SUSTAINABLE GRAIN MAIZE PRODUCTION IN A GLIRICIDIA ALLEY CROPPING SYSTEM

NORZIANA ZIN ZAWAWI

FP 2007 13
SUSTAINABLE GRAIN MAIZE PRODUCTION IN A GLIRICIDIA ALLEY CROPPING SYSTEM

By

NORZIANA ZIN ZAWAWI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October 2007
DEDICATION

This thesis is dedicated to those who have given me their unfailing support
Crop production under Ultisols in the humid tropics is usually limited by N deficiency and acid soil infertility problems. Effectiveness of legume residues as a nitrogen source is generally known to improve crop productivity by enhancing the availability of soil N where chemical fertilizer use often leads to deterioration in environmental quality. The aim of the study was to evaluate *Gliricidia sepium* residues (leaves and roots) as a potential source of N for a sustainable grain maize production in an alley cropping system in the tropics. In order to identify the determinants of the N dynamics of the *Gliricidia sepium* residues (leaves and roots), a laboratory incubation experiment was carried out with an Ultisols amended with *Gliricidia sepium* leaves, roots and their mixtures for 50 days. Quality of *Gliricidia sepium* residues was in order of leaves > mixtures > roots. The nitrogen and carbon mineralization also followed the same sequence (P<0.05) and this observation suggests that the potential of *Gliricidia sepium* residues to increase soil inorganic N depends on their quality. Results obtained
showed that the *Gliricidia sepium* residues treatment was able to mitigate the soil acidity. The addition of *Gliricidia sepium* residues also increased major soil nutrient availability such as N, P, K, Ca and Mg. An experiment was carried out in semi-field conditions to compare the 15N labeling technique for estimating maize crop N uptake from *Gliricidia sepium* leaves and roots using direct 15N labeling and 15N dilution method. Results indicate that N contributed by *Gliricidia sepium* leaves to maize measured by direct 15N labeled and 15N dilution method were not significantly different (P>0.05). The percentage of nitrogen derived (%Ndfr) from the *Gliricidia sepium* 15N labeled leaves (direct labeling) was 26.9% and 41.9% from unlabeled leaves (15N dilution) in maize stover. Meanwhile, in maize cob, the %Ndfr from *Gliricidia sepium* leaves was 24.3% using 15N direct labeling and 46.4% using 15N dilution method. A field study was conducted using the 15N dilution method on N contribution from *Gliricidia sepium* leaves either integrated with or without additional urea fertilizer, or, with or without the presence of hedgerows. There was no significant difference (P>0.05) in maize yield upon application of *Gliricidia sepium* leaf mulch with urea fertilizer (LM+FERT) compared to *Gliricidia sepium* leaf mulch only (LM), suggesting that without additional amount of urea, *in situ* *Gliricidia sepium* leaf pruning is equally effective in maize production.
PENGEWURAN JAGUNG SECARA MAMPAN DENGAN MENGGUNAKAN SISTEM TANAMAN SELANG DENGAN POKOK GLIRICIDIA

Oleh

NORZIANA BT. ZIN ZAWAWI

Oktober 2007

Fakulti : Pertanian

Pengeluaran hasil tanaman pada tanah Ultisol di kawasan humid dan semi arid tropika biasanya terhad disebabkan oleh kekurangan nitrogen dan masalah ketidaksuburan tanah berasid. Keberkesanan sisa legum kekacang diketahui sebagai sumber nitrogen dan dapat meningkatkan hasil pengeluaran tanaman dengan menggalakkan kehadiran N di dalam tanah dimana kegunaan baja kimia biasanya menjurus kepada pencemaran alam sekitar. Sasaran kajian ini adalah untuk menilai keupayaan sisa Gliricidia sepium (daun dan akar) sebagai sumber nitrogen kepada pengeluaran tanaman jagung secara mampan di kawasan tropika.

Dalam mengenalpasti ketentuan dinamik N, sisa Gliricidia sepium, eksperimen pengeraman di dalam makmal dilakukan dengan menggunakan satu tanah Ultisol yang ditambah dengan daun, akar dan campurannya selama 50 hari. Hasil yang diperolehi menunjukkan turutan kualiti bagi sisa Gliricidia sepium iaitu daun > campuran>akar. Melalui ujian mineralisasi nitrogen dan karbon, ia juga menunjukkan turutan yang sama (P<0.05) dan melalui pemerhatian ini adalah v
dicadangkan bahawa sisa *Gliricidia sepium* berpotensi untuk meningkatkan N tak organik tanah berdasarkan kualitinya. Keputusan yang diperolehi menunjukkan bahawa rawatan sisa *Gliricidia sepium* dapat mengurangkan keasidan tanah. Pertambahan sisa *Gliricidia sepium* juga meningkatkan ketersediaan nutrien utama dalam tanah seperti N, P, K, Ca dan Mg. Satu kajian yang telah dijalankan dalam keadaan separa ladang untuk membandingkan teknik penglabelan 15N untuk menganggar pengambilan N oleh jagung dari daun dan akar *Gliricidia sepium* menggunakan kaedah penglabelan 15N secara langsung dan kaedah pencairan 15N. Keputusan menunjukkan tiada perbezaan bererti (P>0.05) diantara N yang disumbangkan oleh daun *Gliricidia sepium* kepada jagung menggunakan kaedah penglabelan 15N secara langsung dan kaedah pencairan 15N (P>0.05). Peratus nitrogen yang diperolehi daripada sisa *Gliricidia sepium* (%Ndfr) daun berlabel 15N adalah 26.9% dan 41.9% daripada daun yang tidak dilabel 15N (kaedah pencairan 15N) dalam batang jagung. Sementara itu dalam buah jagung, %Ndfr yang diperolehi daripada *Gliricidia sepium* adalah 24.3% menggunakan penglabelan 15N secara langsung dan 46.4% dengan menggunakan kaedah pencairan 15N. Kajian ladang dijalankan menggunakan kaedah pencairan 15N keatas sumbangan N dari daun *Gliricidia sepium* sama ada digunakan bersama dengan atau tanpa baja urea, atau melalui kehadiran rimbunan pokok *Gliricidia sepium* atau tanpa rimbunan pokok. Tiada perbezaan signifikan (P>0.05) antara aplikasi daun *Gliricidia sepium* dengan tambahan baja urea (LM+FERT) dengan daun *Gliricidia sepium* sahaja tanpa tambahan baja urea (LM) ke atas hasil jagung. Dengan itu disarankan bahawa aplikasi daun *Gliricidia sepium* secara *in situ* dapat memberi kesan yang efektif walaupun tanpa pertambahan baja urea ke atas hasil tanaman jagung.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful

Praise to Allah Almighty for His blessings, which provided me the strength and spirit that enabled me to complete this thesis. I would like to express my sincere appreciation to Professor Dr Zaharah Abdul Rahman, the Chairman of my Supervisory Committee for her unfailing commitment in supervising me, her patience, understanding and invaluable guidance throughout this study. I am very grateful to the members of my Advisory Committee, Assoc. Prof. Dr. Anuar Abd Rahim and Assoc. Prof. Dr. Radziah Othman for all their very useful technical advice, and comments that contributed greatly in improving my thesis.

I would also like to thank Madam Zabedah Tumirin and Mr. Junaidi for the indispensable technical support provided during the laboratory and field experiments. My thanks also goes to all the staffs of Land Management Department, Faculty of Agriculture UPM, who contributed in one way or other to my research and for all their kindness, guidance and help.

Special thanks and appreciation go to my beloved parents Dr. Zin Zawawi Haji Zakaria and Wan Rahana Wan Abdul Kadir, my brothers and sisters for all the encouragement given and sacrifices made, which meant a lot to me. Last but by no means least, I would like to thank my colleagues for their moral support, comments and help throughout the sweet and sour moments. May Allah bless all of you.
I certify that an Examination Committee met on 4th October 2007 to conduct the final examination of Norziana binti Zin Zawawi on her Master of Science thesis entitled “Sustainable Grain Maize Production in a \textit{Gliricidia} Alley Cropping System” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

\textbf{Che Fauziah Ishak, PhD}
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

\textbf{Rosenani Abu Bakar, PhD}
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Samsuri Abd. Wahid, PhD}
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Wan Rasidah Kadir, PhD}
Senior Research Officer
Forest Research Institute of Malaysia
FRIM
(External Examiner)

\underline{HASANAH MOHD. GHAZALI, PhD}
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 February 2008
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zaharah Abdul Rahman, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Anuar Abdul Rahim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 February 2008
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NORZIANA ZIN ZAWAWI

Date: 4th February 2008
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS vii
APPROVAL viii
DECLARATION x
LIST OF TABLES xiv
LIST OF FIGURES xv
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS xvi

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 5

2.1 Sustainable Agriculture 5

2.2 Alley Cropping System 6

2.2.1 Benefit of Alley Cropping 9

2.3 Inputs of N from Plant Residues in Alley Cropping 13

2.3.1 Synchrony of N Inputs from the Plant Residues with The Crop Demand 14

2.3.2 N Contributed by Above-Ground Plant Residues 15

2.3.3 N Contributed by Below-Ground Plant Residues 16

2.3.4 Decomposition and N Mineralization of Plant Residues 17

2.4 *Gliricidia sepium* – A Multipurpose Forage Tree Legume 20

2.4.1 Botanical Description 20

2.4.2 Ecology 21

2.4.3 Distribution 22

2.4.4 Uses of *Gliricidia sepium* 23

2.5 Grain Maize on Alley Cropping System 24

3 DECOMPOSITION AND NITROGEN MINERALIZATION OF *GLIRICIDIA SEPIUM* RESIDUES ADDED TO BUNGOR SERIES SOIL

3.1 Introduction 25

3.2 Materials and Methods 28

3.2.1 Characterization and Analysis of *Gliricidia sepium* Residues (Leaves and Roots) 28

3.2.2 Characterization and Analysis of Bungor series soil 32
3.2.3 Experiment Set-up, Design and Treatments 35
3.2.4 Soil Incubation 36
3.2.5 Preparation of 15N Solution for Labeling Experiment Unit 38
3.2.6 Sampling and Analysis of CO$_2$-C evolved 38
3.2.7 Extraction and Distillation for NH$_4$-N and NO$_3$-N and 15N Analysis of Soil 39
3.2.8 Statistical Analysis 40

3.3 Results and Discussions 41
3.3.1 The Characteristic of Gliricidia sepium Residues 41
3.3.2 N Release Patterns by Gliricidia sepium Residues 44
3.3.3 Nitrogen Derived from Gliricidia sepium Residues 49
3.3.4 Soil pH 51
3.3.5 Carbon Dioxide-Carbon Evolution 53

3.2 Conclusions 57

3 COMPARISON OF 15N ISOTOPE TECHNIQUE IN QUANTIFICATION OF NITROGEN CONTRIBUTION FROM GLIRICIDIA SEPIUM RESIDUES TO N UPTAKE BY MAIZE

4.1 Introduction 59
4.2 Materials and Methods 61
4.2.1 Site 61
4.2.2 Treatments, Design and Plot Description 61
4.2.3 Plot Management 63
4.2.4 Preparation of 15N Solution Labelling of Gliciridia sepium Tree 66
4.2.5 Determination of Xylem Distribution in Gliricidia sepium stem 66
4.2.6 Direct 15N Labelling in Gliricidia sepium Trees 66
4.2.7 Application of Gliricidia sepium Residues to Maize 69
4.2.8 Harvest of Maize and Plant Sampling 70
4.2.9 Data Calculation and Analysis 70

4.3 Results and Discussions 71
4.3.1 Gliricidia sepium Tree Biomass, Total N Content, and 15N Enrichment 71
4.3.2 Maize Yield 72
4.3.3 Nitrogen Content and 15N Enrichment of Maize 73
4.3.4 Nitrogen Contribution in Maize Components 74
4.3.5 Soil Inorganic N and Soil pH 76

4.4 Conclusions 78
5 THE N CONTRIBUTION OF *GLIRICIDIA SEPIUM* IN ALLEY CROPPING SYSTEM TO N UPTAKE BY ON AN ULTISOL

5.1 Introduction 80
5.2 Objectives 84
5.3 Materials and Methods 85
 5.3.1 Study Area 85
 5.3.2 Field Experiment Set Up and Procedures 85
 5.3.3 Fertilizer Application 89
 5.3.4 Harvesting of Maize and Plant Sampling 90
 5.3.5 Soil Sampling and Chemical Analysis 91
 5.3.6 Data Calculations and Analysis 91
5.4 Results and Discussions 92
 5.4.1 Maize Yields and Total N Uptake 92
 5.4.2 Maize 15N Enrichment and Percent of N Derived from treatment 96
 5.4.3 Soil Inorganic N Status and Other Soil Chemical Properties 99
5.5 Conclusions 102

6 CONCLUSIONS 104

REFERENCES 106

APPENDICES 126

BIODATA OF THE AUTHOR 140
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Characteristics of the soil used in the study</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical composition of Gliricidia sepium residues in the study</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Biomass tree yield, %Total N and 15N enrichment (% 15N a.e) of</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Gliricidia sepium</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Yield of maize components (stover and cob) per pot 89 days after planting</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of %total N and 15N enrichment (% 15N a.e) in different maize components (stover and cob)</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Percent of 15N recovery of Gliricidia sepium residues by maize</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Soil pH status at planting and harvest time of maize</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>The amount of fertilizer and Gliricidia sepium leaf mulch applied</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Maize yield for two cropping season planted in Puchong</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Total N uptake by maize (kg/ha) for two cropping season planted in Puchong</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>Percent 15N Enrichment of maize components (stover and grain)</td>
<td>96</td>
</tr>
<tr>
<td>5.5</td>
<td>Soil mineral N status at planting time and after harvest of</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>second cropping season of maize</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Changes in soil chemical properties status in second cropping season</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>of maize crop at planting time and after harvest</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Effects of Gliricidia sepium residues on soil (a) ammonium-N and (b) Nitrate-N over a period of 50 days</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Percentage of soil (a) NH$_4^+$-N and (b) NO$_3^-$-N derived from fresh Gliricidia sepium residues over a period of 50 days</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of Gliricidia sepium residues on soil pH over a period of 50 days</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Effects of Gliricidia sepium residues on cumulative carbon dioxide evolution over a period of 50 days</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Effects of Gliricidia sepium residues on daily production of carbon dioxide over a period of 50 days</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>The layout of experimental plots</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental layout and description of treatment application</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>Layout of Gliricidia sepium and maize planted in a treatment plot</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>Percent N in maize components (cob and stover) derived from Gliricidia sepium residues</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Soil inorganic N status at planting and harvest time of maize planted outside of glasshouse area of the Faculty of Agriculture at Universiti Putra Malaysia (UPM)</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>The layout of experimental plots</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>The experimental plots</td>
<td>87</td>
</tr>
<tr>
<td>5.3</td>
<td>The micro plot (1m x 3m) inside the experimental plot (4m x 5m)</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage of N derived from treatments (% Ndfr) by maize in different Gliricidia sepium land-use system</td>
<td>96</td>
</tr>
</tbody>
</table>
ANOVA Analysis of Variance
BNF Biological Nitrogen Fixation
CEC Cation Exchange Capacity
CRD Completely Randomized Design
DMRT Duncan’s New Multiple Range Test
Fert Fertilizer
H Hedgerow
HCl Hydrochloric Acid
IAEA International Atomic Energy Agency
KCl Potassium Chloride
KOH Potassium Hydroxide
L Lignin
LM Leaf as Mulch
M molar
mL mililitre
mM milimolar
NaOH Sodium Hydroxide
Ndfr Nitrogen Derived From Residues
rNE recovery of N From Residue
SAS Statistical Analysis System
USDA United State Department of Agriculture
CHAPTER 1

INTRODUCTION

Malaysia is one of the largest user of fertilizers in the world with most of them imported. In 2004, nitrogenous fertilizers and potash are the major imports with 1.41 and 1.40 million tones, respectively, followed by phosphate (0.7 million tonnes) (Malaysian Agricultural Directory Index, 2006). The unbalanced use of chemical fertilizers usually leads to a loss in soil productivity as well as deterioration in environmental quality. This has resulted in concerted efforts to review the use of such fertilizers and to place more emphasis on organic matter inputs (Szott et al., 1991; Szott and Kass, 1993).

In Malaysia, agroforestry (forestry together with agriculture for multiple benefits) has been receiving long overdue attention as an environmental and sustainable way of production. It has been considered for integrating forest plants (timber trees, rattan, bamboo, medicinal plants and others. Even tree crops like rubber and oil palm are considered forest plants for this purpose) with food production (maize, padi, livestock, aquaculture) to maximize the returns from the land. In recent years, integrated farming has been promoted actively among Malaysian farmers (Faridah, 2001). The integration, if properly designed, can improve the soil fertility and increase crop
productivity, in recycling and maximizing the use of plant nutrients. However, for the maximum benefits to accrue, it is important that the integration be designed right, for which the cropping and nutrient management systems need to be studied.

Alley cropping has been identified as an efficient system in agroforestry (Kang et al., 1990; Szott et al., 1991). In it, leguminous shrubs are grown in rows wide apart, and in-between is grown the food crops or livestock reared. Thus, litter from the tree (especially if they are legumes which fix atmospheric nitrogen) can be used as mulch, reducing the need for extraneous fertilizers to be applied. The leguminous trees may have to be pruned from time to time to prevent excessive shading, and the biomass can also be used as mulch. The research on alley cropping has focused on the ability of the system to maintain its productivity without extraneous fertilization, in particular, on the ability of leguminous trees to supply the nitrogen requirement (Fernandes, 1990; Szott and Kass, 1993). Leguminous trees normally have higher nitrogen content than non-N fixing species although the content is variable (Palm, 1995). Tree prunings normally have higher concentrations of mobile nutrients such as nitrogen, phosphorus, potassium and zinc than naturally fallen litter from which elements are translocated by the tree prior to abscission (Marschner, 1995). Similarly, the young, leaf rich biomass of frequently pruned trees has higher nutrient concentrations than the more woody biomass of infrequently pruned trees, although the quantity of biomass produced decreases with pruning frequency (Duguma et al., 1988).
A major consideration in the selection of leguminous trees for agroforestry is the rate and amount of N available from the litter and prunings to benefit the undercrop. *Leucaena leucocephala* and *Gliricidia sepium* in hedgerows have been found to yield large quantities of nitrogen (Kang et al., 1981; Kang and Duguma, 1985). On an Entisol, Kang and Duguma (1985) estimated that *Leucaena Leucocephala* contributed about 40 kg N ha\(^{-1}\) to its companion maize crop. High yields of maize and cassava were obtained in alley cropping with *Leucaena* and *Gliricidia* on high base status soils in the humid and sub-humid lowland tropics of Africa (Kang et al., 1984; Atta Krah et al., 1985). *Gliricidia sepium* was found to be one of the more leguminous woody species used in hedgerows in the humid tropics (Fernandes et al., 1993). It is highly suitable for the purpose because of its easy establishment by direct seeding and stem cuttings. It is also a long-lived tree, sufficiently hardy to withstand frequent pruning and produces large amounts of biomass and nutrients (Kang, 1993).

Despite of these amusing discoveries, there is actually little data on *Gliricidia sepium* as a nitrogen source in alley cropping in the humid tropics such as Malaysia. With current interest in maize production for animal feed, there is interest in integrating *Gliricidia sepium* with maize in a sustainable production system. By adopting the potential benefits of *Gliricidia sepium* grown in alley cropping and its role as nitrogen contributor in plant nutrient management, this study was undertaken to evaluate
Gliricidia sepium residues as a potential source of nitrogen for grain maize production in the tropics with the following aims to:

1. Determine chemical composition of *Gliricidia sepium* residues (leaves and roots) which affect the pattern of N mineralization on Bungor series soil.

2. Quantify the relative contribution of *Gliricidia sepium* roots and leaves to N uptake by grain maize using two different 15N isotope labeling techniques.

3. Evaluate the effects of different *Gliricidia sepium* land-use systems on soil chemical properties and N uptake by grain maize in an alley cropping system.
2.1 Sustainable Agriculture

Sustainable agriculture involves the management of agricultural resources to satisfy changing human needs while maintaining or enhancing the environmental quality and conserving natural resources (Kang et al., 1985; Salinas-Garcia, 1997; Borch, 2007). Sustainable land management should maintain the soil productivity, minimize risks, preserve the soil and water quality and be economically feasible and socially acceptable (Bouma, 2002). The increasing demand for agricultural land has led to more intensive land use, resulting in rapid land degradation. The application of hazardous compounds and excessive fertilizers has worsened the land degradation and its fertility. The use of chemical fertilizers such as urea and ammonium sulphate is believed to result in some N losses. This may lead to environmental degradation, such as groundwater pollution if the leaching losses are high. Further, applying urea and ammonium sulphate acidifies the soil, making it less fertile. Despite the ills, the practice has continued because it is financially more cost-effective than sustainable agriculture in the short term.

The development of alternative, sustainable and more productive food crop systems has only had limited success in the humid and subhumid tropics (Kang et al., 1991).
There is considerable interest in reducing the use of chemical fertilizers while maintaining crop yields, not only to lower the cost of production but also to minimize pollution. Organic fertilizers, for example, can be used, especially to supply N (Huntington et al., 1985; Stute and Posner, 1995; Ranells and Wagger, 1996). It is known that external chemical inputs are needed to achieve sustained high crop yields, their availability and cost (without subsidies) may be prohibitive for their use in food crop production in many developing countries. In addition, continuous use of only high external chemical inputs can result in increased land degradation on poorly buffered upland soils (Kang and Balasubramanian, 1990). Combining decreased levels of inorganic N inputs with organic N inputs may be an avenue for sustaining N availability to a crop in the transition to alternative management as well (Liebhart et al., 1989; Hussain et al., 1995; Cavero et al., 1997). It is, therefore, imperative that alternative integrated soil and nutrient management systems are developed that can maximize incorporation of biological nutrient sources and organic material.

2.2 Alley Cropping System

In the tropics, alley cropping can be used for sustainable food production as it allows well for soil fertility replenishment. The system is basically planting tree crops in hedgerows, and food crops in between. The hedgerow trees are pruned regularly to minimize shading and competition with the companion crops (Kang and Wilson, 1987). The prunings are used to mulch the food crops, contributing both organic
matter and nutrients. Ideally, the nutrients in the mulch should be released at the same rates as taken up by the crop. Kang (1997) stated that alley cropping, sometimes also called the ‘improved bush fallow system’, is based on the following:

1. Trees are grown in managed hedgerows to perform the same functions as the bush in the traditional bush fallow system for nutrient recycling and soil fertility regeneration;
2. Hedgerow prunings supply in situ as mulch and green manure;
3. Partial shading by the hedgerows during the off-season helps in weed suppression;
4. Inclusion of N-fixing legumes to add N to the system;
5. Presence of woody species aids in soil and water conservation;
6. Hedgerows also serve as a source of browse and other auxiliary products, such as staking materials and firewood.

Radersma et al (2004) reported that alley cropping mimics natural ecosystems in a simplified way. The initial expectations for alley cropping were high based on the assumption that trees grown within crop fields could function as a ‘fallow component’ in the combined system. Alley cropping was meant to provide a sustainable alternative to traditional cropping systems with long fallows, which had given way to continuous production due to population pressure (Kang et al., 1985). Pioneering work of this technology was initiated at the International Institute of Tropical Agriculture (IITA),
Ibadan, Nigeria by B.T Kang and his co-workers in the early 1980s (Vanlauwe, 2005). It was found suitable for the uplands (Kang and Mulongoy, 1992; Kang et al., 1990) with food crops grown between hedges of preferably N$_2$ fixing trees (Kang et al., 1985).

Alley cropping can be very important in agroforestry with nitrogen-fixing trees (to produce fertilizer) and non nitrogen-fixing trees (for timber) grown in alternate rows. The mulch produced should:

1. Improve the crop performance due to addition of nutrients and organic matter to the soil/plant system.
2. Reduce the use of chemical fertilizers.
3. Improve the physical soil environment - lower the soil temperature, reduce evaporation, improve the soil microbial activity and structure resulting in better infiltration, reduced runoff and improved water use efficiency.
4. Provide additional products such as forage, firewood or stakes when a multipurpose tree legume is used as the hedgerow (Kang and Gutteridge, 1994).
5. Improve weed control. The mulch may inhibit germination and establishment of weeds (Ssekabembe, 1985).

Alley cropping has shown considerable promise on land such as slopes where it was an effective erosion control measure, where rainfall was adequate throughout the