
. 

 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 
 
 
 
 

BAYESIAN NETWORK CLASSIFIERS FOR DAMAGE DETECTION IN ENGINEERING 
MATERIAL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ADDIN OSMAN MOHAMED ADDIN 
 
 

ITMA 2007 6 



BAYESIAN NETWORK CLASSIFIERS FOR DAMAGE
DETECTION IN ENGINEERING MATERIAL

By

ADDIN OSMAN MOHAMED ADDIN

Thesis Submitted to the School of Graduate Studies, Universiti
Putra Malaysia, in Fulfilment of the Requirement for the Degree of

Doctor of Philosophy

February 2007



DEDICATION

The author would like to dedicate this Doctoral dissertation to the soul of
his mother Hawa Mohamed Suleiman, his father Osman Mohamed Addin, his
daughter Waad Addin, and all his brothers and sisters . The author is deeply
grateful to his parents for their patience in raising him up, dedication, and
willingness to explore the world.

ii



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

BAYESIAN NETWORK CLASSIFIERS FOR DAMAGE
DETECTION IN ENGINEERING MATERIAL

By

ADDIN OSMAN MOHAMED ADDIN

February 2007

Chairman: Associate Professor Ir. Mohd. Sapuan Salit, PhD

Institute: Advanced Technology

The automation of damage detection in engineering material using intelligent

techniques (e.g. Neural networks) has not been matured enough to be practi-

cable and needs more techniques to be implemented, improved, and developed.

Nevertheless, the Neural networks have been implemented extensively for the

damage detection, but in elementary ways. The damage detection and pre-

diction are very important processes, since the damages have the potential of

growing and leading to catastrophic loss of human life, and decrease in econ-

omy (e.g. airline crashes, space shuttle explosions, and building collapses).

Bayesian networks have been successfully implemented as classifiers in many

research and industrial areas and they are used as models for representing un-

certainty in knowledge domains. Nevertheless, they have not been thoroughly

investigated and implemented such as Neural networks for the damage detec-

tion. This thesis is dedicated to introduce them with the axiom of damage de-

tection and implement them as a competitive probabilistic graphical model and
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as classification tools (Näıve bayes classifier and Bayesian network classifier)

for the damage detection. The Bayesian networks have two-sided strengths: It

is easy for humans to construct and to understand, and when communicated to

a computer, they can easily be compiled. Changes in a system model should

only induce local changes in a Bayesian network, where as system changes

might require the design and training of an entirely new Neural network.

The methodology used in the thesis to implement the Bayesian network for the

damage detection provides a preliminary analysis used in proposing a novel fea-

ture extraction algorithm (f -FFE : the f -folds feature extraction algorithm).

The state-of-the-art shows that most of the feature reduction techniques, if

not all, which have been implemented for the damage detection are feature

selection not extraction. Feature selection is less flexible than feature extrac-

tion in that feature selection is, in fact, a special case of feature extraction

(with a coefficient of one for each selected feature and a coefficient of zero

for any of the other features). This explains why an optimal feature set ob-

tained by feature selection may or may not yield a good classification results.

To validate the classifiers and the proposed algorithm, two data sets were used,

the first set represents voltage amplitudes of Lamb-waves produced and col-

lected by sensors and actuators mounted on the surface of laminates contain

different artificial damages. The second set is a vibration data from a type of

ball bearing operating under different five fault conditions. The Bayesian net-

work classifiers and the proposed algorithm have been tested using the second

set.
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The studies conducted in this research have shown that Bayesian networks as

one of the most successful machine learning classifiers for the damage detection

in general and the Näıve bayes classifier in particular. They have also shown

their efficiency when compared to Neural networks in domains of uncertainty.

The studies have also shown the effectiveness and efficiency of the proposed

algorithm in reducing the number of the input features while increasing the

accuracy of the classifier. These techniques will play vital role in damage de-

tection in engineering material, specially in the smart materials, which require

continuous monitoring of the system for damages.
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Pengautomatan pengesanan kerosakan bahan kejuruteraan menggunakan teknik

pintar (contohnya rangkaian Nueral) masih belum matang dan memerlukan

lebih banyak teknik dilaksanakan, diperbaiki dan dibangunkan supaya men-

jadi lebih praktikal. Namun begitu, rangkaian Neural telah banyak dilak-

sanakan untuk pengesanan kerosakan tetapi masih di peringkat permulaan.

Pengesanan dan ramalan kerosakan adalah proses yang sangat penting kerana

kerosakan berpotensi membesar dan membawa kemusnahan nyawa yang dah-

syat dan menjejaskan ekonomi (contohnya kapal terbang terhempas, letupan

kapal angkasa lepas dan keruntuhan bangunan).

Rangkaian Bayesan telah dilaksanakan dengan jayanya sebagai pengelas dalam

pelbagai bidang penyelidikan dan industri dan pengelas ini digunakan bagi

mewakili ketakpastian dalam domain ilmu. Namun begitu pengelas ini tidak

pernah dikaji dan dilaksanakan secara terperinci berbanding rangkaian Neu-

ral bagi pengesanan kerosakan. Tesis ini ditujukan khas memperkenalkan
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rangkaian Bayesan dengan aksiom bagi pengesanan kerosakan dan melak-

sanakan pengelas ini sebagai model bergraf kebarangkalian kompetitif dan

sebagai perkakas pengelasan (pengelas Näıve bayes dan pengelas rangkaian

Bayesan) bagi pengesanan kerosakan. Rangkaian Bayesan mempunyai keku-

atan dua bahagian. Ia mudah dibina dan difahami oleh manusia dan bila ia

dihubungkan dengan komputer, ia mudah disusun. Perubahan dalam model

sistem harus hanya mengaruh perubahan setempat dalam rangkaian Bayesan,

sedangkan perubahan sistem mungkin memerlukan reka bentuk dan latihan

rangkaian Neural baru secara keseluruhan.

Metodologi yang digunakan dalam tesis ini bagi melaksanakan rangkaian

Bayesan untuk pengesanan kerosakan memberikan analisis permulaan yang

digunakan dalam mencadangkan satu algoritma penyarian sifat asli (f -FFE:

algoritma penyarian sifat f -lipat). Keadaan semasa menunjukkan bahawa ke-

banyakan teknik pengurangan sifat, jika tidak semua, yang telah dilaksanakan

bagi pengesanan kerosakan adalah pemilihan sifat dan bukannya penyarian.

Pemilihan sifat kurang fleksibel berbanding penyarian sifat di mana pemilihan

sifat adalah sebenarnya satu kes khusus bagi penyarian sifat (dengan pekali

satu bagi setiap sifat yang terpilih dan pekali sifar bagi sifat yang lain). Ini

menerangkan kenapa set sifat optimum yang diperolehi menggunakan pemili-

han sifat mungkin atau tidak akan menghasilkan keputusan pengelasan yang

baik.

Bagi mengesahkan pengelas dan algoritma yang dicadangkan, dua set data

telah digunakan, set yang pertama mewakili amplitud voltan bagi gelombang

Lamb yang dihasilkan dan dikumpulkan oleh penderia dan penggerak yang
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dicagakkan di atas permukaan laminat yang mengandungi pelbagai kerosakan

buatan. Set yang kedua adalah data getaran daripada sejenis galas bebola yang

beroperasi di bawah lima keadaaan rosak yang berbeza. Pengelas rangkaian

Bayesan dan algoritma yang dicadangkan telah diuji menggunakan set yang

kedua.

Kajian yang telah dibuat dalam penyelidikan ini menunjukkan bahawa rangka-

ian Bayesan adalah salah satu pengelas pembelajaran mesin yang paling ber-

jaya bagi pengesanan kerosakan secara umum dan pengelas Näıve bayes secara

khusus. Pengelas ini telah menunjukkan kecekapan mereka berbanding rangka-

ian Neural dalam domain ketakpastian. Kajian ini telah juga menunjukkan ke-

berkesanan dan kecekapan algoritma yang dicadangkan dalam mengurangkan

bilangan sifat masukan sementara menambahkan ketepatan pengelas. Teknik

ini akan memainkan peranan penting dalam pengesanan kerosakan untuk ba-

han kejuruteraan, terutamanya dalam bahan pintar, yang memerlukan peman-

tauan sistem secara berterusan bagi kerosakan.
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CHAPTER 1

BACKGROUND

1.1 Introduction

Recently, there has been a tremendous growth in the usage of engineering ma-

terial (EM ) in all types of engineering structures (e.g. aerospace, automotive,

and sports). EM is used to create a diversity of products, from computer

chips and television screens to golf clubs and snow skis. EM includes metals,

plastics, semiconductors, steel, aluminum honeycombs sandwich (AHS ), and

laminated composite materials (LCMs). LCMs, AHS, and steel find wide us-

age in automobile and airplane parts on account of their stiffness and strength

[1].

In practical situations, material failure or damage may occur during manu-

facturing processes or in-service. The manufacturing related damages are like

foreign object inclusion, porosity, and resin rich areas. In-service damages can

happen in the case of aeronautical materials because a tool is dropped during

maintenance, there is a bird or hail strike in plain flight, perhaps runway debris

striking the aircraft during takeoff or landing [2].

The damages have the potential of growing and leading to catastrophic loss

of human life, and decrease in economy. Examples of real-life damages can be

shown as airline crashes, space shuttle explosions, and building and bridge col-

lapses. The early detection and characterization of in situ damages in EM are

very significant to ensure their structural health and integrity, prevent them




