EFFECTS OF BAKING TEMPERATURE, TIME AND HUMIDITY ON BREAD CRUST AND CRUMB PROPERTIES

YANTI MASLINA MOHD. JUSOH

FK 2008 57
EFFECTS OF BAKING TEMPERATURE, TIME AND HUMIDITY ON BREAD CRUST AND CRUMB PROPERTIES

By

YANTI MASLINA MOHD. JUSOH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2008
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master in Science

EFFECTS OF BAKING TEMPERATURE, TIME AND HUMIDITY ON BREAD CRUST AND CRUMB PROPERTIES

By

YANTI MASLINA MOHD JUSOH

June 2008

Chairman : Chin Nyuk Ling, PhD
Faculty : Engineering

The main objectives of this study are to investigate the effects of baking temperature, time and humidity on bread qualities and subsequently find the relationship between bread crust and crumb properties.

The bread samples were prepared following the straight-dough method. In determining crust and crumb, the difference in colour between these two regions was used. The colour of crust and crumb were measured using a chromameter. The colour range obtained for crust based on top crust colour of commercial bread samples is \(L <66.0, \ a > 2.4 \) and \(b >22.3 \) while crumb has a range of \(L >66.0, \ a <2.4 \) and \(b< 22.3 \). This colour range is used as a guideline in determining crust thickness of baked loaf samples. Bread slices were scanned to obtain its \(L \ a \ b \) values and the crust thickness was determined from the crumb region when the \(L \ a \ b \) values are met. The evaluation of crumb moisture content and firmness were conducted following the standard method of
American Association of Cereal Chemist (AACC) 14-5A and American Institute of Baking (AIB), respectively. Experimental results were statistically analyzed using Analysis of Variance (ANOVA).

Various combination of baking temperature, time and humidity affected the organoleptic properties of bread. Baking temperature and time significantly affect bread crust colour (P<0.001), thickness (P<0.001), initial moisture content (P<0.05) and firmness (P<0.001). Baking temperature has larger effect on crust colour and thickness compared to baking time. Higher baking temperature produced darker and thicker crust. Rate of thickness increment was also higher at high baking temperature (0.0465 mm/min) compared to low baking temperature (0.0085 mm/min). Increasing baking temperature produces crumb of high initial moisture content with high firmness value. The effect of baking time (P<0.01) is less significant than temperature however increasing baking time would also darken the crust colour and increases the thickness, increases crumb firmness and reduces crumb moisture content.

The application of humidified baking has no significant impact on crust coloration (P>0.05) however it causes a decrease in crust thickness (P<0.05), retain moisture (P<0.01) and reduce firmness (P<0.05). Humidified baking also reduces moisture migration (P<0.01) and firming rate (P<0.01) of breads during storage. Besides humidified baking, the usage of baking lid also have potential in increasing L and b values (P<0.001) and reducing a value and crust thickness (P<0.001). However, the
application of lid prevents bread expansion and causes high firmness value in bread. Sandwich bread has lower moisture content compared to open bread.

Three important correlations were obtained from the study that are between top crust colour difference (ΔE) and thickness, ΔE and firmness and finally crust thickness and firmness. The correlation between ΔE and thickness for non-humidified (NH) baking is represented by \(y_{NH} = 0.1724x \) and \(y_H = 0.1712x \) for humidified (H) baking. The coefficient of correlation, \(R^2 \), for correlation between ΔE and thickness for non-humidified baking and humidified baking are given by 0.9467 and 0.9341, respectively. A simple model of \(T = k\Delta E \) derived from the correlation between ΔE and thickness indicates that the crust thickness (T) can be predicted by the changes in crust colour (ΔE). The heating constant, \(k \), is dependant of baking temperature. The correlation, ΔE and firmness has the \(R^2 \) of 0.8306 for non-humidified baking and 0.8025 for humidified baking. The correlation between ΔE and firmness for non-humidified baking is represented by \(y_{NH} = 0.8375x + 20.824 \) and \(y_H = 0.8127x + 25.035 \) for humidified baking. The other correlation, thickness and firmness has the \(R^2 \) of 0.7436 and 0.6915, for non-humidified and humidified baking, respectively. The correlation of thickness and firmness for non-humidified baking is represented by \(y_{NH} = 4.0385x + 26.952 \) and \(y_H = 3.921x + 30.852 \) for humidified baking. The high value of \(R^2 \) shows that there is a strong relationship between colour, thickness and firmness. Crust colour can be used in predicting crust thickness and crumb firmness.
In conclusion, the results show that the bread crust and crumb properties are highly dependent of baking temperature and time. The moisture content and firmness in crumb are also affected by crust formation. This research also produces several significant contributions for bakery study; new method of measuring crust thickness using colour, humidified baking application for improving the storage quality of bread and finally establishment of correlations and linear model that can be used to estimate crust thickness and probably anticipate crumb behavior during storage.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN SUHU, MASA DAN LEMBAPAN BAGI PEMBAKARAN KE ATAS SIFAT-SIFAT KERAK DAN ISI ROTI

Oleh

YANTI MASLINA MOHD. JUSOH

Jun 2008

Pengerusi : Chin Nyuk Ling, PhD
Fakulti : Kejuruteraan

Tujuan penyelidikan ini adalah untuk mengkaji kesan suhu, masa dan kelembapan ketika pembakaran ke atas kualiti roti dan seterusnya mendapatkan hubungan di antara kerak dan isi roti.

Sampel roti telah disediakan mengikut kaedah straight-dough. Perbezaan warna di antara kerak dan isi roti telah digunakan untuk membezakan kedua-dua bahagian ini. Ukuran ke atas warna kerak dan isi roti telah dilakukan menggunakan alat chromameter. Dengan menggunakan sample roti komersial, julat warna bagi kerak dan isi roti telah ditetapkan yang mana bahagian kerak mempunyai julat warna \(L<66.0 \), \(a>2.4 \) dan \(b>22.3 \) dan bahagian isi roti mempunyai julat warna \(L>66.0 \), \(a<2.4 \) dan \(b<22.3 \). Julat warna yang diperolehi ini digunakan untuk mengukur ketebalan kerak roti. Kepingan

Gabungan pelbagai suhu, masa dan kelembapan ketika pembakaran telah memberi kesan ke atas sifat-sifat roti. Masa and suhu memberikan kesan yang signifikan ke atas warna ($P<0.001$) dan ketebalan ($P<0.001$) kerak roti, lembapan awal ($P<0.05$) dan kepadatan isi roti ($P<0.001$). Suhu pembakaran mempunyai kesan yang lebih ketara ke atas warna dan ketebalan kerak roti berbanding masa pembakaran. Suhu pembakaran yang tinggi menyebabkan pembentukan kerak yang lebih gelap dan tebal. Kadar peningkatan ketebalan kerak berlaku dengan lebih pantas ketika suhu pembakaran tinggi (0.0465 mm/min) berbanding suhu yang rendah (0.0085 mm/min). Peningkatan suhu pembakaran menghasilkan isi roti berkelembapan awal yang tinggi dan meningkatkan kepadatannya. Kesaran masa pembakaran ($P<0.01$) kurang signifikan berbanding suhu pembakaran, namun peningkatan masa pembakaran turut menghasilkan kerak yang lebih gelap dan tebal, meningkatkan kepadatan isi roti tetapi menurunkan kandungan lembapannya.

Aplikasi kelembapan ketika pembakaran tidak memberi kesan kepada warna kerak ($P>0.05$) namun ia menyebabkan pengurangan ketebalan kerak ($P>0.01$), mengekalkan
kelembapan (P<0.01) dan mengurangkan kepadatan (P<0.05) pada isi kerak. Kaedah ini juga mengurangkan kadar perpindahan lembapan (P<0.01) and kepadatan (P<0.01) pada isi roti ketika roti dalam penyimpanan. Selain daripada kaedah ini, penggunaan penutup acuan pembakaran juga berpotensi dalam meningkatkan nilai L dan b (P<0.001) dan mengurangkan nilai a dan ketebalan kerak roti (P<0.001). Namun, aplikasi penutup acuan pembakaran merencan pengembangan roti dan mengakibatkan nilai kepadatan yang tinggi pada roti. Roti sandwich mempunyai kandungan lembapan rendah berbanding roti open.

Tiga korelasi penting telah didapati dari kajian ini iaitu korelasi di antara perbezaan warna (ΔE) kerak dan ketebalan kerak, ΔE kerak dan kepadatan isi roti dan akhir sekali hubungan di antara ketebalan roti dan kepadatan isi roti. Korelasi di antara ΔE dan ketebalan kerak untuk pembakaran tanpa kelembapan (NH) diwakili oleh \(y_{NH} = 0.1724x \) and \(y_{H} = 0.1712x \) bagi pembakaran berkelembapan (H). Pekali korelasi, \(R^2 \), bagi korelasi antara ΔE kerak dan ketebalan kerak untuk pembakaran tanpa kelembapan dan berkelembapan adalah 0.9467 dan 0.9341. Satu terbitan mudah \(T = k\Delta E \) yang diperolehi daripada korelasi di antara ΔE kerak dan ketebalan kerak menunjukkan bahawa ketebalan kerak (T) boleh diunjurkan melalui perubahan warna pada bahagian kerak (ΔE). Pemalar pemanasan, \(k \), bergantung kepada suhu pembakaran. Korelasi antara AE kerak dan kepadatan isi roti mempunyai \(R^2 0.8306 \) bagi pembakaran tanpa lembapan dan 0.8025 bagi pembakaran berkelembapan. Korelasi ini diwakili oleh \(y_{NH} = 0.8375x + 20.824 \) bagi pembakaran tanpa lembapan (NH) dan \(y_{H} = 0.8127x + 25.035 \) bagi pembakaran berkelembapan (H). Korelasi penting yang lain ialah antara ketebalan
kerak dan kepadatan isi roti dengan nilai \(R^2 \) 0.7436 dan 0.6915, bagi pembakaran tanpa kelembapan dan berkelembapan, masing-masing. Korelasi ini diwakili \(y_{NH} = 4.0385x + 26.952 \) bagi pembakaran tanpa lembapan dan \(y_{H} = 3.921x + 30.852 \) bagi pembakaran berkelembapan. Nilai \(R^2 \) yang tinggi menunjukkan bahawa terdapat hubungan yang kuat antara warna, ketebalan kerak dan kepadatan isi roti. Warna kerak roti boleh digunakan untuk menganggar ketebalan kerak dan ketegangan isi roti.

Kesimpulannya, keputusan ujikaji menunjukkan bahawa sifat-sifat kerak dan isi roti adalah bergantung kepada suhu dan masa pembakaran. Kandungan kelembapan dan kepadatan isi roti dipengaruhi oleh proses pembentukan kerak roti. Pelbagai penemuan penting dalam bidang pembuatan bakeri telah dicapai melalui penyelidikan ini iaitu kaedah baru untuk mengukur ketebalan kerak roti menggunakan warna, penggunaan kelembapan dalam pembakaran bertujuan untuk memperbaiki kualiti penyimpanan roti dan penemuan terhadap beberapa korelasi dan model linear yang boleh digunakan untuk mengangggarkan ketebalan dan perubahan sifat isi roti ketika dalam penyimpanan.
ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my supervisor, Dr. Chin Nyuk Ling, who has been a wonderful tutor and friend during my period of study. There is not enough word to describe my appreciation for her never ending guidance, patience, support, comments, motivation and knowledge to improve myself. My special thanks also go to Professor Russly Abdul Rahman and Dr. Yus Aniza Yusof for giving me ideas and thoughts for this thesis.

Secondly, my deepest gratitude to Dr. Nasir Azuddin, Mr. Norizat Rashid, Ms Suwaibah Ghaffar, Ms Voon Yit Yang and other staffs from Interflour Sdn. Bhd. This thesis would not have completed without their consent and helpful assistance in utilizing the Interflour Baking Laboratory.

At the same time, I would also like to thanks Mr. Haji Kamrul Zaman Dahlin, Md. Noh, Meor Nazri and Badrul Shah from KPM for their technological supports and advice.

To my dearest colleague, Dayang Norulfairuz, thank you for your help and encouraging spirit. Last but not least, my deepest affection and gratitude to my wonderful mother, husband, son and family for all support, patience and sacrifice throughout this period.

I would like to end this segment with an encouraging thought by Arland Gilbert:

"When we accept tough jobs as a challenge to our ability and made into them with joy and enthusiasm, miracles can happen."

x
I certified that an examination committee has met on 30th June 2008 to conduct the final examination of Yanti Maslina bt. Mohd. Jusoh on her Master of Science thesis entitled “Effects of Baking Temperature, Time and Humidity on Bread Crust and Crumb Properties” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1990 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommended that the candidate be awarded relevant degree.

Members of the Examination Committee were as follows:

Mohd. Nordin Ibrahim, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Siti Mazlina Mustapa Kamal, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Ling Tau Chuan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Ida Idayu Muhammad, PhD
Senior Lecturer
Faculty of Chemical and Natural Resources Engineering
Universiti Teknologi Malaysia
/External Examiner

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Chin Nyuk Ling, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Russly Abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Yus Aniza Yusof, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 September 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

YANTI MASLINA MOHD. JUSOH
Date : 20 August 2008
TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	vi
ACKNOWLEDGEMENTS	x
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxiii

CHAPTER

1 INTRODUCTION
 1.1 An Overview on Bread in Malaysia 1
 1.2 Bread History 3
 1.3 Breadmaking Process 4
 1.4 Significance of the Study 5
 1.5 Objectives 6
 1.6 Scopes of Work and Thesis Outline 7

2 LITERATURE REVIEW
 2.1 Introduction 10
 2.2 Overview on Bread Studies 10
 2.3 Crust and Crumb 12
 2.4 Functions of Crust on Bread 12
 2.5 Crust Colour and Browning Effect 14
 2.6 Browning Kinetics and Crust Formation 16
 2.7 Baking and its Significance on Crust 18
 2.8 Bread Staling 22
 2.8.1 Starch Retrogradation 23
 2.8.2 Gluten – Starch Interaction 25
 2.8.3 Moisture (Evaporation, Drying and Redistribution) 26
 2.8.4 Crust Formation 28
 2.9 Factors Affecting Moisture Content and Rheological Properties in Bread Crumb
 2.9.1 Wheat Flour Compositions 29
 2.9.2 Ingredients Factors 30
 2.9.3 Processing Factors 32
 2.9.4 Crust 37
3 EXPERIMENTAL DESIGN AND METHODOLOGY
3.1 Introduction 39
3.2 Materials 39
3.3 Methods 41
3.3.1 Dough Preparation and Baking Tests 42
3.3.2 Crust Colour Measurement 46
3.3.3 Crust Thickness Measurement 48
3.3.4 Moisture Content Measurement 51
3.3.5 Crumb Firmness Measurement 52
3.4 Experimental Design 54
3.4.1 Determining Crust and Crumb Region Based on Colour 54
3.4.2 Studying the Characteristics of Sandwich and Open Bread 55
3.4.3 Investigating the Effects of Baking Temperature and Time on Open Bread Properties 55
3.4.4 Investigating the Effects of Baking Temperature, Time and Humidity on Open Bread Properties 56
3.4.5 Statistical Analysis 56

4 RESULTS AND DISCUSSIONS
4.1 Introduction 57
4.2 Preliminary Studies 57
4.2.1 Crust and Crumb Colour Range 58
4.2.2 Method of Measuring Crust Thickness 60
4.2.3 Effect of Baking Temperature and Time on Top Crust Colour Thickness of Open Breads 61
4.2.4 Simple Correlations Between Crust Colour and Thickness 64
4.2.5 Effects of Baking Temperature and Time on Moisture Content and Firmness of Open Breads 65
4.2.6 Comparison Between Sandwich and Open Bread in Terms of Crust Colour, Thickness, Moisture Content and Firmness 67
4.2.7 Summary of Preliminary Tests 73
4.3 Baking Temperature, Time and Humidity Effects on Open Bread Properties 74
4.3.1 Crust Colour 74
4.3.2 Crust Thickness 75
4.3.3 Crumb Moisture Content 76
4.3.4 Crumb Firmness 80
4.4 Comparison Between Humidified and Non-humidified Baking 84
4.5 Correlations Between Crust Colour, Thickness and Firmness 91
4.6 Relationship Between Crust and Crumb Properties 97
4.7 Summary 100

5.0 CONCLUSIONS AND RECOMMENDATION 104
5.1 Introduction 104
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Flour compositions (based on Flour Analysis Report)</td>
<td>40</td>
</tr>
<tr>
<td>3-2</td>
<td>Details of other ingredients used</td>
<td>40</td>
</tr>
<tr>
<td>3-3</td>
<td>Bread formulation (supplied by Interflour)-based on 3000 gram flour loading</td>
<td>40</td>
</tr>
<tr>
<td>4-1</td>
<td>A summary of the bread properties as effect of baking temperature, time and humidity</td>
<td>84</td>
</tr>
<tr>
<td>4-2</td>
<td>Comparison between actual and predicted crust thickness (T) using actual and modelled heating constant, k</td>
<td>94</td>
</tr>
<tr>
<td>4-3</td>
<td>Relationship between crust and crumb properties for non-humidified baking</td>
<td>100</td>
</tr>
<tr>
<td>4-4</td>
<td>Relationship between crust and crumb properties for humidified baking</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Mechanism of bread staling (adapted from Pateras, 1999)</td>
</tr>
<tr>
<td>2-2</td>
<td>The mechanism of crumb firming due to starch-gluten interaction (adapted from Martin, Zeleznak and Hoseney, 1991)</td>
</tr>
<tr>
<td>3-1</td>
<td>Vertical mixer</td>
</tr>
<tr>
<td>3-2</td>
<td>Baking oven</td>
</tr>
<tr>
<td>3-3</td>
<td>Retarded proofer</td>
</tr>
<tr>
<td>3-4</td>
<td>Automatic moulder</td>
</tr>
<tr>
<td>3-5</td>
<td>Flowchart of the experimental works</td>
</tr>
<tr>
<td>3-6</td>
<td>Mixing</td>
</tr>
<tr>
<td>3-7</td>
<td>Resting</td>
</tr>
<tr>
<td>3-8</td>
<td>Moulding</td>
</tr>
<tr>
<td>3-9</td>
<td>Dividing</td>
</tr>
<tr>
<td>3-10</td>
<td>Second Rounding</td>
</tr>
<tr>
<td>3-11</td>
<td>Second Resting</td>
</tr>
<tr>
<td>3-12</td>
<td>Moulding</td>
</tr>
<tr>
<td>3-13</td>
<td>Place in baking tins</td>
</tr>
<tr>
<td>3-14</td>
<td>Proofing</td>
</tr>
<tr>
<td>3-15</td>
<td>Humidity baking diagram</td>
</tr>
<tr>
<td>3-16</td>
<td>Example of (a) sandwich, (b) open and (c) standing bread</td>
</tr>
</tbody>
</table>
3-17 Minolta Chroma Meter (CR-410, Minolta, Japan) 47
3-18 Measuring bread crust colour 47
3-19 Locations for measuring outer crust and crumb colour 48
3-20 Location of crust and crumb based on colour separation 49
3-21 Measuring crust thickness using grid and L a b reading from Photoshop application (inset: L a b value of bread surface) 50
3-22 Flowchart of crust thickness measurement method 51
3-23 Blender (IT013, Itronic, Malaysia) 52
3-24 Oven (HA1350, Hanabishi, Malaysia) 52
3-25 The texture analyzer system 53
3-26 Measuring crumb firmness 53
4-1 L value for crust and crumb of commercial sandwich (SW), open (OP) and standing bread (ST) 59
4-2 a value for crust and crumb of commercial sandwich (SW), open (OP) and standing breads (ST) 59
4-3 b value for crust and crumb commercial sandwich (SW), open (OP) and standing breads (ST) 60
4-4 Image of bread for measuring crust thickness 60
4-5 Effect of baking temperature and time on L value of open bread top crust 61
4-6 Effect of baking temperature and time on a value of open bread top crust 62
4-7 Effect of baking temperature and time on b value of open bread top crust 62
4-8 Effect of baking time on top crust thickness for baking temperature at 175 °C (♦), 185 °C (■) and 200°C (▲) 63
4-9 Correlation between crust thickness with (a) L, (b) a and (c) b value 64
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-10</td>
<td>Effect of baking temperature and time on open bread (a) moisture content and (b) crumb firmness baked at 180°C and 200°C at 25 and 35 minutes</td>
</tr>
<tr>
<td>4-11</td>
<td>Effect of baking temperature on (a) L, (b) a and (c) b value of crust for sandwich (SW) and open (OP) breads</td>
</tr>
<tr>
<td>4-12</td>
<td>Effect of baking temperature on crust thickness of sandwich (SW) and open (OP) bread</td>
</tr>
<tr>
<td>4-13</td>
<td>Moisture content comparison between open bread (OP) and sandwich (SW) bread baked at (a) 180°C and (b) 200°C</td>
</tr>
<tr>
<td>4-14</td>
<td>Moisture content comparison at different baking temperature for (a) sandwich (SW) and (b) open bread (OP)</td>
</tr>
<tr>
<td>4-15</td>
<td>Effect of crumb firmness on sandwich (SW) and open (OP) breads baked at (a) 180°C and (b) 200°C</td>
</tr>
<tr>
<td>4-16</td>
<td>Effect of baking temperature and time on (a) L, (b) a and (c) b values of crust (non-humidified baking)</td>
</tr>
<tr>
<td>4-17</td>
<td>Effect of baking temperature and time on (a) L, (b) a and (c) b values of crust (humidified baking)</td>
</tr>
<tr>
<td>4-18</td>
<td>Effect of baking temperature and time on top crust thickness for (a) non-humidified and (b) humidified baking</td>
</tr>
<tr>
<td>4-19</td>
<td>Effect of baking (a) temperature and (b) time on initial bread moisture content (non-humidified baking)</td>
</tr>
<tr>
<td>4-20</td>
<td>Effect of baking (a) temperature and (b) time on initial bread moisture content (humidified baking)</td>
</tr>
<tr>
<td>4-21</td>
<td>Effect of baking temperature and time moisture retention in bread (non-humidified); (a) 185°C, (b) 195°C and (c) 205°C</td>
</tr>
<tr>
<td>4-22</td>
<td>Effect of baking temperature and time on moisture retention in bread (humidified); (a) 185°C, (b) 195°C and (c) 205°C</td>
</tr>
<tr>
<td>4-23</td>
<td>Effect of baking temperature on initial crumb firmness at (a) non-humidified (NH) and (b) humidified baking (H)</td>
</tr>
</tbody>
</table>
4-24 Effect of baking time on initial crumb firmness at (a) non-humidified (NH) and (b) humidified baking (H)

4-25 Crumb firmness value for baking temperature at (a) 185°C, (b) 195°C and (c) 205°C (non-humidified baking)

4-26 Crumb firmness value for baking temperature at (a) 185°C, (b) 195°C and (c) 205°C (humidified baking)

4-27 Comparison between humidified (H) and non-humidified (NH) baking on the L value of crust at (a) 185°C, (b) 195°C and (c) 205°C

4-28 Comparison between humidified (H) and non-humidified (NH) baking on the a value of crust at (a) 185°C, (b) 195°C and (c) 205°C

4-29 Comparison between humidified (H) and non-humidified (NH) baking on the b value of crust at (a) 185°C, (b) 195°C and (c) 205°C

4-30 Comparison between humidified (H) and non-humidified (NH) baking (NH) on crust thickness at (a) 185°C, (b) 195°C and (c) 205°C

4-31 Initial moisture content comparison between humidified (H) and non-humidified baking (NH) at (a) 185°C, (b) 195°C and (c) 205°C

4-32 Moisture content comparison between humidified (H) and non-humidified baking (NH) at (a) 185°C, (b) 195°C and (c) 205°C for 25 minutes baking

4-33 Moisture content comparison between humidified (H) and non-humidified (NH) baking at (a) 185°C, (b) 195°C and (c) 205°C for 30 minutes baking

4-34 Moisture content comparison between humidified (H) and non-humidified baking (NH) at (a) 185°C, (b) 195°C and (c) 205°C for 35 minutes baking

4-35 Firmness comparison between humidified (H) and non-humidified (NH) baking at (a) 185°C, (b) 195°C and (c) 205°C for 25 minutes baking

4-36 Firmness comparison between humidified (H) and non-humidified (NH) baking at (a) 185°C, (b) 195°C and (c) 205°C for 30 minutes

4-37 Firmness comparison between humidified (H) and non-humidified (NH) baking at (a) 185°C, (b) 195°C and (c) 205°C for 35 minutes

4-38 Correlation between colour difference (ΔE) and thickness for non-humidified (NH) and humidified baking (H)
4-39 Relationship between ΔE and thickness for (a) non-humidified and (b) humidified baking

4-40 Correlation between temperature and heating constant, (k) for non-humidified (NH) and humidified (H) baking

4-41 $T = k\Delta E$ model verification plot for non-humidified (NH) and humidified (H) baking

4-42 Correlation between ΔE with crumb firmness for non-humidified (NH) and humidified (H) baking

4-43 Correlation between crust thickness and crumb firmness for non-humidified (NH) and humidified (H) baking

4-44 Relationship between crust thickness and rate of moisture loss for (a) non-humidified and (b) humidified baking breads

4-45 Relationship between crust thickness and rate of firming for (a) non-humidified and (b) humidified baking breads
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AVE</td>
<td>average</td>
</tr>
<tr>
<td>CLSM</td>
<td>confocal laser scanning microscope</td>
</tr>
<tr>
<td>DSC</td>
<td>differential scanning calorimetry</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>STD DEV</td>
<td>standard deviation</td>
</tr>
<tr>
<td>STD ERR</td>
<td>standard error</td>
</tr>
</tbody>
</table>
CHAPTER 1

1 INTRODUCTION

1.1 An Overview on Bread in Malaysia

Bread is the second most popular staple food in Malaysia (Anon., 2007a). Bread industry in Malaysia has risen significantly throughout these years in parallel to the growing number of Malaysian population. The increasing bread sales trend of 4% from year 2005 to year 2006 is a strong indicator that bread is a significant food in Malaysia’s modern society. According to the Euromonitor 2007 market research report, the value of sales for bread in Malaysia is up to Ringgit Malaysia 636 millions in 2007 (Anon, 2007a). The changes in Malaysian society life-styles and an increase in population influence the Malaysians eating habit (Anon., 2006). Health awareness and busy lifestyles with the increasing cost of living contribute to the buoyant demand for bread in this country.

Bread is accepted as an important substitute for Malaysian staple food, rice, as it generally contains similar nutritional diet as rice in terms of its carbohydrate, protein and starch contents. It is also as filling as rice. Apart from its nutritional value and being a stomach filler, bread is also famous because it is easy to consume, and no additional dishes requires to compliment it. Besides that, bread can be fortified with functional ingredients that could benefit people health. Functional breads, where ordinary bread is combined with functional ingredients such as calcium, collagen, vitamins, fiber,