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Abstract 
Log-gamma distribution is the extension of gamma distribution which is more flexible, versatile and provides a 
great fit to some skewed and censored data. Problem/Objective: In this paper we introduce a solution to closed 
forms of its survival function of the model which shows the suitability and flexibility towards modelling real life 
data. Methods/Analysis: Alternatively, Bayesian estimation by MCMC simulation using the Random-walk 
Metropolis algorithm was applied, using AIC and BIC comparison makes it the smallest and great choice for 
fitting the survival models and simulations by Markov Chain Monte Carlo Methods. Findings/Conclusion: It 
shows that this procedure and methods are better option in modelling Bayesian regression and survival/reliability 
analysis integrations in applied statistics, which based on the comparison criterion log-gamma model have the 
least values. However, the results of the censored data have been clarified with the simulation results.  
Keywords: bayesian analysis, censored data, Laplace approximation, log-gamma distribution, simulation, 
survival analysis 
1. Introduction 
Bayesian method approach is applied to model censored Survival data analysis its increasingly active research in 
the last few decades in response to a more refined statistical tools to analysed complex data structures and 
parameters (Lindley & Smith, 1994). This method is applied to the log-gamma model analytically simulates the 
model parameters which approximates generally by obtaining the posterior summaries of the density parameters 
using “LaplacesDemon” package in R software. 
The shorthand X~log-gamma (a,b) is used to indicate that the random variable. The Log-gamma distribution 
(Consul & Jain, 1971) is defined in the following way having a probability density function (PDF) given as: 

                        (1) 
Survival function is given as: 

                             (2) 

Corresponding the reliability function: 

f (t ,a,b)= e(at )e−(et/a) a(b)Γ(b) 
−1

S(t ,a,b)=1− F(t ,a,b)
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on a standard deviation parameter. Value, The half-Cauchy distribution does not has mean and variance, but its 
mode is equal to 0 having the” a=25”as a default. (Akhtar, 2014; Bernardo, 1980; Bilal, Khan, Hasan & Khan, 
2003) Suggested, the uniform prior distribution, where its compulsory in estimation but half-Cauchy is a better 
option used as a non-informative prior (Polson & Scott) showing its graph below as follows. 
4. Bayesian Analysis: Simulation with Laplace’s Demon 
Based on some reviews in the area of approximating a Laplace distribution in the literature which has a very 
effective response for decades and also, in recent years based on Log-gamma estimation of parameters using 
different approach like Bayes estimate, MLE, Lindley, Newton Raphson’s method of optimization etc. (Akhtar, 
2014; Bilal, Khan, Hasan & Khan, 2003; Khan & Bhat, 2002; Khan & Khan, 2013). Actually to find the 
posterior results summaries of such functions with their mean and variances, it is a very intricate case to 
handle, more especially when more covariate were involved as incorporate variables. In such cases, we use the 
Bayesian frame-work approach using the Metropolis-Hastings sampling algorithm in MCMC methods to solve 
and find the posterior result. 
As an alternative method to solve intricate integrals using simulation technique by direct method of simulation 
suggested by (Buckley & James, 1979, Kimber, 1990), in intricate purposes where by MCMC methods is used.  
5. Application of Censored Data 
The Log-gamma distribution as a parametric family is however used in censored survival modelling, with two 
parameters, shape and scale parameter. We analyze a data from (R Development Core Team, 2012), known as the 
leukaemia data having 23 observations with three (3) variables of observation namely: time, status and group (R 
Development Core Team, 2012). 
T ∼ Lgamma(a,b), where a,b > 0 
The codes are as follows: 
Failure-time < −C(9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45) 
Censor < −C (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, Re P (1, 5), 0, Re P (1, 6)) 
M < −23 
K < −1 
P < −matrix (1, N-Row = M, N-column = K) 
T < −log (failure-time) 
Monames < − C(”Lpa”,”Sha pe”). 
Parnames < − As. Parm-Names (List (beta = Rep (0, L), logsp = 0)). 
My-Dataset < −List (Q = Q, N= N, P = P, Monames =Monames, Parnames = Parnames, Censor =Censor, 
T=T). 
Initial-values < −C (Re P (0, Q), Log (L)) 
6. Model Specification 
The Log-gamma model with two parameters alpha and beta is also has almost same properties with the 
original gamma model stated as its suit the continuous and skewed data having a Weibull model property 
which is one of its sub-model and also fits a wide range failure-time data quite well. On the other side, it has a 
very good relationship with its sub-models and also enhances the use of its advantages in-terms of the 
identically independently distributed (iid) for some exponential variables in inferential statistics (Collet, 1997; 
Koul, Susarla & Van, 1981).  
Model <− function (parm, data) 
{ 
”Parameters”  
beta<− param [1: dataQ] 
shape<- exp (Param[dataQ + 1]) 
”Log-prior ” 
beta-prior < −Sum (dnormv(beta, 0, 1500, Log = True )) shape-prior < −dhalf-Cauchy (Shape, 25, Log = 
True)  
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Table 3. Posterior Mean Summaries for the Parameter Estimated By Simulation Using the Sampling Technique 
and Stationary Samples 

Parameter Mode SD MCSE ESS LB Median UB 
Beta  -0.122 0.150 0.005 882.4950 -0.396 -0.129 0.186 
Log-shape 1.236 0.059 0.003 629.579 1.106 1.236 1.348 
Deviance 62.714 2.146 0.089 742.106 60.641 62.037 68.706 
L.P -40.571 1.073 0.044 751.234 -43.572 -40.230 -39.534 
Shape 3.447 0.202 0.009 630.256 3.024 3.443 3.934 

 
8. Akaike’s Information Criterion (AIC) And Bayesian Information Criterion (BIC) 
Akaike (1974) suggested and introduced a suitable vast criterion (AIC) with some assumptions attached:  
(a) A parametric distribution encompasses a true model.  
(b) Its estimate using MLE and other methods, where the least value becomes the best model for selection 
(Akaike, 1974), which is given given by: ܥܫܣ = 2k − 2 lnሺLሻ	                                 (12) 
Schwarz (1978) also proposed the BIC criterion following some assumptions that render great impact to 
statistical methodology as: 
(a) It has a constant independent prior vague. 
(b) It checks the efficiency and complexity of the parameterized model in terms of intricacy. 
(c) BIC [21], has a very close relation to AIC [2], in terms of model selection. 
The Bayesian Information Criterion is formally defined as ܥܫܤ = −2lnܮ + ݇ lnሺ݊ሻ		෣෣                               (13) 
Where, 
L= the likelihood function of the estimated model.  
x= the observe dataset. 
n= the number of samples. 
k= the number of free parameters to be estimated. 
 
Table 4. Comparison of Parametric sub-models with Log-gamma based on (AIC and BIC) 

MODEL AIC BIC 
Log-Gamma 42.140 41.134
Gamma 42.559 42.167
Weibull 43.246 44.789

 
The above table 4 shows the result of comparison between the sub models which indicates the Log-gamma 
model is having the smallest value among them clearly not prove to be the best model but based on the survival 
data used it makes it superior and better fit.  
9. Conclusion 
In this research we proposed an Rcode base on simulating and estimating censored survival data and initiate the use 
of R package Laplace’s Demon (Khan & Bhat, 2002) that makes a great impact in Bayesian statistical inference. 
The log-gamma distribution was used as a Bayesian model to fit the censored data and simulation, where by 
important techniques were used like: Asymptotic approximation and direct simulation were implemented using 
the R package LaplacesDemon (Khan & Bhat, 2002). Also, the simulation results shows that the Mean square error 
of log-gamma model is least compare to other sub-models like (Weibull and gamma models) as well as the AIC and 
BIC with (42.140 and 41.134) making it the smallest and great choice for fitting the survival models and 
simulations by Markov Chain Monte Carlo Methods. It shows that this procedure and methods are better option in 
modelling Bayesian regression and survival/reliability analysis integrations in applied statistics (Lindley & Smith, 
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1994; Koul, Susarla &Van, 1981). 
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