
</tr>
<tr>
<td>NCM 1</td>
<td>North Carolina Model 1</td>
</tr>
<tr>
<td>NIFOR</td>
<td>Nigerian Institute for Oil Palm Research</td>
</tr>
<tr>
<td>O/B</td>
<td>Oil to bunch</td>
</tr>
<tr>
<td>O/DM</td>
<td>Oil to dry mesocarp</td>
</tr>
<tr>
<td>O/WM</td>
<td>Oil to wet mesocarp</td>
</tr>
<tr>
<td>OPM</td>
<td>Oil Palm of Malaya</td>
</tr>
<tr>
<td>OPRS</td>
<td>Oil Palm Research Station, Banting, Selangor (Golden Hope Group)</td>
</tr>
<tr>
<td>OY</td>
<td>Oil yield</td>
</tr>
<tr>
<td>PCS</td>
<td>Petiole cross-section</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCV</td>
<td>Phenotypic coefficient of variation</td>
</tr>
<tr>
<td>PORIM</td>
<td>Palm Oil Research Institute of Malaysia</td>
</tr>
<tr>
<td>PORLA</td>
<td>Palm Oil Registration and Licensing Authority</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RISPA</td>
<td>Research Institute of the Sumatran Planters Association</td>
</tr>
<tr>
<td>RL</td>
<td>Rachis Length</td>
</tr>
<tr>
<td>s.e</td>
<td>Standard error</td>
</tr>
<tr>
<td>S/F</td>
<td>Shell to fruit</td>
</tr>
<tr>
<td>Socfin</td>
<td>Societe Financiere de Cauotchouces</td>
</tr>
<tr>
<td>SPB</td>
<td>Sabah Breeding Program</td>
</tr>
<tr>
<td>TEP</td>
<td>Total economic product</td>
</tr>
<tr>
<td>UPB</td>
<td>United Plantations Berhad</td>
</tr>
</tbody>
</table>
The oil palm, *Elaeis guineensis* Jacq. is indigenous to the wild and semi wild groves of tropical West Africa, stretching from Senegal to Angola (Zeven, 1967). It was introduced to the Far East through Indonesia. The famous four Bogor Palms (planted in Bogor Botanical Garden, 1848) can be considered as the original source of the present oil palm planted in Indonesia and Malaysia. Descendants of these four palms have then spread throughout the world (Rajanaidu and Jalani, 1999).

Oil palm materials were imported into Malaysia through a number of sources including through Rantau Panjang, Kuala Selangor in 1911/12. Informal mass selection of these palms was carried out. These palms were found to be highly productive and bred true-to-type (Hartley, 1988). The seeds from these palms were later used to plant the first oil palm estates in Malaysia, Tenamaran Estate in 1917 followed by Elmina Estate in 1920. Informal and formal selection in Indonesia and Malaysia gave rise to an oil palm planting materials known as the “Deli dura”. They were used as planting materials in Indonesia and Malaysia up to late 1950’s (Rajanaidu, 1985). After the discovery of the monofactorial inheritance of the three fruit forms by Beirnaert and Vanderweyen (1941), the *teneras* or DxP which is the hybrid between *dura* and *pisifera* was used as planting materials up till now. The thin-shelled *teneras* are preferred to *duras* since *tenera* fruits have more oil–bearing mesocarp (75-85% per fruit weight) than *duras* (20-65% per fruit weight) (Kushairi and Rajanaidu, 2000).
The Deli type is still considered the best *dura* for breeding (Hartley, 1988). In view of its superiority over African *duras*, the dura parent worldwide is usually Deli *dura* (Kushairi and Rajanaidu, 2000). They produce fewer but heavier bunches as compared with those of *teneras* and the African *duras* (Hartley, 1988). Generally, fruits of the Deli *duras* are darker coloured, larger and have high mesocarp content and higher oil to bunch compared to African *duras* (Hartley, 1988).

The Department of Agriculture (DOA) of Malaysia initiated oil palm breeding programme in 1920s. Later, other companies such as the Oil Palm of Malaya (OPM) of Kumpulan Guthrie Berhad, Socfin (Societe Financiere de Cauotchouces) started their own breeding programmes in 1933. Through their programmes, the Serdang Avenue, Elmina, Ulu Remis and Johore Labis breeding populations of restricted origin (BPRO) were formed (Rosenquist, 1985). The United Plantations Berhad (UPB) imported oil palm materials from Sumatra and Africa in 1927 and formally formed the United Plantation Research Department in 1964 (Sharma and Tan, 1999). The progress of oil palm breeding and selection in Malaysia was partly due to the joint research programme between research centers in Malaysia and Africa since 1950’s (Hardon *et al.*, 1976). One of the programmes was the Sabah Breeding Programme (SBP). The programme was initiated by Hartley, a consultant to Sabah Government, with the objective to produce high yielding oil palm materials suitable for the Sabah agroclimatic conditions (Rajanaidu *et al.*, 1985). The breeding materials for the programme were obtained through exchange scheme, organized between four Malaysian and three African participants. The Malaysian participants were Chemara, Harrison Malaysia Plantation Berhad (HMPB), Socfin and DOA. The West African participants were the Nigerian Institute for Oil Palm Research (formerly WAIFOR),