

# UNIVERSITI PUTRA MALAYSIA

# DEVELOPMENT OF AN EMBEDDED SMART HOME SYSTEM

# THINAGARAN PERUMAL

ITMA 2006 3



# DEVELOPMENT OF AN EMBEDDED SMART HOME SYSTEM

By

THINAGARAN PERUMAL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Master of Science

July 2006



Dedicated to,

My Family



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

#### DEVELOPMENT OF AN EMBEDDED SMART HOME SYSTEM

By

#### THINAGARAN PERUMAL

**July 2006** 

#### Chairman: Associate Professor Abdul Rahman Ramli, PhD

#### Institute: Advanced Technology

Smart home systems are expected to become key research area for ubiquitous and embedded system computing in coming years. In this thesis, a new scheme in smart home systems technology using embedded system for providing intelligent control of home appliances is proposed. An embedded system act as protocol glue that incorporates wired and wireless option such as Short Message Service (SMS) router with wireless local area network (WI-FI) for intelligent automation and higher speed of home appliances connectivity. The system is implemented in 2 tier models. First-tier model consist of incorporated design of SMS Router and Wireless Access Point. Wireless local area network (WI-FI) is selected as mechanism due to its transmission range within 100m which suits the smart home requirement for automation and control, justifies the Personal Area Network (PAN) for mobile device connectivity. Second tier model consist of remote application server systems, which cater a conceptual model between embedded hardware and software integration of appliances in smart home. This interface model will be between in house networks and external communication environment,



whereas embedded system acts as storage media and server for information interchange between systems especially with mobile devices within a smart home. Embedded system sits at the core of the home network, acts as residential gateway and enables bidirectional communication and data transfer channel among networked appliances in the home and across the Internet. On the other hand, client-side application provides a userfriendly Graphic User Interface (GUI) to enhance the usability of the system. The proposed embedded system has been implemented and verified that the system can be a core device for smart home environment functionality.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

#### PEMBANGUNAN MODUL TERBENAM UNTUK RUMAH BESTARI

Oleh

#### THINAGARAN PERUMAL

Julai 2006

#### Pengerusi: Profesor Madya Abdul Rahman Ramli, PhD

#### Institut: Teknologi Maju

Sistem rumah bestari di jangka menjadi topik penyelidikan utama dalam bidang pengkomputeran merata dan sistem terbenam dalam tahun yang akan datang. Dalam tesis ini, satu skema baru dalam teknologi sistem rumah bestari menggunakan sistem terbenam untuk kawalan cerdik peralatan rumah dicadangkan. Sistem terbenam berfungsi sebagai penggabung protokol antara wayar dan tanpa wayar dengan menggunakan perkhidmatan pesanan ringkas (SMS) and WiFi untuk automasi dan rangkaian pantas alatan rumah. Sistem ini diimplementasikan dalam 2 aras. Aras pertama merujuk kepada gabungan perkhidmatan pesanan ringkas (SMS) dan titik capaian tanpa wayar. Wi-Fi dipilih kerana penghantaran normal 100m yang memenuhi keperluan sistem rumah bestari untuk kawalan dan automasi, sekali gus menepati kehendak rangkaian kawasan persendirian (PAN). Aras kedua merujuk kepada aplikasi pelayan jauh yang mewakili konsep antara sistem terbenam dan integrasi perisian



peralatan rumah. Sistem tersebut berpusat di antara rangkaian rumah dan luaran di mana modul terbenam bertindak sebagai storan media dan pelayan untuk pertukaran maklumat di antara peranti bergerak dan sistem rumah bestari. Sistem terbenam akan menjadi penghubung utama rangkaian rumah, sebagai ruang akses, membolehkan komunikasi dua hala dan saluran pemindahan data di antara peralatan rumah dan Internet. Selain itu, aplikasi antara muka grafik pengguna (GUI) yang mudah diguna telah menambah keberkesanan terhadap sistem operasi. Sistem terbenam yang di uji telah menunjukkan bahawa sistem ini boleh menjadi teras untuk persekitaran rumah bestari.



#### ACKNOWLEDGEMENTS

First of all, I would like to express my utmost thanks and gratitude to my family for giving me the support to finish this thesis successfully. The author gratefully wish to express his profound appreciation and gratitude to his supervisor, Associate Professor Dr. Abdul Rahman Ramli, for his supervision, ultimate guidance, morale support and constructive suggestions and comment throughout the duration of the project till completion. The author would like to express high regards and thanks to Dr. Kenneth Wacks, Chairman of ISO SC 25 Home Electronic System and MIT Media Lab Researcher, for his material contribution and some guidelines on research project implementation.

The author also extends appreciation of his supervisory committee, Pn. Siti Mariam Shafie@ Musa for her guidance and valuable assistance during this period. Appreciation also to the assistance rendered by the respective lecturers, ITMA Science Officers especially Puan Juraina Md Yusof, Puan Rosiah Osman and En.Mohd Saufi, technicians of ITMA for providing the facilities required for undertaking this project.

Finally, the author would like to acknowledge and express highest regards to Ministry of Science, Technology and Innovation (MOSTI) for funding this project under The Intensified of Research and Development in Priority Areas (IRPA) program, titled Embedded Multimedia Interface Module for Smart Home Environment (04-02-04-0799-EA001)



I certify that an Examination Committee has met on 4<sup>th</sup> July 2006 to conduct the final examination of Thinagaran Perumal on his Master of Science thesis entitled "Development of An Embedded Smart Home System" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

## Yusof bin Sulaiman, PhD

Professor Institute of Advanced Technology Universiti Putra Malaysia (Chairman)

## Mohammad Hamiruce Marhaban, PhD

Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

## Samsul Bahari Mohd Noor, PhD

Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

## Kaharudin Dimyati, PhD

Associate Professor Faculty of Engineering Universiti Malaya (External Examiner)

# HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:



This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

# Abdul Rahman Ramli, PhD

Associate Professor Faculty Engineering Universiti Putra Malaysia (Chairman)

Siti Mariam Shafie@Musa Lecturer Faculty Engineering Universiti Putra Malaysia (Member)

# AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:



# DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

THINAGARAN PERUMAL

Date:



# **TABLE OF CONTENTS**

| DEDICATION            | ii   |
|-----------------------|------|
| ABSTRACT              | iii  |
| ABSTRAK               | v    |
| ACKNOWLEDGEMENTS      | vii  |
| APPROVAL              | viii |
| DECLARATION           | Х    |
| LIST OF TABLES        | xiv  |
| LIST OF FIGURES       | XV   |
| LIST OF ABBREVIATIONS | xvii |
|                       |      |

# CHAPTER

| 1 | INT | TRODUCTION                      | 1 |
|---|-----|---------------------------------|---|
|   | 1.1 | Smart Home                      | 1 |
|   | 1.2 | Embedded System in Smart Home   | 3 |
|   | 1.3 | Problem Statements              | 5 |
|   | 1.4 | Research Scope and Contribution | 6 |
|   | 1.5 | Research Objectives             | 7 |
|   | 1.6 | Thesis Organization             | 7 |

# **2 LITERATURE REVIEW** 2.1 Introduction

| LIT | ERATURE REVIEW                                         | 9  |
|-----|--------------------------------------------------------|----|
| 2.1 | Introduction                                           | 9  |
|     | 2.1.1 Smart Home Environment                           | 9  |
| 2.2 | Embedded System in Smart Home                          | 13 |
|     | 2.2.1 Characteristics of Embedded System in Smart Home | 14 |
|     | 2.2.2 The Current Problem and Related Research Work    | 16 |
| 2.3 | Smart Home Technologies                                | 18 |
|     | 2.3.1 Wired Protocols                                  | 19 |
|     | 2.3.2 Wireless Protocol                                | 27 |
| 2.4 | Smart Home Standards                                   | 38 |
|     | 2.4.1 European Home Systems                            | 38 |
|     | 2.4.2 BatiBUS                                          | 39 |
|     | 2.4.3 European Installation Bus                        | 40 |
|     | 2.4.4 Konnex                                           | 41 |
|     | 2.4.5 Home Plug                                        | 41 |
|     | 2.4.6 Home Electronic System                           | 42 |



| 2.5 | Softw | Software Platform for smart home systems |    |
|-----|-------|------------------------------------------|----|
|     | 2.5.1 | Symbian OS                               | 43 |
|     | 2.5.2 | Palm OS                                  | 43 |
|     | 2.5.3 | Java Micro Edition (J2ME)                | 44 |
|     | 2.5.4 | Microsoft Mobile Device Platforms        | 44 |
|     | 2.5.5 | Real-Time Operating System (RTOS)        | 44 |
| 2.6 | Concl | lusion                                   | 46 |

| 3 | MET  | HODOLOGY                                                         | <b>48</b> |
|---|------|------------------------------------------------------------------|-----------|
|   | 3.1  | Introduction                                                     | 48        |
|   | 3.2  | Operation Mechanism                                              | 50        |
|   | 3.3  | System Architecture of Embedded System for Smart Home            | 51        |
|   | 3.4  | Operation Modes of Embedded System in Smart Home                 | 53        |
|   | 3.5  | Hardware Integration                                             | 53        |
|   |      | 3.5.1 Mobile Device as Remote Terminal                           | 53        |
|   |      | 3.5.2 User interface and input capabilities                      | 54        |
|   |      | 3.5.3 Habitual presence                                          | 55        |
|   |      | 3.5.4 Wireless network diversity                                 | 55        |
|   |      | 3.5.5 Mobility                                                   | 55        |
|   |      | 3.5.6 Personalization                                            | 56        |
|   | 3.6  | System Implementation                                            | 57        |
|   | 3.7  | Embedded Computer                                                | 58        |
|   |      | 3.7.1 Configuring Embedded Computer as Remote Application Server | 59        |
|   | 3.8  | Network Interface Control Server Programming                     | 60        |
|   | 3.9  | SMS Module                                                       | 65        |
|   | 3.10 | Switching Module                                                 | 66        |
|   |      | 3.10.1 Microcontroller Programming                               | 72        |
|   |      | 3.10.2 Signal Translation                                        | 74        |
|   |      | 3.10.3 Error Recovery and Fault Detection                        | 75        |
|   | 3.11 | Client Software Application Development                          | 78        |
|   |      | 3.11.1 Client-Side Development                                   | 78        |
|   |      | 3.11.2 System Integration of Embedded System in Smart Home       | 80        |
|   |      | 3.11.3 Optimization of Embedded System Programming               | 82        |
|   | 3.12 | Conclusion                                                       | 86        |
|   |      |                                                                  |           |

| 4 | RES | ULT AND DISCUSSION                     | 87  |
|---|-----|----------------------------------------|-----|
|   | 4.1 | Operation Results                      | 87  |
|   |     | 4.1.1 Monitoring and Control Using SMS | 93  |
|   | 4.2 | Respond Time                           | 94  |
|   | 4.3 | Data Transformation                    | 97  |
|   | 4.4 | Discussion                             | 106 |
|   |     | 4.4.1 System Efficiency                | 107 |
|   |     | 4.4.2 System Stability                 | 108 |



|       | 4.4.3 Security Concern         | 112 |
|-------|--------------------------------|-----|
| 4.5   | Conclusion                     | 114 |
| 5 CON | CLUSION AND RECOMMENDATION     | 115 |
| 5.1   | Conclusion                     | 115 |
| 5.2   | Advantages of Embedded System  | 118 |
| 5.3   | Recommendation and Future Work | 119 |
| REFER | ENCES                          | 120 |
| APPEN | DICES                          | 129 |
| BIODA | TA OF AUTHOR                   | 217 |



# LIST OF TABLES

| Table |                                                                  | Page |
|-------|------------------------------------------------------------------|------|
| 2.1   | House Codes and Device Codes                                     | 23   |
| 2.2   | Key Differences between the IEEE 802.11 Extensions               | 34   |
| 3.1   | Some of the protocol API for network control server              | 61   |
| 3.2   | Examples of SMS Command Used For Triggering the Switching Module | 66   |
| 3.3   | Relay control codes for switching module                         | 67   |
| 4.1   | Type of network connection                                       | 95   |
| 4.2   | Descriptive analysis of connection types in embedded system      | 96   |
| 4.3   | Minimum and maximum value derived from descriptive analysis      | 96   |
| 4.4   | Test of Homogeneity Variances                                    | 97   |
| 4.5   | ANOVA table for each connection types                            | 97   |
| 4.6   | List of feedback signal corresponding to the relays status       |      |
|       | in switching module                                              | 106  |
| 4.7   | Types of testing method for system operation stability           | 109  |
| 4.8   | Security checklist of embedded system                            | 112  |
| 4.9   | Protection methods of security risk                              | 113  |



# LIST OF FIGURES

| Figur | Figure                                                              |    |
|-------|---------------------------------------------------------------------|----|
| 2.1   | Embedded System Functional Requirement in Smart Home<br>Environment | 15 |
| 2.2   | X-10 Transmitter and Control Pad                                    | 20 |
| 2.3   | A sine graph showing the zero crossing points                       | 21 |
| 2.4   | X-10 Transceiver Architecture                                       | 22 |
| 2.5   | The BatiBUS System                                                  | 40 |
| 2.6   | Architecture of Real-time-operating-system (RTOS) for SC 12         | 46 |
| 3.1   | Flow chart of design and development methodology of the system      | 49 |
| 3.2   | Operation Mechanism of Embedded System                              | 50 |
| 3.3   | Embedded System Architecture in Smart Home Environment              | 52 |
| 3.4   | Process of Server Implementation                                    | 57 |
| 3.5   | Embedded Computer EB3820                                            | 58 |
| 3.6   | Internet Information Service Management Console for server setup    | 59 |
| 3.7   | Pin configuration of SC 12                                          | 60 |
| 3.8   | Flow chart of the mechanism of TCP server (continue)                | 63 |
| 3.9   | Flow chart of the mechanism of TCP server                           | 64 |
| 3.10  | GPRS/GSM Enfora1218A Modem Quad band                                | 65 |
| 3.11  | System architecture for switching module                            | 67 |
| 3.12  | Interactive mechanism of I/O interface and switching module         | 68 |
| 3.13  | Mechanism of signal switching control in switching module           | 69 |
| 3.14  | Mechanism of synchronous triggering method                          | 70 |



| 3.15 | Mechanism of asynchronous triggering                                                       | 70  |
|------|--------------------------------------------------------------------------------------------|-----|
| 3.16 | Flow Chart of System Program                                                               | 72  |
| 3.17 | Task of signal converter                                                                   | 73  |
| 3.18 | Mechanism of error recovery associated with the strong coding selection and data integrity | 75  |
| 3.19 | Mechanism of run-time system failure detection                                             | 76  |
| 3.20 | Standard IDE of Embedded Visual Basic                                                      | 79  |
| 3.21 | Logical linking and system operation between embedded computer and switching module        | 80  |
| 3.22 | Mechanism of error checking to trap system failure                                         | 82  |
| 3.23 | Embedded System Functional Model in Smart Home                                             | 85  |
| 4.1  | Deployed user interface of client-side application                                         |     |
|      | in O2XDA11 Pocket PC                                                                       | 88  |
| 4.2  | Main program of client side application                                                    | 89  |
| 4.3  | Establish connection from client-side application to TCP server                            | 90  |
| 4.4  | The operation of triggering first relay                                                    | 91  |
| 4.5  | Result of all relays are triggered ON in switching module                                  | 92  |
| 4.6  | Result of all relays are triggered OFF in switching module                                 | 93  |
| 4.7  | Login screen of telnet client when started to establish a connection to the telnet server  | 98  |
| 4.8  | Connection detection result on monitoring terminal                                         | 99  |
| 4.9  | Data obtained by remote application server to trigger on the first relay                   | 100 |



| 4.10 | Data obtained by remote application server to trigger on the second relay             | 101 |
|------|---------------------------------------------------------------------------------------|-----|
| 4.11 | Result of data transformation to trigger on the first relay                           | 102 |
| 4.12 | Result of data transformation to trigger on the second relay                          | 102 |
| 4.13 | The generated feedback signal by switching module responds to trigger ON first relay  | 103 |
| 4.14 | The generated feedback signal by switching module responds to trigger ON second relay | 103 |
| 4.15 | The generated feedback signal responds to trigger OFF all relays                      | 104 |
| 4.16 | Result respond to the event of reset all of the relays                                | 106 |
| 4.17 | Analytical ambient temperature result in line chart                                   | 110 |
| 4.18 | Analytical unit temperature result in area chart                                      | 111 |



# LIST OF ABBREVIATIONS

- API Application Programming Interface
- DNS Domain Name System
- DSL Digital Subscriber Line
- GUI Graphical User Interface
- GSM Global System for Mobile Communication
- IP Internet Protocol
- ISP Internet Service Provider
- LAN Local Area Network
- OS Operating System
- PAN Personal Area Network
- PPP Point-to-Point Protocol
- SMS Short Message Service
- TCP Transmission Control Protocol
- TSP Telecommunication Service Provider



#### CHAPTER 1

#### INTRODUCTION

#### **1.1 Smart Home**

Internet has revolutionized many new emerging technologies. Rapid spread of Internet use at home inspires a new convenient way for controlling appliances at home thus conceptualised a smarter home. The smart home, the talk of the decade, has been predicted to be the next gigantic leap in the field of remote monitoring, becoming an important research topic in recent years. Research on smart homes has been moving towards applying the principles of ubiquitous computing [1]. The smart home is defined as one that is able to acquire and apply knowledge about its inhabitants and their surroundings in order to adapt to the inhabitants and meet the goals of comfort and efficiency [2]. The smart home may adjusts its functions to the home owner's needs according to the information it collects from inhabitants, the computational system, and the context.

The smart home systems industry is gaining significant attention from manufacturers ranging from consumer electronics to computers and communication networks. The potential business value of smart home systems products rivals some of the largest industries in the world, such as automotive. Basically, a smart home systems is a complete enabling system that provides common resources needed for home automation in a multi-product, multi-vendor environment, a system controller, a house wide wiring



network, communications protocols, standard interfaces for connecting other digital consumer products, and basic user controls. Providing complete smart home functionality depends on the addition of other products, such as more complex user controls, home appliances, and application-specific controllers. Designing and implementing smart homes requires a unique breadth of knowledge and not limited to a single discipline, but integrates aspects of machine learning, decision making, humanmachine interfaces, wireless networking, mobile communications, databases, sensor networks, and pervasive computing. With these capabilities, the home can control many aspects of the environment such as climate, lighting, maintenance, and entertainment. In this kind of intelligent environment, information processing and networking technology is hidden away, and interaction between the home and its devices takes place via advanced natural user interaction techniques. As the size of computers become smaller and their speeds become faster, they will be embedded in every device, appliance, or even clothing. Embedding intelligence in automation, security and communication systems has become a dominant theme in smart home environment and state-recognition systems for ubiquitous computing. These systems aims to provide more holistic approach to the smart home, directed by centralized controller, and designed to interpret the user's needs in an efficient and well-defined way. Various intelligent appliances such as cellular phones, air conditioners, home security devices, home theatres are set to realize the concept of smart home. Smart home systems can contribute to better comfort levels and at the same time increase safety and security, detecting and signalling emergency and intrusion situations. It can be very helpful to elderly people with disabilities who may have difficulties in moving or executing tasks. While there are as many as 50 standards for smart home systems, only a handful is considered important



[3]. Some standards are open and many are proprietary. X-10, EIB, Cebus and LonWorks to name a few, act as open standard. These technologies are incompatible with each other. Another rising problem with current technologies is that they do not offer standard approaches to the problem of system design and adaptation to specific home and users. In most cases, the technology introduced meant to be used by technical personnel and not by common or even savvy users. Therefore, and for some technologies, a user cannot change his / her system or upgrade it without contacting a specialized company. The main constraint will be the lack of generic applications for monitoring and controlling a smart home that can accommodate change and allow the user to modify the system behaviour and adapt it to new needs and preferences. The demand for smart home systems is stimulated by invention of affordable products and services. Simply interconnecting existing appliances or control systems is not sufficient. Effective products must make any internal complexity invisible to the user with simple operating procedures and minimal training. As such the design and development of centralized embedded based system with multimedia support are critical for system reliability in smart home environment.



#### 1.2 Embedded System in Smart Home

Embedded system is a customized computer system with both hardware and software, housed with programs embedded and has digital interfaces for several communication modules using mobile devices for appliances connectivity and control. It is the control centre that functions as a bridge and links consumer devices and manages the flow of data, voice and video between the outside world and devices on the network. With the maturing of wireless technology and communication middleware, smart home designers and inhabitants have been able to raise their standards and expectations. The system need to address interoperability requirements, interconnectivity requirements and plug-compatibility requirements of devices and appliances in smart home environment.

Home appliances or information appliances are consumer devices, which offer Internet or network access without using traditional operating system interface [4]. In particular, these devices use a gateway to communicate with each other, sharing data to build a more informed model of the state of the environment and the inhabitants, and retrieving information from outside sources over the Internet or wireless communication infrastructure to respond better in current state and needs. The devices can access information from the Internet such as menus, operational manuals, or software upgrades utilizing a central embedded based system as task distributor. The system sits at the core of the home network, acts as residential gateway and enables bi-directional communication and data transfer channel among networked appliances in the home and across the Internet. Many research findings suggested that these types of module and



residential gateway are expected to become key integrated service enabler in smart home environments.

## **1.3 Problem Statements**

While there are many standards and organization involved in providing smart home backbone, only a small number had wider acceptance. The most common feature of smart home environment, X-10 technology refers to the electrical wiring that exists in the home to provide power for appliances using the existing power outlets available throughout a home [5]. Currently X-10 is used for applications with low data rate requirements such as lighting and appliances networks, and some security applications. Observing current systems and trends, both in research and practice, the following weaknesses emerge: -

- a) Low bandwidth provides low data rate and incompatibility for new consumer electronics devices whereas X-10 transmission rate limited only 60b/s; it is also unsuitable for handling traffic.
- b) No system feedback to check or monitor connectivity, unreliable and no guarantee of reception
- c) Due to many standards available, there is no multi-connectivity support for smart home systems, therefore difficulties and no interoperability between devices
- d) Lack of user interface support in existing modules



An embedded system is needed to act as 'protocol glue' that incorporates other wireless options such as Short Message Service (SMS) router and wireless local area network (Wi-Fi) for intelligent automation and higher speed of appliances connectivity. With this system, the system will solve the problem mentioned by providing a single user interface for home dwellers with multi-connectivity support. The system also will solve the X-10 drawback by providing feedback on control event of home appliances and to indicate whether it is successful or not. With this type of system, home appliances control in smart home environment can be enhances and produce efficiency in total management of appliances.

#### 1.4 Research Scope And Contribution

The goal of this research is to show the capability of the embedded system in smart home technology, and to explore the factors in this technology that expands the interoperability. The design and implementation of the system is examined to find ways to provide a reliable interface using wireless infrastructure, improving the connectivity and control of smart home appliances and devices which will likely be required in the future using high-speed and high-precision data communication link. The contributions of this research are illustrated as follows:

- New hybrid module that incorporates wireless technology (Wi-Fi and SMS)
- Provides a single mobile user interface for appliance control in smart home environment

