REPRODUCTIVE BIOLOGY AND LARVAL REARING OF BLUE SWIMMING CRAB, *PORTUNUS PELAGICUS* (LINNAEUS, 1758)

By

E F R I Z A L

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

August 2006
DEDICATION

To my parents,
J. Halawa & Maizarni,
my brothers and sister, Hendrizal, Amirwan, Srina Marinawati & Linda Riani
thank you for your love, understanding and support.

To my beloved wife and child
Dedek Hidayati, and M.Teguh Dhjya Ulhaq,
Your love, encouragement and patience sustained me through, thank you.

and

To my in laws,

Thank you for your patience and understanding.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

REPRODUCTIVE BIOLOGY AND LARVAL REARING OF BLUE SWIMMING CRAB, *PORTUNUS PELAGICUS* (LINNAEUS, 1758)

By

EFRIZAL

August 2006

Chairman : Associate Professor Aziz Arshad, PhD

Faculty : Science

Portunus pelagicus broodstock caught from the coastal region of Port Dickson, Negeri Sembilan, Malaysia in August 2004, and conditioned in the Hatchery Unit of Marine Research Station, UPM were used for the reproductive experiments including larval rearing studies. Various aspects of the reproductive biology of blue swimming crab, *P. pelagicus* were studied. Generally, sexual dimorphism and reproductive system of male and female blue swimming crab were observed to be similar to most other decapods crustaceans. The pubertal molt, the abdominal and gonopores structures of the female showed changes that are generally accepted as external morphological indications of sexual maturity. Unlike the female, the male showed pre-pubertal (loss of the attachment of the abdominal flap to the cephalothorax) rather than pubertal molt. The ovaries and testes were classified into five and three development stages respectively, and the ovarian histology of each stage was characterized. The ovarian stages correlated closely with the gonadosomatic index (GSI), the characteristics
of ovarian histology and oviposition period. Fecundity estimates ranged from 148,897 to 835,401 eggs with brood size highly correlated to carapace width (CW), carapace length (CL), body weight (BW) and egg batch weight (EBW). The complete embryonic development of the blue swimming crab, *P. pelagicus* was described based on morphological features observed in live eggs. Periods of development were defined in sequence of 12 to 24 hours each and in relation to the time of embryonic development. Eight periods were described and illustrated for *P. pelagicus*. Embryonic development from recently spawned eggs (egg-mass appeared yellow and compact) to hatching lasted 8 days at 28-30°C. The larval stages included four zoeal stages and one megalopa. The megalopa molted to the first crab instar. The zoeae and megalopa were very similar to those of other portunids. The first and the second zoeal stages spanned 3-4 days each, the third and fourth stages were 2-3 days each, and the megalopa was 3-4 days. The first crab instar emerged 15-18 days after hatching.

The egg incubation period decreased exponentially from 8.33 to 6.67 days with the increase in temperature in the range 28-34°C. The best fertilization and hatching rates of eggs were obtained at temperature in the range 28-30°C and 28-32°C, respectively. Relationships between temperature, and incubation period, fertilization and hatching rate of eggs were found to be quadratic.
The development duration and survival rate of the blue swimming crab larvae fed with tested diets were significantly higher compared to the control. Thirty percent of first zoea successfully developed to the first crab stage when fed with the *Artemia* nauplii alone whereas, 15.56% molted from the first zoea to megalopa when fed with the combination diets containing *Nannochloropsis oculata* + *Artemia* nauplii (15.56%) and *N. oculata* + rotifers *Branchionus plicatilis* + *Artemia* nauplii (5.56%). The molting of the first zoea to third zoea (22.67%) was achieved through the single use of rotifers and larval development from first zoea to second zoea (10.00%) was achieved by using *N. oculata* + rotifers *B. plicatilis*. No development beyond pre-metamorphic first zoea was observed when the larvae were fed solely with *N. oculata* diet but the results showed they survived longer compared to the control.

A continuous fluorescent light of 3000-3500 lux supported the highest mean survival (27.78%) from hatching to successful metamorphosis of first crab instar. The first zoeal stages reared under 1000-1500 lux did not reach the third zoeal stages. All larvae died after 14 days.

The influence of temperature was more evident on the survival rate and larval development duration during the first crab stages (C1) (P<0.05). The highest and lowest larval survival rates until C1 stages were at 30°C (36.67%) and 34°C (12.22%) respectively. The second best survival rate of C1 (31.11%) was obtained at 28°C. The shortest larval development (3.67-
4.00 days) occurred at 30-34°C. At 26°C and 28°C larval development of C1 stage took around 5.67 days (P>0.05).

In order to achieve optimal growth and survival in larviculture, blue swimming crab larvae is recommended to be reared at salinities in the range of 28-30 ppt. The development duration of C1 was relatively shorter (3.33-4.00 days) at all salinity levels. The relationships between salinity, and successful metamorphosis and development duration of C1 were quadratic.

A high stocking density (40-60 larvae/L) consistently produced low successful metamorphic development throughout the experimental period resulting in only 19.11-20.00% final survivals. The low stocking density levels (20-30 larvae/L) tested in this study resulted in only 22.67-23.11%, which were not significantly different (P>0.05) among the five treatments. The relationships between stocking density, and larval development duration and successful metamorphosis of C1 were linear and quadratic respectively.

Tempoh masa bagi telur dalam pengeraman menurun secara eksponen dari 8.33 sehingga 6.67 hari dengan peningkatan suhu dalam julat 28-34°C. Kadar persenyawaan dan penetasan telur yang terbaik boleh didapati pada
julat suhu 28-30°C dan 28-32°C. Hubungan antara suhu dan jangka masa pengeraman dan kadar penetasan telur didapati kuadratik.

Kadar perkembangan dan kemandirian bagi larva ketam renjung yang diuji menggunakan ujian gizi didapati lebih tinggi bererti berbanding dengan kawalan. Tiga puluh peratus larva zoea awal berjaya berkembang ke peringkat ketam pertama dengan menggunakan gizi *Artemia* nauplii sahaja sebagai sumber pemakanan. Sebanyak 15.56% berekdisis daripada zoea awal kepada megalopa dengan pemakanan yang menggunakan kombinasi gizi yang mengandungi *Nannochloropsis oculata* + *Artemia* nauplii (15.56%) dan *N. oculata* + rotifers *Branchionus plicatilis* + *Artemia* nauplii (5.56%). Ekdisis zoea pertama sehingga zoea ketiga (22.67%) telah dicapai melalui penggunaan diet rotifers *B. plicatilis* sahaja dan perkembangan larva dari peringkat pertama zoea sehingga ke peringkat kedua zoea (10.00%) dicapai menggunakan *N. oculata* + diet rotifers *B. plicatilis*. Tiada perkembangan melepasi peringkat pra-metamorfik zoea pertama dapat diperhatikan apabila larva diberi gizi *N. oculata* tetapi keputusan menunjukkan tahap kemandiriannya adalah lebih lama berbanding kawalan.

Pencahayaan yang berterusan pada kadar 3000-3500 lux menyokong min kemandirian yang tertinggi (27.78%) dari peringkat penetasan kepada metamorfosis lengkap bagi ketam instar pertama. Pemeliharaan peringkat
pertama zoea dibawah 1000-1500 lux tidak menghasilkan peringkat ketiga zoea; kesemua larva mati selepas 14 hari.

Pengaruh suhu lebih ketara pada kadar kemandirian dan tempoh perkembangan larva di peringkat pertama ketam (C₁) (P<0.05). Kadar kemandirian larva yang tertinggi dan terendah sehingga peringkat C₁ telah dirangsang pada suhu 30°C (36.67%) dan 34°C (12.22%). Kadar kemandirian kedua terbaik bagi C₁ (31.11%) didapati pada suhu 28°C. Perkembangan larva terendah (3.67-4.00 hari) berada pada suhu 30-34°C. Pada suhu 26°C sehingga 28°C, perkembangan larva bagi peringkat C₁ mengambil masa lingkungan 5.67 hari (P>0.05).

Untuk mencapai pertumbuhan dan kemandirian optimum dalam aktiviti kultur semasa larva iaitu sebelum pelepasan ke kolam, larva ketam renjung boleh dipelihara pada tahap julat kemasinan dalam julat 28-30 ppt. Jangkamasa perkembangan C₁ lebih singkat (3.33-4.00 hari) pada kesemua paras kemasinan dan tidak bererti secara statistic (P>0.05). Hubungan antara kemasinan dan perlengkapan metamorfosis dan tempoh masa perkembangan C₁ adalah bersifat kuadratik.

Sepanjang tempoh eksperimen, pelepasan dengan kepadatan tinggi (40-60 larva/L) secara berterusan akan menghasilkan kejayaan perkembangan metamorfik yang rendah. Di akhir perkembangan, kejayaan kemandirian metamorfik yang dihasilkan adalah sebanyak 19.11 hingga 20.00% pada
kepadatan tinggi dan 22.67% hingga 23.11% pada kadar pelepasan kepadatan rendah (20-30 larva/L). Secara statistik tiada perbezaan yang bererti (P>0.05) antara lima rawatan ini. Keputusan bagi analisis regresi polinominal menunjukkan hubungan antara kepadatan dan perlengkapan metamorfosis dan tempoh masa perkembangan C1 adalah bersifat kuadratik dan linear masing-masing.
ACKNOWLEDGEMENTS

Praises be to Allah Subhanahuwata’ala for providing the author the time, health and strength to work in completing this study.

I would like to express my greatest gratitude to my supervisors, Assoc. Prof. Dr. Aziz Arshad, Assoc. Prof. Dr. Mohd. Salleh Kamarudin and Assoc. Prof. Dr. Che Roose Saad for their guidance and encouragement throughout my study. My sincere thanks to Dr. Hishamuddin Omar and Dr. Annie Christianus for their advices.

The author realizes that the study could not be completed successfully without the valuable assistance from the staff of Department of Biology, Faculty of Science, UPM. Special thanks are addressed to all staff of Department of Biology, UPM especially Mr. Perummal Kuppan, Mr. Mohd. Khairuddin Abd. Munap, Mr. Ahmad Kimon Sulaiman, Mr. Abd. Rahman Omar, Mr Ahmad Anuar Zainal and Mr. Razali Mokhtar whose assistances have contributed in completion of this study. Thanks are also to Assoc Prof. Dr. Fauziah Othman (Faculty of Medicine and Health Sciences), Assoc. Prof. Dr. Japar Sidik Bujang (Faculty of Biology), Prof. Dr. Shariff Mohamad Din and Assoc.Prof. Dr. Hassan Hj. Mohd Daud (Faculty of Veterinary Medicine) for the use of his histological facilities.

To my laboratory colleagues, Said, Hazel, Amin, Roshan, Idris, Jimmy,
Helena, Liza, Omid, Prabat, and Rozaimi, thank for your support and for being my friends.

Acknowledgements are due to the Rector of University of Bung Hatta, Padang, West Sumatera, Indonesia for funding and granting him the study leave for pursuing his studies at UPM. Thanks also are addressed to all members of Indonesian Student Association at UPM. Last but not least, the Author is very grateful to his beloved family, especially his father J. Halawa and his mother Maizarni, his brothers Hendrizal and Amirwan and sisters Srina Marinawati and Linda Riani, his wife Dedek Hidayati and child M.Teguh Dhjya Ulhaq, his father-in-law and mother-in-law, aunties, uncles and relatives for their unending and unstinting in giving support and spirit for sustaining and inspiring him all the times throughout the study.
I certify that an Examination Committee has met on 18th August 2006 to conduct the final examination of Efrizal on his Doctor of Philosophy thesis entitled “Reproductive Biology and Larval Rearing of Blue Swimming Crab, \textit{Portunus pelagicus} (Linnaeus, 1758)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follow:

\textbf{Siti Khalijah Daud, PhD}
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

\textbf{Annie Christianus, PhD}
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Hishamuddin Omar, PhD}
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Chong Ving Ching, PhD}
Professor
Institute of Biological Sciences
Universiti Malaya
(External Examiner)

\textbf{HASANAH MOHD. GHAZALI, PhD}
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 NOVEMBER 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Aziz Arshad, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd. Salleh Kamarudin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Che Roos Saad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies,
Universiti Putra Malaysia

Date: 14 DECEMBER 2006
DECLARATION

I hereby declare that thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

EFRIZAL

Date: 19 NOVEMBER 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxxiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxvi</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

1. Background of the Study 1
2. Statement of Problems 3
3. Objectives 4

II LITERATURE REVIEW

1. Biology of Blue Swimming Crab 6
2. Reproductive Biology 9
 1. Reproductive System 9
 2. Gonad Development 11
3. Food and Feeding 14
4. Environmental Factor 16
 1. Salinity 16
 2. Temperature 18
 3. Light 19
 4. Dissolved Oxygen 20
 5. Ammonia 20
 6. pH 21
 7. Stocking Density 22

III GENERAL METHODOLOGY

1. Location 23
2. Broodstock Managements 23
 1. Broodstock Rearing 23
 2. Collection, Incubation and Hatching of Eggs 24

xvii
Live Food Preparation 25
 Nannochloropsis oculata Culture 25
 Rotifer Culture 28
 Artemia Culture 29
Larval Management 29
Water Quality Monitoring 30

IV SOME ASPECTS OF THE REPRODUCTIVE BIOLOGY OF BLUE SWIMMING CRAB, Portunus pelagicus (Linnaeus, 1758) UNDER LABORATORY CONDITIONS 31
Introduction 31
Materials and Methods 32
Results 35
 Sexual Dimorphism 35
 Reproductive System 35
 Macroscopic and Histological Gonad Development 41
 Gonadosomatic Index (GSI) 48
 Oviposition Period 49
 Multiple Spawning 50
 Fecundity 61
 Egg Development 65
 Larval Development 68
Discussion 74

V EFFECTS OF TEMPERATURE ON THE INCUBATION PERIOD AND RE PRODUCTIVE PERFORMANCE OF BERRIED FEMALE BLUE SWIMMING CRAB, Portunus pelagicus (Linnaeus, 1758) UNDER LABORATORY CONDITIONS 83
Introduction 83
Materials and Methods 84
Results 86
 Incubation and Hatching Period 86
 Fertilization Rate 88
 Hatching Rate 89
Discussion 91
VI EFFECTS OF DIET ON THE SURVIVAL AND LARVAL DEVELOPMENT OF BLUE SWIMMING CRAB, *PORTUNUS PELAGICUS* (LINNAEUS, 1758) UNDER LABORATORY CONDITIONS

 Introduction 96
 Materials and Methods 97
 Results 100
 Discussion 106

VII EFFECTS OF LIGHT INTENSITY ON THE SURVIVAL AND LARVAL DEVELOPMENT OF BLUE SWIMMING CRAB, *PORTUNUS PELAGICUS* (LINNAEUS, 1758) UNDER LABORATORY CONDITIONS

 Introduction 113
 Materials and Methods 115
 Results 117
 Discussion 129

VIII EFFECTS OF TEMPERATURE ON THE SURVIVAL AND LARVAL DEVELOPMENT OF BLUE SWIMMING CRAB, *PORTUNUS PELAGICUS* (LINNAEUS, 1758), UNDER LABORATORY CONDITIONS

 Introduction 135
 Materials and Methods 137
 Results 138
 Discussion 151

IX EFFECTS OF SALINITY ON THE SURVIVAL RATE AND LARVAL DEVELOPMENT OF BLUE SWIMMING CRAB, *PORTUNUS PELAGICUS* (LINNAEUS, 1758) UNDER LABORATORY CONDITIONS

 Introduction 156
 Materials and Methods 157
 Results 159
 Discussion 171
EFFECTS OF DENSITY ON THE SURVIVAL AND LARVAL DEVELOPMENT OF BLUE SWIMMING CRAB, PORTUNUS PELAGICUS (LINNAEUS, 1758) UNDER LABORATORY CONDITIONS

INTRODUCTION

MATERIALS AND METHODS

RESULTS

DISCUSSION

GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS

GENERAL DISCUSSION

CONCLUSION

RECOMMENDATIONS

BIBLIOGRAPHY

APPENDICES

BIODATA OF THE AUTHOR