

UNIVERSITI PUTRA MALAYSIA

GLOBAL SYSTEM FOF MOBILE-BASED DATA ACQUISITION FOR MONITORING OF POWER DISTRIBUTION SYSTEM

MUBASHAR M. B. KASSIM

FK 2008 68

GLOBAL SYSTEM FOF MOBILE-BASED DATA ACQUISITION FOR MONITORING OF POWER DISTRIBUTION SYSTEM

By MUBASHAR M. B. KASSIM

Thesis Submitted to the School Graduate Studies, Universiti Putra Malaysia, in Partial Fulfillment of the Requirement for the Degree of Master of Science

September 2008

Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Master of Science

GLOBAL SYSTEM FOF MOBILE-BASED DATA ACQUISITION FOR

MONITORING OF POWER DISTRIBUTION SYSTEM

By

MUBASHAR M. B. KASSIM

September 2008

Chairman: Senan Mahmod Bashi, PhD

Faculty: Engineering

Modern electrical distribution systems are monitored and controlled remotely using

Supervisory Control and Data Acquisition (SCADA) System. A control center that

receives on-line information about the network must control and monitor the medium

and large power distribution system that usually covers large geographical area.

GSM network currently covers almost all the parts of the country and this makes it

possible in terms of feasibility to place and collect data from distribution power

system using this communication network which reduces the cost of establishing the

system communication for large geographical area like the distribution of power

system.

A prototype of power factor correction and remote data acquisition with control center

based GSM network has been presented in this thesis. The operating parameters of the

power distribution system have been monitored in the control center beside the

operation of the power factor correction. The proposed design of the prototype

ii

integrate sensors package with GSM controller which was programmed using Java to Micro Edition (J2ME). The GSM controller was programmed to control the power factor and send the acquired information to store it in the database of the control center. This database will be a useful source for the utility of distribution system after analyzed it to help the distribution system in monitoring the operational behavior and identify faults before any problem failure thus resulting in significant cost saving beside the improve of system reliability. The measurements obtained have a small error when compared to previous work. The error was 6 mV on a 5000mV scale while the previous work of Al_Ali *et al.*, (2004(a)) was 10 mV on the same scale. By sending and receiving Short Message Service (SMS), the system achieves the functions of data transmitting, data processing, system diagnosing, alarm sending and report generating.

Abstrak tesis yang dikemukakn kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperlan untuk ijazah Master Sains

PEMEROLEHAN DATA BERASASKAN SISTEM SEJAGAT MUDAH

GERAK UNTUK PEMANTAUAN SISTEM PENGAGIHAN KUASA

Oleh

MUBASHAR M. B. QASSIM

September 2008

Pengerusi: Senan Mahmod Bashi, PhD

Fakulti: Kejuruteraan

Sistem Penjanaan Kuasa Moden sekarang dikawal dan dikendalikan menggunakan

Sistem Mengawasi Kawalan dan Pengumpulan Maklumat (SCADA). Pusat

pengumpulan maklumat yang menerima informasi rangkaian ini mesti perlu mengwal

sistem penjanaan kuasa secara sederhana dan besar yang meliputi kawasan geografi

yang terlibat.

Pada masa sekarang, rangkaian GSM meliputi semua kawasan di negara ini, dan ia

membuatkan sistem ini mampu dilaksanakan bagi mendapatkan maklumat dari sistem

penjanaan kuasa dengan menggunakan rangkaian komunikasi yang akan

menyebabkan pengurangan kos bagi membina sistem komunikasi di kawasan geografi

yang besar seperti penjanaan bagi sistem kuasa.

Prototaip bagi pembetulan faktor kuasa (power factor correction) dan kawalan

pengumpulan data (remote data acquisition) yang mengawal pusat maklumat

iv

rangkaian GSM telah dilaksanakan dalam tesis ini. Operasi parameter bagi penjanaan kuasa telah diawasi di dalam pusat pengumpulan maklumat sambil operasi pembetulan faktor kuasa (power factor correction) dilakukan. Rekabentuk yang dicadangkan bagi prototaip penyatuan pakej sensor menggunakan kawalan GSM ini diprogramkan mengunakan Java ke edisi mikro . Pengawal GSM ini telah diprogramkan untuk mengawal factor kuasa dan menghantar maklumat yang diperolehi untuk disimpan di dalam system pengumpulan maklumat pusat kawalan. Maklumat terrkumpul yang telah dianlisa merrpakan sumber bergrna untuk pengguraan sistem pengagiham kuasa, seterusnya membantu sistem pengagiham dalam pemantauan prestasi operasi dan mengenalpasti permasalahan sebelum sebarang kerosakan berlaku, yang diperolehi mempunyai ralat yang kecil berbanding dengan hasil kajian sebelum ini. Ralat yang di perolehi ialah 6mV berdasarkan skala 5000mV, sementara ralat daripada hasil kajian Al-Ali et al., (2004(a)) ialah 10 mV berdasarkan skala yang sama. Melalui penghantaran dan penerimaan khidmat mesej ringkas (SMS), sistem ini mampu melakukam penghantaran data, pemprosesan data, pemeriksaan sistem, penghantaran penggera dan penjanaan laporan..

ACKNOWLEDGEMENTS

First and foremost I thank Allah, swt, for helping me to complete this thesis. I would like to convey my deepest gratitude and most sincere thanks to my supervisor, Dr. Sinan Mahmod Bashi, who keeping advising and commenting throughout this project until it turns to real success.

My thanks as well go to Assoc. Prof. Dr. Ishak b. Aris and Professor Ir. Dr. Norman Marium serving in my supervisory committee and providing guidance and suggestion.

I express my greatest appreciation to the staff of Electrical and Electronic Engineering

Department for providing the facilities and the components required to undertake this

project.

I would like to forward my appreciation to my parents, my sisters and my brothers.

Finally thanks are also to all the Power Electronic Laboratory members, and all of my friends, here in Malaysia and back in Iraq.

I certify that a Thesis Examination Committee has met On 19 September 2008 to conduct the final examination of Mubashar Mohammed Basheer Kassim on his thesis entitled "Global System for Mobile-Based Data Acquisition for Monitoring of Power Distribution System" in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Member of the Examination Committee were as follows:

Raja Syamsul Azmir b. Raja Abdullah, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Fadlee A. Rasid, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Hashim b. Hizam, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Azah Mohamed, PhD

Professor Faculty of Engineering Universiti Kebangsaan Malaysia (External Examiner)

> HASANAH MOHD. GHAZALI, PhD Professor and Dean School and Graduate Studies Universiti Putra Malaysia

Date: 29 January 2009

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Senan Mahmod Bashi, PhD

Associate Professor Department of Electrical and Electronic Engineering Faculty of Engineering Universiti Putra Malaysia (Chairman)

Norman Marium, PhD

Professor
Department of Electrical and Electronic Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Ishak b. Aris, PhD.

Associate Professor Department of Electrical and Electronic Engineering Faculty of Engineering Universiti Putra Malaysia (Member)

HASNAH MOHD.GHAZALI

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 12 February 2009

DECLARATION

I declare that the thesis is my original work expert for quotations and citation, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at UPM or at any other institutions.

Mubashar M. B. Kassim

Date: 1 / 12 /2008

TABLE OF CONTENTS

ABSTRACT ABSTRAK ACKNOWLEDGMENTS APPROVAL SHEETS DECLARATION FORM TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS		ii iv vi vi ix x xi	Page ii iv vi vii ix x xiii xvii
CH.	HAPTER		
1	INTRODUCTION 1.1 Importance of This Study 1.2 Aim of Study 1.3 Objective 1.4 Thesis Organization	1 1 2 4 5	
2	2.1 Over View of Power Distribution System 2.2 Introduction of SCADA System 2.3 Comparison of Term SCADA, DCS, DA 2.4 Hardware Architecture of SCADA Syster 2.4.1 Operator 2.4.2 Human Machine Interface 2.4.3 Master Terminate Unit 2.4.4 Remote Terminal Unit 2.4.5 Field Instrumentation 2.4.6 Communication System 2.5 GSM Data Transmission 2.5.1 Distribution System Based GSM 2.5.2 SMS Application in The Power	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 6 6 8 0 3 3 6 8
3	2.6 Summary HARDWARE AND SOFTWARE DESIGN FOR PROTOTYPE OF GSM BASED DATA ACQUAL 3.1 Introduction 3.2 Prototype System Design 3.3 Hardware System Design 3.3.1 Field Instrumentation 3.3.2 GSM Controller	OR THE 42	1 2 2 2 2 4 6

	3.4	Control Center Module	60
		3.4.1 GSM Modem	61
	3.5	Circuit Diagram for the Prototype of PFC and Remote DAS	62
	3.6	The System Software	65
		3.6.1 Visual Basic Program (VB)	65
		3.6.2 Java Technology	68
		3.6.2.1 J2ME Technology	68
		3.6.3 Information Mobile Profile	69
		3.6.4 Java Application In The Nokia 12 GSM Module	71
		3.6.5 IMLET Implementation	72
		3.6.6 Nokia 12 Configurator Software	76
		3.6.7 Nokia 12 IMP 1.0 Concept Simulator Nokia 12	77
	3.7	Summry	79
4	RE	SULTS AND DISCUSSIONS	81
	4.1	Introduction	81
	4.2	Testing Hardware Parts of The System	81
		4.2.1 Calibration the Analogue Inputs	82
	4.3	Testing the Power Factor Correcting Operation	89
		4.3.1 Testing Capacitor Check Status	93
	4.4	Testing the DAS by Connecting to the Actual Feeder	94
		4.4.1 Testing Alarm Notification	101
	4.5	Benchmark	101
5		NCLUSIONS AND RECOMMENDATIONS FOR FUTURE ORK	103
		Conclusions	103
		Recommendations for Future Work	103
	3.2	Recommendations for Future work	104
		FERENCES	106
		PENDICES	113
	BIO	DATA OF STUDENT	127

LIST OF TABLES

Table		Page
2.1	Researches Done in the field of GSM network applied in the Power distribution System	39
3.1	Current Transducer Input and Output	48
3.2	The Logic Value for Voltage of Digital Input	60
4.1	Calibration Test of AN1	84
4.2	Calibration Test of AN2	86
4.3	Parameters Measured in the Laboratory	91
4 4	Parameters Received in CC	91

LIST OF FIGURES

Figure		Page
1.1	Block diagram for the Prototype Model of PFC and Remote DAS Based GSM Network	3
2.1	Block Diagram of Typical Power System	7
2.2	Typical Power Transmission and Distribution System	8
2.3	Single Diagram of a Distribution System	10
2.4	Sensor to Panel Using 4-20 mA or Voltage	12
2.5	Typical SCADA System Architecture	17
2.6	Input and Output for MTU	19
2.7	Typical RTU Hardware Structure	21
2.8	Input and Output Signal of RTU	22
2.9	Block Diagram Indicating How SMS Message is Being Sent	28
2.10	Structure of Three Layer Remote Data Acquisition System	30
2.11	Application of SMS Service in a Power System	33
2.12	Wireless Network Based on GSM Provides Central Communication to Electricity Substations	34
2.13	Power Distribution Automation System	35
3.1	Flow Chart Showing the Developed of J2ME in the GSM Controller	43
3.2	Flow Chart for the Prototype of PFC and Remote DAS	45
3.3	Signal Conditioning Circuit	47
3.4	Reading Power Factor	49
3.5	T-BoxRelay Terminal	52
3.6	GSM Controller T-BoxN12R	55

3.7	Nokia 12 GSM Module	56
3.8	SMS Contains the Information of V, I and RPF	57
3.9	Nokia 12 Test Board	59
3.10	TELTONIKA T-Modem (Tmu-102)	61
3.11	Circuit Diagram for the Prototype of PFC and Remote DAS	64
3.12	Flowchart of the Main Program in the Control Center	66
3.13	Sample of Capacitor Check Status When Switches 1, 2 and 3 are ON	67
3.14	Flowchart of IMLET in the GSM Controller	73
3.15	Nokia Configurator Window	77
3.16	The Performance of Nokia 12 IMP 1.0 Concept Simulator while Running the IMLET	80
4.1	Top View for the Prototype of PFC Operation and Remote DAS	82
4.2	Test of Analogue inputs Calibration	83
4.3	Relationship Between the Applied Voltage and the SMS Received for AN1	85
4.4	The Relationship Between the Applied Voltage and SMS Received for AN2	87
4.5	Phase Shift Between the Voltage and Current	89
4.6	The Prototype Connection in the Laboratory for PFC Operation	91
4.7	Phase Shift Between the Voltage and Current Before PFC Operation	92
4.8	Phase Shift Between the Voltage and Current After PFC Operation	92
4.9	Check Capacitor Status in the Main Program	94
4 10	The Connection of the Prototype to Actual Feeder	95

4.11	The Operating Parameters Reading Received for Ten Hours	96
4.12	The Operating Parameters Reading measured for Ten Hour	97
4.13	Main Program Receiving the Operating Parameters	98
4.14	Archive Window in the Main Program Present the Data Between Two Dates	99
4.15	The Operator in the CC Received the Information from the Feeder	100
4.16	SMS Alarm Received in Operator's Mobile for PF and V	101

LIST OF ABBREVIATIONS

A/D Analogue to Digital
AC Alternating Current

AN Analogue Input

API Application Program Interface

AT Command Language

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

CMOS Complementary Metal-Oxide Semiconductor

COM Common Output

CPU Central Process Unit
CSD Circuit Switched Data
CT Current Transducer

DA Distribution Automation
DAS Data Acquisition System

DCC Distribution Control Center
DCS Distributed Control System

DTMS Distribution Transformer Monitoring System

EGPRS Enhanced General Packet Radio Services

GSM Global System for Mobile communication

HMI Human Machine Interface

HSCSD High Circuit Switched Data

HTTP Hypertext Transfer Protocol

I/O Input/Output

I Current

GPRS

IEEE Institute of Electrical and Electronic Engineers

IED Intelligent Electronic Device

IMLET Java Application that Runs According to the Information

General Packet Radio Service

IMP Information Module Profile

J2EE Java 2 Enterprise Edition

J2ME Java To Micro Edition

J2SE Java 2 Standard Edition

JVM Java Virtual Machine

LAN Local Area Network

LED Light Emitting Diode

M2M Machine to Machine

MIDP Mobile Information Device Profile

MTU Master Terminal Unit

NCL Normally Closed Output

NMT Nordic Mobile Telephone

NOP Normally Open Output

P Real Power

PC Personal Computer

PDC Personal Digital Cellular

PF Power Factor

PLC Programmable Logic Controllers

PMU Phasor Measurement Unit

PT Potential Transformer

Q Imaginary Power

R Resistance

RAM Read Access Memory

RF Radio Frequency

ROM Read Only Memory

RPF Reading Power Factor
RTU Remote Terminal Unit

SCADA Supervisory Control And Data Acquisition

SCC Signal Condition Circuit

SMS Short Message service

SMSC Short Message Service Center

SPDT Single Pole Double Throw

TACS Total Access Communication System

USB Universal Serial Bus

V Voltage

VB Visual Basic language program

W Watt

WDP Wireless Datagram Protocol

WMA Wireless Messaging API

WTK Wireless Toolkit

WTP Wireless Transaction Protocol

Θ Phase Angle Between Current and Voltage

CHAPTER 1

INTRODUCTION

1.1 Importance of This Study

In the modern electric power system, elements such as generators, transformers and transmission lines are usually monitored and controlled from remote control centers. The importance of this monitoring and control leads to the reduction of system losses, a higher quality and more reliable power supply in addition to the decrease peak demand and rich return of revenue (Gupta and Srivastava, 2004).

The system of Supervisory Control and Data Acquisition is called SCADA, however, this term is generally accepted to describe the system that monitor and control the distribution of critical infrastructure public utilities (water, electricity, oil and gas). The use of SCADA system became popular in the 1960's as a step for a more efficient monitor and control on the distribution remote equipment. Many early SCADA systems used mainframe computer technology, making these system hierarchical, centralized and required human oversight to make decision (Clarke *et al.*, 2004).

The development of SCADA can be traced back to the early 1900's with the advent of telemetry which involves the transmission and collection of data obtained by sensing real-time conditions (Graham and Patel, 2004). While SCADA systems have been employed to monitor and control industrial facilities for decades, the designs of these systems, their components, and the communications protocols are primarily

proprietary. With the advent of the Internet, many SCADA monitoring and control networks have been connected at some level, to be open networks (Ward, 2004).

The problem statement of this work is to incorporate mobile technology into distribution measurement of SCADA system by design a prototype of Power Factor Correction (PFC) operation and remote Data Acquisition System (DAS) as apart of SCADA to serve as control and monitor devices using SMS. As a consequence of substantial research in the area of remote monitoring and control in village power network and the shortage existing in the current communication method, an attempt of applying Global System for Mobile communication (GSM) network with SMS service in remote data collection device was made. This method is currently available and is being used for monitoring the distribution system and to control some elements which the real time does not require.

1.2 Aim of Study

The aim of this study is to design a prototype of PFC and remote DAS with Control Center (CC). This system as a part of SCADA system based on GSM network, monitor the operating parameters of power distribution system such as Voltage (V), Current (I), power Factor (PF), Real Power (P) and Reactive Power (Q), send information as SMS text message periodically to CC, give alarm notification for abnormal conditions and store the operating parameters on data base for future analysis. The operation of PFC has been implemented and monitored beside the other parameters. The proposed system has been designed and fabricated with field instrumentation that contains the pack sensors and Signal Condition Circuit (SCC). In

addition, the hardware of the relay with the bank capacitor is constructed in order to achieve the operation of PFC as shown in figure 1.1.

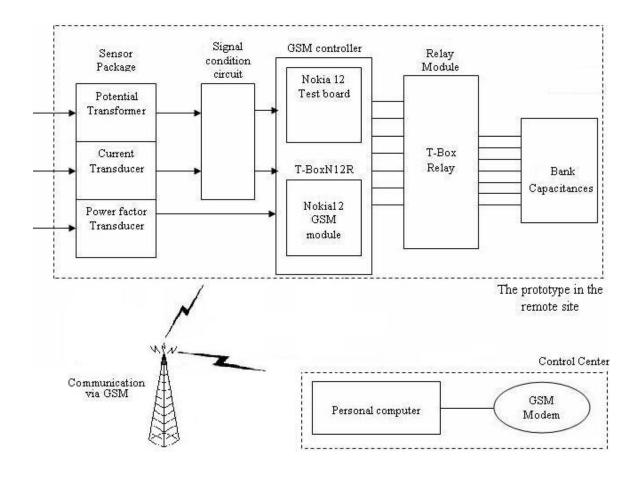


Figure 1.1: Block Diagram for the Prototype Model of PFC and Remote DAS
Based GSM Network

Remote Terminal Unit (RTU) represented with GSM controller (T-BoxN12R) which communicates with the CC via GSM network SMS service. CC consists of Personal Computer (PC) connected to GSM modem to receive/sent SMS sent from/to GSM controller. The Capabilities of Nokia 12 IMP 1.0 Concept Simulator has been used to test the functionality of the software program before uploading it to the GSM controller which has been developed with J2ME. The main program in the CC has been designed using Visual Basic (VB) program language. In UAE, GSM based data

acquisition and monitoring has been applied in distribution transformer using SMS message to monitor and record the operation parameters of the transformer like load current, transformer oil and ambient temperatures. The CC was not involved in this project. In UK, the GSM has been used as communication interface between the RTU and the CC in Manchester. In power plants also the GSM network has been used for remote control and monitoring in the plant. In the field of environment, the GSM network has been applied for remotely distributed environmental monitoring devices.

1.3 Objective

The major objectives of the work reported in this research are as follow

- To review the data acquisition system used in the electrical distribution and other distribution systems.
- To come-up with the design of GSM prototype in the remote site based data acquisition for monitoring the operating parameters of the power distribution system.
- To achieve the functions of PFC, data transmitting, system diagnosing and alarm sending via SMS.
- To come up with control center for data presenting, processing and report generating.
- To connect the prototype to actual feeder and test the operation of remote monitoring based SMS.

1.4 Thesis Organization

This thesis is organized in five chapters; Chapter One gives an introduction to the project. The objectives and scope of the study are also presented.

Chapter Two contains a critical literature review of common SCADA used as well as the communications methods used in monitoring and acquiring the operation parameters in power system utilities. This chapter also discusses the used of GSM network as a communication method with SMS services and its implementation in the power system and other utilities.

Chapter Three describes the design of the hardware and software for the prototype of PFC and remote DAS based GSM network to monitor and acquire the operation parameters of power distribution system. Different components such as transducers, transformers and capacitors have been chosen in order to construct the circuit according to the proposed rating. This chapter also gives an introduction to JAVA language and the steps to developed program (J2ME) which has been used in the GSM controller. In addition, the function of the GSM controller has been checked using Nokia 12 IMP 1.0 Concept Simulator. The design and implementation of hardware and software requirement of the system are identified.

Chapter Four presents the result obtained from the implementing and testing the prototype in the laboratory and by connecting the prototype to actual feeder for monitoring and acquiring the operating parameters in power distribution system.

Chapter Five deals with conclusion drawn from the work reported in this research. The laboratory implementation and the testing of hardware and software of the prototype based GSM network for monitoring the operation parameters and correcting the PF provide satisfactory results. The recommendations of the future studies related to the same topic are also mentioned.

