

# **UNIVERSITI PUTRA MALAYSIA**

# GENETIC VARIATION OF HELOPELTIS THEIVORA WATERHOUSE AND ITS HOST PLANT CAMELLIA SINENSIS L.

# SITI NOOR HAJJAR BT MD LATIP

FP 2006 36



# GENETIC VARIATION OF *HELOPELTIS THEIVORA* WATERHOUSE AND ITS HOST PLANT *CAMELLIA SINENSIS* L.

# SITI NOOR HAJJAR BT MD LATIP

#### DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2006



# GENETIC VARIATION OF *HELOPELTIS THEIVORA* WATERHOUSE AND ITS HOST PLANT *CAMELLIA SINENSIS* L.

## SITI NOOR HAJJAR BT MD LATIP

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

September 2006



## Bismillahirrahmanirrahim

I dedicated this thesis to my beloved parents, Haji Md. Latip b. Haji Mahmood and Hajjah Siti Sariah Soleh for their support, patient and endless love. For my husband and our little princess Rabia'tul Adawiyah bt Zainal Abidin for being so patient.



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

# GENETIC VARIATION OF *HELOPELTIS THEIVORA* WATERHOUSE AND ITS HOST PLANT *CAMELLIA SINENSIS* L.

By

#### SITI NOOR HAJJAR BT MD LATIP

#### September 2006

### Chairman: Associate Professor Rita Muhamad, PhD

#### Faculty : Agriculture

*Helopeltis theivora* is known as a pest of cocoa and tea in Malaysia. Insecticides have been used for the control of the mirids since cocoa and tea are grown widely in this country. Several mechanisms of insecticide resistance have been proposed and metabolic detoxification was shown to play a major role in insecticide resistance. Although *H. theivora* is recognized as a leaf-destroying pest of tea, little is known about the genetic background of the mirid, *H. theivora* and its host plant, tea. This lack of information has lead to the loss of genetic variability and allelic differences of tea clones planted in Malaysia. Little molecular work has been done in *H. theivora* but some information can be obtained for tea.

In a study on the evaluation of the levels infestations of *H. theivora* on different varieties of tea, the results showed that the tea varieties could be categorized into three different groups namely resistant, intermediate and susceptible. For tea, RAPD and RAMs markers were used to study the genetic relationships among the resistant and susceptible



varieties found in Bukit Cheeding and Sungai Palas. Both the dendrograms based on the RAMs and RAPD markers, respectively grouped the tea varieties into two clusters with the intermediate varieties grouping with the resistant (first cluster) or susceptible (second cluster) varieties. The genetic differences are based on their geographical distributions and partially based on their resistance towards damage by the insect (*H. theivora*).

Two DNA markers were used to identify the genetic variation of *H. theivora*, namely random amplified polymorphic DNA (RAPD) and random amplified microsatellites (RAMs). For RAPD and RAMs markers, after screening 20 arbitary primers, 8 primers were identified as being useful for generating RAPD markers and 5 primers for RAMs markers. A dendrogram obtained through the use of these DNA level markers showed that the first cluster pooled both the populations of *H. theivora* from BOH estate at Bukit Cheeding and Sungai Palas together while the population of *H. theivora* mere not clustered together based on their geographical distributions. This clustering pattern could be due to *H. theivora* (eggs and nymphs) being present on the planting materials from Bukit Cheeding and planted at Sungai Palas since both the plantations are owned by Boh.

Eighteen microsatellite primer pairs were designed for *H. theivora*. Out of these, six were found to be polymorphic (CT2, CT4, CT9, CT15, CT17 and CT18). This study showed that the RAMs technique is suitable and efficient for isolating single locus DNA microsatellites markers for *H. theivora*.



Enzyme studies using inhibitors, polyacrylamide gel electrophoresis (PAGE) and gluthatione-s-transferase (GST) analysis using a spectrophotometer were used to identify the metabolic enzymes involved in the development of resistance in *H. theivora*. The results showed that of the 25 enzymes screened for 8 enzymes were detectable in *H. theivora*. The dendrogram resulting from the cluster analysis based on isoenzyme data grouped the Bukit Cheeding and the Tanah Rata populations together while the Sungai Palas population clustered by itself. For the Bukit Cheeding and Tanah Rata populations, insecticides were not frequently sprayed when compared with the Sungai Palas population. Esterases and oxidases were enzymes observed to play roles in the insecticide resistance mechanism in *H. theivora*. Meanwhile, for GST analysis the presence of low activity of GST was detected in *H. theivora*. This results show that the resistance of *H. theivora* towards insecticides appeared not to be due to an increased detoxification by gluthatione s-transferase.



Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

## VARIASI GENETIK *HELOPELTIS THEIVORA* DAN PERUMAHNYA CAMELLIA SINENSIS L.

Oleh

#### SITI NOOR HAJJAR BT MD LATIP

#### September 2006

#### Pengerusi : Profesor Madya Rita Muhamad, PhD

Fakulti: Pertanian

*H. theivora* dikenali sebagai perosak koko dan teh di Malaysia. Racun serangga telah digunakan untuk mengawal *H. theivora* sejak koko dan teh ditanam secara meluas di negara ini. Beberapa mekanisme rentan kepada racun serangga telah dicadangkan dan metabolisme detoksifikasi memainkan peranan penting dalam kerentanan racun serangga. Walaupun *H. theivora* telah dikenali sebagai perosak daun teh, hanya sedikit latarbelakang genetik *H. theivora* dan perumahnya, teh diketahui. Ini menyebabkan kekurangan maklumat mengenai kepelbagaian genetik dan perbezaan alel dalam klon teh yang ditanam di Malaysia. Hanya sedikit kajian genetik yang telah dibuat mengenai *H. theivora* tetapi beberapa informasi boleh didapati bagi teh.

Dalam kajian untuk menilai kerentanan varieti teh terhadap *H. theivora*, keputusan menunjukkan varieti teh boleh dikategorikan kepada tiga kumpulan iaitu rentan, pertengahan dan mudah diserang *H. theivora*. Untuk kajian bagi teh, penanda RAMs dan RAPD diuji untuk melihat perbandingan genetik diantara varieti di Bukit Cheeding dan



Sungai Palas. Kedua-dua dendrogram ini menunjukkan penanda RAMs dan RAPD membahagikan varieti teh kepada dua kluster iaitu varieti pertengahan dan rentan dalam kluster pertama dan pertengahan masing-masing dan mudah diserang dalam kluster kedua. Perbezaan genetik bagi teh adalah berdasarkan kedudukan geografi dan sebahagian berdasarkan pada kerentanan terhadap kerosakan oleh serangga (*H. theivora*).

Dua penanda DNA yang telah digunakan untuk mengenalpasti variasi genetik *H. theivora* iaitu *random amplified polymorphic DNA* (RAPD) dan *random amplified microsatellites* (RAMs). Bagi penanda untuk RAMs dan RAPD, daripada 20 primer yang diuji, lapan primer untuk RAPD dan lima primer untuk RAMs telah dikenalpasti sesuai untuk *H. theivora*. Kluster yang pertama mengumpulkan populasi *H. theivora* dari estet Boh di Bukit Cheeding dan Sungai Palas bersama manakala populasi dari Tanah Rata di kluster yang kedua. Berdasarkan keputusan daripada penanda RAMs dan RAPD didapati walaupun populasi *H. theivora* dari kawasan yang sama (Cameron Highlands) tetapi ia tidak berada dalam kluster yang sama. Ini disebabkan kemungkinan telur dan nimfa *H. theivora* yang terdapat pada pokok teh di Banting dibawa dan ditanam di Sungai Palas kerana kedua-dua estet ini dimilki oleh Boh.

18 pasangan primer mikrosatelit telah direka untuk *H. theivora*. Daripada jumlah ini, 6 primer mikrosatelit yang direka didapati polimorfik (CT2, CT4, CT9, CT15, CT17 dan CT18). Kajian ini menunjukkan teknik RAM sesuai dan efisien untuk memencilkan DNA mikrosatelit untuk *H. theivora*.



Kajian isoenzim menggunakan elektroforesis gel poliakrilamida (PAGE) dan analisis gluthatione-s-transferase (GST) menggunakan spektrofotometer dijalankan untuk mengenalpasti metabolik pada enzim yang terlibat dalam perkembangan kerentanan *H. theivora*. Keputusan menunjukkan daripada 25 enzim yang diuji, 8 enzim yang dikenalpasti di dalam *H. theivora*. Dendrogram menunjukkan analisis kluster mengumpulkan populasi Bukit Cheeding dan Tanah Rata bersama manakala populasi Sungai Palas di dalam kluster yang tersendiri. Populasi Bukit Cheeding dan Tanah Rata kurang disembur dengan racun serangga dibandingkan dengan populasi Sungai Palas. Enzim esterase dan oksidasi didapati memainkan peranan penting dalam mekanisme rentan kepada racun perosak dalam *H. theivora*. Keputusan ini menunjukkan resistan *H. theivora* terhadap racun serangga tiada kaitan dengan peningkatan detoksifikasi gluthatione-s-tranferase.



#### ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof. Madya Dr. Rita Muhamad, Prof Tan Soon Guan and Dr. Lau Wei Hong. I am greatly indebted to each of them for their continuous support, cooperation and interest in my research and their time, comment and suggestions on many aspects of this work.

I would like to gratefully acknowledge the financial support from the Intensification of Research in Priority Areas (IRPA) project grant no. 01-02-04-EA0101-54095. I also want to gratefully acknowledge the Ministry of Science, Technology and the Environment Malaysia for providing me with a Post Graduate Scholarship (PASCA).

I would like thank undergraduate students, Joseph and Charlene who have helped me with the tea project and also made teaching an exciting experience for me. My thanks also goes to Dr Vijay Kumar, Dr Hoh Boon Peng, Dr Subha Bhassu, Hisyam and Ong Chin Chin for their advice, friendship and the many interesting discussions we had on microsatellites. Without them, life in the lab would indeed be boring and uneventful. My special thanks to Mr Philp Bauer, agronomist from Boh plantation for giving me a guide and information about tea and Boh plantations.

I am grateful and thankful to my family for their moral support especially to my parents, Haji Md Latip Mahmmod and Hajah Siti Sariah Soleh, my husband and my little princess, Rabia'tul Adawiyah bt. Zainal Abidin for giving me strength, encouragement and for having faith in me.



I certify that an Examination Committee has met on 20 September 2006 to conduct the final examination of Siti Noor Hajjar Md Latip on her Doctor of Philosophy thesis entitled "Genetic Variation of *Helopeltis theivora* and its Host Plant *Camellia sinensis* L." in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

### Hafidzi Mohd Nor, PhD

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Chairman)

### Dzolkhifli Omar, PhD

Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

#### Siti Shapor Siraj, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

## Mahani Mansor Clyde, PhD

Professor Faculty of Science and Tecnology Universiti Kebangsaan Malaysia (External Examiner)

## HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 NOVEMBER 2006



This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

## Rita Muhamad, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

## Tan Soon Guan, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

## Lau Wei Hong, PhD

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

## AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 DECEMBER 2006



## DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

## SITI NOOR HAJJAR BT. MD. LATIP

Date: 2 NOVEMBER 2006



# TABLE OF CONTENTS

|                       | 0     |
|-----------------------|-------|
| DEDICATION            |       |
| ABSTRACT              | iii   |
| ABSTRAK               | vi    |
| ACKNOWLEDGEMENTS      | ix    |
| APPROVAL              | xi    |
| DECLARATION           | xii   |
| LIST OF TABLES        | xvi   |
| LIST OF FIGURES       | xviii |
| LIST OF PLATES        | xix   |
| LIST OF ABBREVIATIONS | xxi   |
|                       |       |

## CHAPTER

3

| 1   | INTR     | ODUCTION                                | 1      |
|-----|----------|-----------------------------------------|--------|
| 2   | LITE     | RATURE REVIEW                           | 5      |
| 2.1 | Tea, C   | Camellia sinensis L.                    | 5<br>5 |
|     | 2.2.1    | Taxonomic Classification                |        |
|     | 2.2.2    | Botany                                  | 6      |
|     | 2.2.3    | Genomic Diversity                       | 7      |
|     | 2.2.4    | Economic Importance and Health Benefits | 8      |
|     | 2.2.5    | Economic Importance of Tea in Malaysia  | 11     |
|     | 2.2.6    | Plant Resistance to Insect              | 12     |
| 2.2 | Helop    | eltis theivora Waterhouse               | 17     |
|     | 2.1.1    | Taxonomic Classification                | 17     |
|     | 2.1.2    | Morphology and Habitat                  | 17     |
|     | 2.1.3    | Host Plant and Distribution             | 18     |
|     | 2.1.4    | Damage due to H. theivora               | 19     |
|     | 2.1.5    | Control Methods of H. theivora          | 20     |
|     | 2.1.6    | Insecticide Resistance Studies          | 21     |
| 2.3 | Bioche   | emical Markers                          | 28     |
|     | 2.3.1    | Isozyme Electrophoresis                 | 28     |
|     | 2.3.2    | Isozyme Studies in Insects              | 29     |
| 2.4 | DNA ]    | Markers                                 | 31     |
|     | 2.4.1    | Random Amplified DNA (RAPD)             | 32     |
|     | 2.4.2    | Random Amplified Microsatellites (RAMs) | 36     |
|     | 2.4.3    | Microsatellites                         | 39     |
| INF | ESTATI   | ON VALUE ON DIFFERENT VARIETIES OF TEA, | 42     |
| CAM | IELLIA S | SINENSIS L.                             |        |
| 3.1 | Introd   | uction                                  | 42     |
| 3.2 | Materi   | al and Methods                          | 43     |
| 3.3 | Result   | s and Discussion                        | 49     |
| 3.4 | Conclu   | usion                                   | 54     |



| 4 | GEN | ETIC VARIATION STUDIES IN TEA, CAMELLIA SINENSIS L.      | 55  |
|---|-----|----------------------------------------------------------|-----|
|   | 4.1 | Introduction                                             | 55  |
|   | 4.2 | Materials                                                | 56  |
|   |     | 4.2.1 Method                                             | 56  |
|   |     | 4.2.2 Random Amplified Microsatellite (RAMs) Procedure   | 58  |
|   |     | 4.2.3 Random Amplified Polymorphic DNA Procedures (RAPD) | 60  |
|   | 4.3 | Statistical Analysis                                     | 62  |
|   | 4.4 | Results and Discussion                                   | 63  |
|   |     | 4.4.1 Random Amplified Microsatellite (RAMs)             | 63  |
|   |     | 4.4.2 Random Amplified Polymorphic DNA Procedures (RAPD) | 74  |
|   | 4.5 | Conclusion                                               | 88  |
|   |     | TERHOUSE                                                 | 0.0 |
|   |     | ETIC VARIATION STUDIES IN <i>HELOPELTIS THEIVORA</i>     |     |
|   | 5.1 | Introduction                                             | 89  |
|   | 5.2 | Material and Methods                                     | 90  |
|   |     | 5.2.1 DNA Extraction                                     | 91  |
|   |     | 5.2.2 Statistical Analysis                               | 92  |
|   |     | 1                                                        | 93  |
|   |     |                                                          | 101 |
|   | 5.3 |                                                          | 114 |
|   | 5.4 | 1                                                        | 115 |
|   |     |                                                          | 115 |
|   |     |                                                          | 118 |
|   |     |                                                          | 122 |
|   |     | 5.4.4 Conclusion                                         | 126 |

## 6 DETERMINATION OF METABOLIC ENZYMES INVOLVED IN THE DEVELOPMENT OF RESISTANCE IN *HELOPELTIS THEIVORA* WATERHOUSE

| 6.1 | Isozyr | ne Studies                                       | 128 |
|-----|--------|--------------------------------------------------|-----|
|     | 6.1.1  | Introduction                                     | 128 |
|     | 6.1.2  | Materials and Methods                            | 130 |
|     | 6.1.3  | Analysis of Data                                 | 139 |
|     | 6.1.4  | Results and Discussion                           | 140 |
|     | 6.1.5  | Conclusion                                       | 155 |
| 6.2 | Bioch  | emical Assay for Gluthatione S-transferase (GST) | 155 |
|     | 6.2.1  | Introduction                                     | 155 |
|     | 6.2.2  | Materials and Methods                            | 157 |
|     | 6.2.3  | Results                                          | 158 |
|     | 6.2.4  | Discussion                                       | 159 |
|     | 6.2.5  | Conclusion                                       | 162 |



# 7 GENERAL DISCUSSIONS

| REFERENCES            | 169 |
|-----------------------|-----|
| APPENDICES            | 205 |
| BIODATA OF THE AUTHOR | 239 |



163

# LIST OF TABLES

| Table |                                                                                                                  | Page |
|-------|------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | Description of tea cultivars with special characters                                                             | 9    |
| 3.1   | Resistance score and plant status based on the intensity of <i>H. theivora</i> damage                            | 43   |
| 3.2   | List of tea varieties at Bukit Cheeding (Banting)                                                                | 48   |
| 3.3   | List of tea varieties at Sungai Palas (Cameron Highlands)                                                        | 49   |
| 3.4   | Infestation of <i>H. theivora</i> on different clones of tea at Bukit Cheeding (Banting) for September 2003      | 51   |
| 3.5   | Infestation of <i>H. theivora</i> on different clones of tea at Sungai Palas (Cameron Highlands) in October 2003 | 52   |
| 4.1   | Sampling sites, list of varieties of tea and their resistance level types to <i>H. theivora</i>                  | 56   |
| 4.2   | List of primers used for the RAMs procedure.                                                                     | 59   |
| 4.3   | The lists of primers used for the RAPD procedure                                                                 | 61   |
| 4.4   | The optimised conditions for the RAMs primers                                                                    | 64   |
| 4.5   | Frequency of markers obtained from the 4 RAMs primers according to the varieties of tea                          | 66   |
| 4.6   | Distances based on Nei & Li's similarity coefficients between varieties of tea based on 64 RAMs markers          | 72   |
| 4.7   | The optimised conditions for each of the RAPD primers                                                            | 74   |
| 4.8   | Frequency of markers obtained from the 10 RAPD primers according to the varieties of tea                         | 76   |
| 4.9   | Distances based on Nei & Li's similarity coefficients between varieties of tea obtain from 153 RAPD markers      | 85   |
| 5.1   | List of primers used for the RAMs procedure                                                                      | 95   |
| 5.2   | The optimised conditions for the RAMs primers                                                                    | 95   |



| 5.3  | Frequency of markers obtained from the 5 primers according to the three different population of <i>H. theivora</i>                                                    | 98  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.4  | Genetic distances based on Nei and Li's similarity coefficients for three different populations of <i>H. theivora</i> based from 29 polymorphic RAMs markers.         | 99  |
| 5.5  | The lists of primers used for the RAPD procedure.                                                                                                                     | 101 |
| 5.6  | The optimised conditions for each of the RAPD primers                                                                                                                 | 103 |
| 5.7  | Frequency of markers obtained from the 8 RAPD primers according to the three different population of <i>H. theivora</i>                                               | 104 |
| 5.8  | Genetic distance based on Nei and Li's similarity coefficients for three different populations of <i>H. theivora</i> from 38 polymorphic RAPD markers                 | 108 |
| 5.9  | List of RAMs primers used for cloning                                                                                                                                 | 119 |
| 5.10 | Number of clones, repeat motif detected by RAMS primers and and GenBank accession numbers                                                                             | 123 |
| 5.11 | Characteristics of six microsatellite primer pairs for <i>H. theivora</i>                                                                                             | 127 |
| 6.1  | List of insecticide sprayed in Sungai Palas, Cameron Highlands<br>and Bukit Cheeding, Banting                                                                         | 132 |
| 6.2  | List of enzymes screened in PAGE and grouped according to their metabolic functions                                                                                   | 134 |
| 6.3  | Methods of enzymes staining                                                                                                                                           | 135 |
| 6.4  | Enzyme names, abbreviations, enzyme codes (E.C.),<br>number of loci and electrophoretic buffer systems used                                                           | 140 |
| 6.5  | Allele frequencies and sample sizes (N) for 12 loci in <i>H. theivora</i> from three different populations                                                            | 142 |
| 6.6  | F-statistics values for the 12 loci of 3 populations of <i>H. theivora</i>                                                                                            | 143 |
| 6.7  | Nei's Unbiased Measures of Genetic Identity (above diagonal)<br>and Genetic Distance (below diagonal) (1978) for three different<br>populations of <i>H. theivora</i> | 143 |
| 6.8  | The mean product of the GST reaction at each reading for three population of <i>H. theivora</i>                                                                       | 159 |



# LIST OF FIGURES

| Figure |                                                                                                                                                 | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.1    | Dendograms of the genetic relationships among the varieties <i>C. sinensis</i> based on RAMs markers                                            | 73   |
| 4.2    | Dendograms of the genetic relationships among the varieties <i>C. sinensis</i> based on RAPD markers                                            | 86   |
| 5.1    | Dendogram constructed by using UPGMA clustering of three populations of <i>H. theivora</i> based on distances from 29 RAMs markers              | 99   |
| 5.2    | Dendogram constructed by using UPGMA clustering of three populations of <i>H. theivora</i> based on distances from 38 RAPD markers              | 108  |
| 6.1    | Map showing sampling sites                                                                                                                      | 131  |
| 6.2    | Zymogram $\alpha$ -esterase for <i>H. theivora</i> from Bukit Cheeding (Banting) population                                                     | 146  |
| 6.3    | Zymogram $\beta$ -esterase for <i>H. theivora</i> from Sg. Palas (Cameron Highlands) population                                                 | 148  |
| 6.4    | Zymogram of SOD for <i>H. theivora</i> from Sg. Palas (Cameron Highlands) population                                                            | 150  |
| 6.5    | Zymogram of AKP for <i>H. theivora</i> from Bukit Cheeding (Banting) population                                                                 | 152  |
| 6.6    | Dendrogram constructed by using UPGMA clustering of three populations of <i>H. theivora</i> based on Nei's (1978) genetic distance coefficients | 143  |
| 6.7    | The average product of GST reaction for different populations of <i>H. theivora</i>                                                             | 160  |



### LIST OF PLATES

#### Plate Page 3.1 Highland tea at Boh Plantations, Sungai Palas (Cameron Highlands) 44 3.2 Lowland tea at Boh Plantations, Bukit Cheeding (Banting, Selangor) 44 3.3 Four upper tea leaves chosen for damage assessment 45 3.4 Score 0: No damage found 46 3.5 Score 1: Damage on shoots seen with search 46 3.6 Score 2: Damage on shoots immediately obvious 47 3.7 Score 3: Heavy incidence on damaged shoots 47 4.1 RAMs profile of variety AT53 generated by primer BP5 69 4.2 RAMs profile of variety BC223 generated by primer BP8 69 4.3 RAMs profile of variety 65/16 generated by primer BP11 70 4.4 RAMs profile of variety TV9 generated by primer BP13 70 4.5 RAPD profile of variety AT53 generated by primer OPA1 82 4.6 RAPD profile of variety TV9 generated by primer OPA3 82 5.1 RAMs profile of samples from the Banting population generated by 100 primer LR1 5.2 RAMs profile of samples from the Sg. Palas (Cameron Highlands) 100 population generated by primer LR2 5.3 RAPD profile of samples from the Bukit Cheeding (Banting) 106 population generated by primer OPA-2 5.4 106 RAPD profile of sample from the Tanah Rata (Cameron Highlands) population generated by primer OPA-9 5.5 Microsatellite sequences obtained from automated DNA sequencer 124 shows CT microsatellites from clones HTLR1-20



| 5.6 | Microsatellite profile of <i>H. theivora</i> using primer pair LR7-CT9.<br>Lanes 1-4: Microsatellite profiles from Bukit Cheeding (Banting)<br>population; Lanes 5-8: Microsatellites profiles from Sungai<br>Palas (Cameron Highlands); Lanes 9-13: Microsatellites profiles<br>from Tanah Rata (Cameron Highlands). PCR product were run in a<br>4% metaphor gel in 1X TBE buffer at 70 V for 3h. | 124 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.1 | Adults of <i>H. theivora</i>                                                                                                                                                                                                                                                                                                                                                                        | 132 |
| 6.2 | Shoots of tea attacked by <i>H. theivora</i>                                                                                                                                                                                                                                                                                                                                                        | 133 |
| 6.3 | Shoots of tea heavily damaged by <i>H. theivora</i>                                                                                                                                                                                                                                                                                                                                                 | 133 |
| 6.4 | Zymogram $\alpha$ -esterase for <i>H. theivora</i> from Bukit Cheeding, (Banting) population.                                                                                                                                                                                                                                                                                                       | 145 |
| 6.5 | Zymogram $\beta$ -esterase for <i>H. theivora</i> from Sg. Palas, (Cameron Highlands) population.                                                                                                                                                                                                                                                                                                   | 147 |
| 6.6 | Zymogram of SOD for <i>H. theivora</i> from Sg. Palas (Cameron Highlands) population                                                                                                                                                                                                                                                                                                                | 149 |
| 6.7 | Zymogram of AKP for <i>H. theivora</i> from Bukit Cheeding (Banting) population                                                                                                                                                                                                                                                                                                                     | 151 |



# LIST OF ABBREVIATIONS

| α                  | alpha                              |
|--------------------|------------------------------------|
| ATP                | adenosine triphosphate             |
| β                  | beta                               |
| bp                 | base pairs                         |
| dH <sub>2</sub> O  | distilled water                    |
| ddH <sub>2</sub> O | double distilled water             |
| dNTP               | deoxyribonucleotide                |
| GST                | gluthatione-s-transferase          |
| Kb                 | kilobase                           |
| λ                  | lambda                             |
| LB                 | Luria-Bertani                      |
| mM                 | milimolar                          |
| ng                 | nanogram                           |
| nmol               | nanomole                           |
| PCR                | polymerase chain reaction          |
| RAPD               | randomly amplified polymorphic DNA |
| RAMs               | randomly amplified microsatellites |
| rpm                | revolutions per minute             |
| μg                 | microgram                          |
| μΙ                 | microliter                         |
| μΜ                 | micromolar                         |



| UPGMA | unweighted pair-group method with |
|-------|-----------------------------------|
|       | arithmetic mean                   |
| V     | volts                             |
| w/v   | weight/volume                     |
| xg    | centrifugal force                 |
| OP    | Organophosphates                  |



#### **CHAPTER 1**

#### **INTRODUCTION**

The mirid, *Helopeltis theivora* Waterhouse (Hemiptera: Miridae) or the mosquito bug is known to be a pest of tea (Cranham, 1966; Wilson, 1999) and cocoa (Entwistle, 1972). The insect feeds on the young tea shoots, which after one feeding lesion could cause dieback of the shoots. Severe damage on young tea plants could cause stunting of plant growth. Tea production could virtually stop ("blackout") (Sidhu and Saikia, 1999). Insecticides have been used for the control of the mirids since cocoa is grown widely in this country. In insect pest management, insecticides continue to be one of the main features.

The widespread used of insecticides has been shown to cause the development of resistance in many insects (Madharan and Abraham, 1983). Dzolkhifli *et al.*, (1998) reported the development of resistance in the Sungai Tekam, Pahang and Serdang populations of *H. theivora* to  $\gamma$ -HCH, deltamethrin and cypermethrin. Ismail (2002) reported that the Sungai Tekam population showed increasing resistance to chlorpyrifos,  $\gamma$ -HCH, deltamethrin and cypermethrin and Banting populations.

