NUTRIENT OPTIMIZATION AND COMPUTERIZED DECISION SUPPORT PROGRAM IN RECIRCULATING INTEGRATED AQUACULTURE SYSTEM

HAMID KHODA BAKHSH

FP 2005 35
NUTRIENT OPTIMIZATION AND COMPUTERIZED DECISION SUPPORT PROGRAM IN RECIRCULATING INTEGRATED AQUACULTURE SYSTEM

By

HAMID KHODA BAKHSH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2005
DEDICATION

To my dearest parents

&

Beloved wife

For their boundless support, true love, attention and encouragement
There are many research activities to improve sustainable aquaculture and agriculture production in the wide world. Sustainable aquaculture is referred to as production of aquatic commodities through farming activities with social, economic and environmental sustainability.

A series of experiments were conducted to compare different inorganic and organic fertilizers to improve production of Macrobrachium rosenbergii and to make a decision support program in an artificial sustainable aquaculture-agriculture system. Simply, nutrient wastes from culture tanks were used to fertilize hydroponics or terrestrial plants production via irrigation water. The sustainability and success functioning of the whole system were involved to manage and optimize the use of supplemented minerals, diet and desirable environment for each compartment (prawn, plant and microorganisms).
The first experiment was made to evaluate the tolerance of *M. rosenbergii* in different levels of inorganic fertilizer (EC) formulated in nutrient film technique (NFT) vegetable production system. Results of the first experiment indicated that desirable growth rate of *M. rosenbergii* was obtained using 0.1 to 0.5 EC of supplemental liquid fertilizer. High concentration of potassium (117-177 mg l⁻¹), ammonia (0.72-1.05 mg l⁻¹) and copper (0.04-0.06 mg l⁻¹) inhibited the growth rate of *M. rosenbergii* in integrated culture system.

The second experiment was carried out to assess the effects of different nutrient and stocking density on different population of *M. rosenbergii* in polyculture system. A different range of inorganic and organic fertilizer was used in the polyculture of plant and freshwater prawn species. Overall results indicated that essential concentration of nutrients, source and *M. rosenbergii* stocking density have played a major role in the effectiveness of suitable range of minerals in integrated production system. The results also demonstrated that 0.5 EC liquid inorganic fertilizer was not suitable to provide optimum nutrients and chicken manure is still an important fertilizer even in indoor integrated culture system.

Finally, a comparative study was conducted to evaluate the optimum level of chicken manure and formulated inorganic nutrients in an artificial integrated culture system. The results indicated that high density culture of *M. rosenbergii* juveniles (380-400 individual m⁻²) in fiberglass tanks is possible by the installation of artificial substrate and controlling of nutrient concentration in system. Moreover the addition of aeration tank significantly improved the quality of water (DO and pH) and freshwater prawn growth.
(1343.0 g/tank) in recirculated polyculture system. The application of 70 g m$^{-3}$ chicken manure alone encouraged growth of benthic and periphyton algae in culture tanks. The overall observation illustrated the desirable combination of supplemental liquid fertilizer and chicken manure is essential to obtain best growth for each compartment in sustainable polyculture system.

A visual expert program (IAAS) was adopted to improve managing and develop technical operation in an artificial integrated culture system. The operation of the polyculture system required the specific knowledge, developing and application of computer systems to excellent operation, control of water quality variables, dissolved nutrients and feed to avoid the production of toxic substance and increase self efficiency and sustainability of the culture system. The accuracy of IAAS expert program was evaluated by polynomial and linear regression techniques through additional experiment. The comparison of results (yield and survival) in expert and real culture system represents higher variation of survival, prawn and plant yields in abnormal culture system. Moreover the evaluation processes demonstrated succeed performance of IAAS expert program in prediction results of optimized integrated culture system (with low variation). In aquaculture, the success estimation of production depends largely on the state of physical and chemical parameters which define optimal culture conditions.
PENGOPTIMUMAN NUTRIEN DAN PROGRAM SOKONGAN KEPUTUSAN BERKOMPUTER DALAM SISTEM INTEGRASI AKUAKULTUR KITAR SEMULA

Oleh

HAMID KHODA BAKHSH

Mac 2005

Pengerusi : Profesor Abdul Razak Alimon, PhD

Fakulti : Pertanian

Banyak aktiviti kajian telah dijalankan untuk meningkatkan pengeluaran akuakultur dan pertanian yang daya tahan di serata dunia. Daya tahan akuakultur dirujuk sebagai pengeluaran komoditi akuatik melalui aktiviti pengkulturan dengan sosial, ekonomi dan daya tahan persekitaran.

Satu siri eksperimen telah dijalankan untuk membandingkan perbezaan baja organic dan bukan organic untuk meningkatkan pengeluaran Macrobrachium rosenbergii dan menghasilkan satu program sokongan keputusan dalam sistem artifisial akuakultur – pertanian yang berdaya tahan. Iaitu, nutrien bahan buangan dari tangki kultur digunakan untuk menyuburkan hidroponik atau pengeluaran tanaman terestial melalui saliran air. Daya bertahan dan kejayaan fungsi keseluruhan sistem yang terlibat adalah untuk mengurus dan mengoptimakan kegunaan mineral tambahan, diet dan keadaan vi
persekitaran yang sesuai untuk setiap satu bahagian (udang, tanaman dan mikroorganisma).

Eksprimen pertama dihasilkan untuk menilai daya ketahanan *M. rosenbergii* untuk kepekatan baja bukan organik (EC) yang berbeza diformulasi dalam teknik filem nutrien (NFT) sistem pengeluaran sayuran. Keputusan kajian ini menunjukkan bahawa kadar pertumbuhan yang diperlukan untuk *M. rosenbergii* diperolehi dengan menggunakan 0.1 hingga 0.5 EC baja tambahan dalam bentuk cecair. Kepekatan potassium yang tinggi (117-177 mg l⁻¹), amonia (0.72-1.05 mg l⁻¹) dan tembaga (0.04-0.06 mg l⁻¹) menghalang kadar tumbesaran *M. rosenbergii* di dalam sistem kultur intergrasi.

Eksperimen kedua telah dijalankan untuk menilai kesan nutrien dan densiti stok yang berbeza ke atas populasi *M. rosenbergii* yang berlainan di dalam sistem polikultur. Satu julat bja organic dan bukan organic digunakan di dalam polikultur tanaman dan spesies udang airtawar. Keseluruhan keputusan menunjukkan bahawa kepekatan nutrien yang perlu, sumber dan kadar densiti untuk *M. rosenbergii* memainkan peranan utama di dalam keberkesanan julat mineral yang sesuai untuk sistem pengeluaran intergrasi. Keputusan turut menunjukkan bahawa baja cecair bukan organik 0.5 EC adalah tidak sesuai sebagai penyumbang nutrien optima dan najis ayam masih satu baja yang penting walaupun untuk sistem kultur intergrasi secara tertutup.

Kajian perbandingan dijalankan untuk menilai takat optima najis ayam dan formulasi nutrien bukan organik dalam sistem polikultur intergrasi artificial. Keputusan
menunjukkan bahawa kultur *M. rosenbergii* juvenile dengan densiti tinggi (380-400 individual m\(^{-2}\)) dalam tangki gentian kaca boleh dijalankan dengan pemasangan substrat artificial dan mengawal kepekatan nutrient di dalam sistem. Lebih lagi dengan penambah tangki pengudaraan jelasnya akan meningkatkan kualiti air (DO and pH) dan tumbesaran udang air tawar (1343.0 g/tangki) di dalam sistem kultur intergrasi kitar-semula. Penggunaan najis ayam yang lebih tinggi (70g m\(^{-3}\)) akan menggalakkan tumbesaran alga benthik dan periphyton di dalam tangki kultur.

Keseluruhan pemerhatian mengambarkan kombinasi baja cecair tambahan dan najis ayam adalah perlu untuk mendapatkan tumbesaran terbaik untuk tiap satu kompartmen di dalam sistem polikultur berdaya-tahan.

Satu program visual pakar (IAAS) telah digunakan untuk memperbaiki pengurusan dan membentuk operasi teknikal di dalam sistem kultur intergrasi artifisial. Operasi sistem polikultur memerlukan pengetahuan yang spesifik, membentuk dan mengaplikasikan penggunaan sistem komputer untuk operasi yang terbaik, mengawal pembolehubah kualiti air, nutrien terlarut dan makanan untuk mengelakkan penghasilan bahan toksik, meningkatkan kecekapan diri dan daya-tahan sistem kultur tersebut. Ketepatan program pakar IAAS telah diuji dengan teknik polynomial dan regresi linear melalui eksperimen tambahan. Perbandingan keputusan (hasil dan kemandirian) untuk sistem pakar dan kultur sebenar menunjukkan variasi yang tinggi dlam kemandirian, udang, dan hasil tanaman dalam sistem kultur abnormal. Lebih lagi kerana proses penilaian menunjukkan kejayaan dalam persembahan program pakar IAAS dalam menjangka keputusan untuk sistem kultur intergrasi yang optima (dengan variasi rendah). Di dalam akuakultur,
kejayaan dalam menjangka pengeluaran banyak bergantung kepada keadaan parameter fizikal dan kimia yang mentafsirkan keadaan kultur yang optima.
ACKNOWLEDGEMENTS

In the name of Greatest Merciful and Compassionate, to him do I entrust myself; to him be praise and grace, and with him is success, immunity and comfort.

I would like to express my sincere and grateful thanks to my supervisory committee chairman, Prof. Dr. Abdul Razak Alimon, Prof. Dr. Mohd. Khanif Yusop, Dr. Annie Christianus and Assoc. Prof. Dr. Abdul Rashid Mohamed Shariff for their active and passive contribution during this study.

I gratefully acknowledge Mr. Aizam Zainal Abidin for his guidance, encouragement and supports in this study. My special thanks and appreciation to my lecturers in the Faculty of Engineering (Dr. Vijayaraghavan, Pn. Wan Azizun), Faculty of Veterinary Medicine (Assoc. Prof. Dr. Hassan, Prof. Dr. Shariff) and all former lecturers for their efforts and contribution towards the expansion of basic knowledge and completion this study.

My deep appreciations to the staffs of Agricultural Technology, Animal Science and Land Management Departments as well as Hatchery for their help and facilities throughout the course of the study (Assoc. Prof. Dr. Mihdzar, Assoc. Prof. Dr. Salleh, Muhammad Abdullah, Jasni M. Yusoff, En. Ibrahim, Jamil, Pn. Mere, Zetty and Liza).

I would like to acknowledge all lab assistants and friends for their technical and professional guidance to improve my study. I deeply appreciate my mother, who always supportive and strongly encourage me to believe in goodness, brightness and humanity.
I certify that an Examination Committee met on 18 March 2005 to conduct the final examination of Hamid Khoda Bakhsh on his Doctor of Philosophy thesis entitled “Nutrient Optimization and Computerized Decision Support Program in Recirculating Integrated Aquaculture System” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

DAHLAN ISMAIL, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

CHE ROOS SAAD, PhD
Assoc. Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

MOHD RAZI ISMAIL, PhD
Assoc. Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ROSHADA HASHIM, PhD
Professor
Faculty of Biological Science
Universiti Sains Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universit Putra Malaysia

Date:
This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment for the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

ABDUL RAZAK ALIMON, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

MOHD. KHANIF YUSOP, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ABDUL RASHID MOHAMED SHARIFF, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ANNIE CHRISTIANUS, PhD
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HAMID KHODA BAKHSH

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

- Statement of the Problem: 1
- The Significance of Study: 2
- Objectives: 4

II LITERATURE REVIEW

- Aquaculture and Water Quality: 8
 - Dissolved Oxygen (DO): 9
 - Temperature: 10
 - pH: 11
 - Ammonia (NH₃): 12
 - Biological Oxygen Demand – BOD: 13
- Aquaculture and Integrated Fish Farming: 15
 - Integrated Fish Farming: 15
 - Integrated Agriculture–Aquaculture: 17
 - Economics and Environment in the Integration Culture Systems: 20
- Polyculture of *Macrobrachium rosenbergii*: 21
- Recirculation System in Aquaculture: 24
- Water Recirculation and Filters in Aquaculture: 25
- Environment and Organic Waste Recycling: 27
- Vegetable Hydroponics Production: 28
 - NFT Hydroponics System and Nutrients: 29
 - Electrical Conductivity (EC): 32
 - Aquaponics and Nutrient Film Technique System: 34
 - Plant and Nutrient Deficiency: 36
- Nutrient and Fertilizer in Aquatic Ecosystem: 38
- Computer and Decision Support Software in Aquaculture: 42
III GENERAL METHODOLOGY
Hydroponics System 45
Water Quality Management (Evaluation and Methods) 48
Biological Oxygen Demand (BOD₃) Test 49
Result Evaluation 49
Preparation of Nutrient Solution 50
Sample (Collection and Preparation) 52
Plant Growth Analysis 53
Statistical Analysis 53

IV FRESHWATER PRAWN (MACROBRACHIUM ROSENBERGII) PRODUCTION IN AN INTEGRATED HYDROPONICS NUTRIENT FILM TECHNIQUE SYSTEM (NFT) 54
Introduction 54
Materials and Methods 55
Integrated Culture System 55
Results 57
Water Quality Variables 57
Nutrient 58
Relationships of Nutrients and Electrical Conductivity (EC) 58
Plant Growth 62
\textit{M. rosenbergii} and Growth Rate 64
Discussion 65
Nutrient, Freshwater prawn and plant 65
Nitrogen (Nitrate) 66
Ammonia 67
Phosphorus (P) 69
Potassium (K) 70
Iron (Fe) 71
Copper (Cu) and Other Elements 71
Conclusion 75

V EFFECTS OF DIFFERENT TYPES OF NUTRIENT AND STOCKING DENSITIES ON PRODUCTION OF FRESHWATER PRAWN (MACROBRACHIUM ROSENBERGII) IN A RECIRCULATING INTEGRATED AQUACULTURE-AGRICULTURE SYSTEM 77
Introduction 77
Materials and Methods 78
Results 80
Water Quality Variables 80
Electrical Conductivity (EC) 80
Plant Growth 81
Prawn Growth Rate 82
Nutrient and Polyculture System 84
Discussion 88
VI
OPTIMIZATION IN A PROTOTYPE POLYCulture
SYSTEM OF FRESHWATER PRAWN AND VEGETABLE
WITH DIFFERENT LEVELS OF POULTRY MANURE
AND TRACE ELEMENTS
Introduction 98
Materials and Methods 99
Results
 Water Quality Variables 101
Prawn Growth 104
Biological Oxygen Demand (BOD$_5$) 106
Chlorophyll a and N:P Ratio 106
Nutrients in Integrated Culture System 107
Nitrogen (N) 111
Phosphorus (P) 112
Potassium (K) 112
Magnesium (Mg) 113
Iron (Fe) 113
Zinc (Zn) 114
Manganese (Mn) 115
Copper (Cu) 115
Calcium (Ca) 116
Discussion 121
 Water Quality 121
Prawn Growth Parameters 124
Biological Oxygen Demand (BOD$_5$) 128
Primary Production and N:P Ratio 129
Nutrient Dynamic in Integrated Culture System 130
Conclusion 136

VII
DECISION SUPPORT PROGRAM AND
COMPUTERIZING VISUAL ASSESSMENT IN
SUSTAINABLE INTEGRATED AGRICULTURE AND
AQUACULTURE SYSTEM (IAAS)
Introduction 137
Methods and Design Rationale 138
Results and Discussion 144
 Sustainable Aquaculture Purpose 144
 Volume of Aeration Tank (m3) 150
 Hydraulic Retention Time (HRT/hours) for RBC 151
Summary 153
VIII PREDICTION AND VALIDATION PROCESSES OF
COMPUTERIZED VISUAL ASSESSMENT IN AN
ARTIFICIAL INTEGRATED AGRICULTURE AND
AQUACULTURE SYSTEM 155
Introduction 155
Methods and Design Rationale 156
Water Quality and Bioassay Data 159
Validation Processes 162
Results and Discussion 167
Summary 170
Conclusion 172

IX GENERAL DISCUSSION 173
Growth Rate 174
Nutrient Optimization and Sustainable Aquaculture 179
Computerized Decision Support System 186
Conclusions 188
Recommendation 189

BIBLIOGRAPHY 190
APPENDICES 210
BIODATA OF THE AUTHOR 253
Publications in the Conference and Seminars 254
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aquaculture production by species groups in different ecosystem of the world</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>The biological oxygen demand (24 h) for various inputs into pond fish culture</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Theoretically ideal concentration of essential nutrients in NFT hydroponics system</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>EC-values of nutrient solution for different plant and light condition in the root environment</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Ratio of macro and micronutrient in recirculating aquaculture-agriculture system (fish and vegetable hydroponics)</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>Typical composition of organic fertilizer materials as dry weight basis</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>The physical and chemical characteristics of artificial shrimp and prawn feed</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>Mean of nutrients (mg) in artificial prawn diet and chicken manure (CM) used for integrated culture system</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Water quality equipments used in integrated culture system</td>
<td>49</td>
</tr>
<tr>
<td>10a</td>
<td>Weight (g) of pure substances to be dissolved in 1000 and 500 liters of water to give ideal concentration (Cooper’s formula) in two different solutions</td>
<td>51</td>
</tr>
<tr>
<td>10b</td>
<td>Weight (g) of pure substances to be dissolved in 1000 and 500 liters of water to give ideal concentration (Cooper’s formula) in two different solutions</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>The summary of first experiment includes different stock density, size and feed requirements in recirculatory polyculture system</td>
<td>56</td>
</tr>
<tr>
<td>12</td>
<td>Range of chemical and physical variables in integrated culture tanks during 35 days of production cycle (mean ± se)</td>
<td>57</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>13</td>
<td>Concentration of nutrients (mg l⁻¹) in polyculture system during the production cycle (mean ± se)</td>
<td>59</td>
</tr>
<tr>
<td>14</td>
<td>Wet and dry weight of leaf, root (WWL, DWL, WWR and DWR) and leaves area (LA) of Chinese cabbage at the end of polyculture system (mean ± se)</td>
<td>63</td>
</tr>
<tr>
<td>15</td>
<td>Wet and dry weight of leaf, root (WWL, DWL, WWR and DWR) and leaves area (LA) of lettuce at the end of polyculture system (mean ± se)</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>Mean body weight (g) of freshwater prawn (M. rosenbergii) during 35 days production cycle (mean ± se)</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>Mean body length (cm) of freshwater prawn (M. rosenbergii) during 35 days production cycle (mean ± se)</td>
<td>64</td>
</tr>
<tr>
<td>18</td>
<td>Tolerance of M. rosenbergii to different chemical substances</td>
<td>76</td>
</tr>
<tr>
<td>19</td>
<td>The summary of second experiment includes different fertilizer, size and feed requirements in recirculated polyculture system</td>
<td>79</td>
</tr>
<tr>
<td>20</td>
<td>Survivals (%), specific growth rate (SGR), average daily growth (ADG), net yield and feed conversion ratio (FCR) of M. rosenbergii culture (mean ± se)</td>
<td>83</td>
</tr>
<tr>
<td>21</td>
<td>Concentration of nutrients (mg l⁻¹) in rearing tanks during production cycle (mean ± se)</td>
<td>85</td>
</tr>
<tr>
<td>22</td>
<td>Nutrient content in lettuce, Chinese cabbage, sediment and prawn tissues in integrated culture system (mg g⁻¹)</td>
<td>87</td>
</tr>
<tr>
<td>23</td>
<td>Minerals content in lettuce, Chinese cabbage and spinach</td>
<td>94</td>
</tr>
<tr>
<td>24</td>
<td>Effect of stocking density of M. rosenbergii on nutrient concentration (%) in same treatments</td>
<td>95</td>
</tr>
<tr>
<td>25</td>
<td>The summary of third experiment includes different rate of chicken manure and inorganic fertilizer (microelements) and feed requirements in mix-culture system</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>Recommended nutrient (stock) solution for plant and freshwater prawn culture</td>
<td>101</td>
</tr>
</tbody>
</table>
Mean (± SE) temperature (T°C), dissolved oxygen (DO), specific conductivity (SPC), salinity (Sal), turbidity (Tur), pH, total dissolved solid (TDS) and ammonia (NH₃) concentration of different treatments in polyculture system

Range of temperature (T°C), dissolved oxygen (DO), specific conductivity (SPC), salinity (Sal), turbidity (Tur), pH, total dissolved solid (TDS) and ammonia (NH₃) concentration during culture period

Weight and total yield of lettuce at harvest in the integrated culture system (mean ± se)

Survivals (%), specific growth rate (SGR), average daily growth (ADG), net yield and feed conversion ratio (FCR) of M. rosenbergii in polyculture system and natural pond (mean ± se)

Evaluation of nutrient concentration (mg l⁻¹) in water of M. rosenbergii culture tanks (mean ± se)

Weekly changes of nutrients in recirculated polyculture system (mg l⁻¹)

Trend, regression equation and maximum value of nitrogen (N) in different treatments

Recovery of nutrients in plant, root, sediment and prawn tissue as percent (%) of M. rosenbergii diet, CM and supplemental liquid fertilizer

Recovery of nutrients (g tank⁻¹) in different compartments of recirculated polyculture system (mean ± se)

Total and specific rate of nutrients recovery (g tank⁻¹) in plant, root, sediment, prawn tissue and soluble minerals (feed, chicken manure and liquid fertilizer) in integrated culture system

Different supplemented liquid fertilizer, chicken manure and density culture of M. rosenbergii in 4th integrated culture experiment

Water quality in the M. rosenbergii rearing tanks of integrated culture system (mean ± se)

Plant and prawn yield, survivals (%), average daily growth (ADG) and feed conversion ratio (FCR) of M. rosenbergii at harvest in the integrated culture system (mean ± se)
Comparison of the selected variables in the real experiment and IAAS expert program | 164

Comparison on the survivals (%), specific growth rate (SGR), average daily growth (ADG), net yield and feed conversion ratio (FCR) of *M. rosenbergii* and plant in all polyculture systems | 178

Some researches on *M. rosenbergii* culture with different growth rate variables | 178

Comparative nutrients content in the water of culture tanks of all polyculture experiments | 184

Ideal and optimized concentration of essential nutrients in NFT hydroponics and integrated culture systems | 184

Comparison of nutrient recovery (ratio) in plant, root, sediment and prawn tissue (mg) | 185
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A perspective model of sustainable integrated agriculture-aquaculture of freshwater prawn, vegetable and poultry</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>The basic perspective of a hydroponics plant production system (NFT)</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Monitoring and result prediction of a sustainable integrated agriculture-aquaculture system (General model)</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Primary and developed models of integrated culture system</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Quadratic relationships between supplemental nutrients include nitrogen, ammonia, phosphorus and potassium with different electrical conductivity (EC) in treatments</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>Quadratic relationships between iron (Fe), copper (Cu), magnesium (Mg) and calcium (Ca) with different electrical conductivity (EC) in treatments</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>Total yields (green leaves) of Chinese cabbage and lettuce after five weeks production cycle. Plants with a same letter are not significantly different</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>Changes of ammonia concentration and M. rosenbergii survival in different culture tanks</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>Changes of copper (Cu) concentration and survival of M. rosenbergii in different treatments</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>Relationship of electrical conductivity and time (linear regression) in integrated culture system</td>
<td>81</td>
</tr>
<tr>
<td>11</td>
<td>Total yields of lettuce and Chinese cabbage at harvest in polyculture trial. Means within a row followed by a same letter are not significantly different (P>0.05)</td>
<td>82</td>
</tr>
<tr>
<td>12</td>
<td>Polynomial and linear regression of freshwater prawn (wet weight) in polyculture system</td>
<td>83</td>
</tr>
<tr>
<td>13</td>
<td>Cycle and evaluation process of nutrients recovery in an artificial integrated culture system</td>
<td>86</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>14</td>
<td>Percentage of nutrient concentration compares to 0.5H media (100) in different polyculture tanks</td>
<td>94</td>
</tr>
<tr>
<td>15</td>
<td>Changes of ammonia concentration in the current polyculture system</td>
<td>103</td>
</tr>
<tr>
<td>16</td>
<td>Linear relationship between BOD$_5$ and all fertilized treatments of integrated culture system (CM= chicken manure)</td>
<td>106</td>
</tr>
<tr>
<td>17</td>
<td>Concentration of chlorophyll a (benthic algae) and N: P ratio in M. rosenbergii culture tanks</td>
<td>107</td>
</tr>
<tr>
<td>18</td>
<td>Polynomial regression of nutrient concentration in the integrated culture system</td>
<td>110</td>
</tr>
<tr>
<td>19</td>
<td>Fluctuation of turbidity (NTU), nitrate and ammonia (mg l$^{-1}$) concentrations in freshwater (FW) culture tanks</td>
<td>127</td>
</tr>
<tr>
<td>20</td>
<td>Computerize evaluation of sustainable integrated agriculture-aquaculture of freshwater prawn, plants and poultry manure</td>
<td>140</td>
</tr>
<tr>
<td>21</td>
<td>Basic steps in structure and building of an expert system</td>
<td>141</td>
</tr>
<tr>
<td>22</td>
<td>Conceptual processes and assessment of IAAS expert programs</td>
<td>143</td>
</tr>
<tr>
<td>23</td>
<td>Visual IAAS expert program consist of different components and sub-interface</td>
<td>144</td>
</tr>
<tr>
<td>24</td>
<td>Visual interface and general information of sustainable aquaculture-agriculture systems</td>
<td>145</td>
</tr>
<tr>
<td>25</td>
<td>Visual interface of statistical integrated fish farming (estimation and prediction of yield)</td>
<td>146</td>
</tr>
<tr>
<td>26</td>
<td>Statistical visual model of growth rate parameters in integrated culture system</td>
<td>147</td>
</tr>
<tr>
<td>27</td>
<td>Visual and statistical form of water quality variables with nutrient evaluation</td>
<td>149</td>
</tr>
<tr>
<td>28</td>
<td>Visual interface and statistical methods for wastewater managements</td>
<td>152</td>
</tr>
<tr>
<td>29</td>
<td>Diagram presenting parameters, components and processing of compliance auditing system (IAAS)</td>
<td>158</td>
</tr>
</tbody>
</table>
30 Graphical visual interface showing the compliance audit for evaluating of *M. rosenbergii* survival and yield (first and second step) 163

31 Graphical visual interface showing the compliance audit for prediction of *M. rosenbergii* yield with optimum levels of individual component 163

32 Linear relationships of survival, prawn and plant yields between IAAS program and artificial polyculture trial 165

33 Quadratic and linear regression trend of selected variables between IAAS expert program and artificial polyculture trial 166

34 Schematic structure showing the steps development of integrated culture and computerized expert system 187