

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF POLYURETHANE/CLAY NANOCOMPOSITES BASED ON PALM OIL POLYOL

TEUKU RIHAYAT

FS 2008 46

DEVELOPMENT OF POLYURETHANE/CLAY NANOCOMPOSITES BASED ON PALM OIL POLYOL

TEUKU RIHAYAT

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2008

DEVELOPMENT OF POLYURETHANE/CLAY NANOCOMPOSITES BASED ON PALM OIL POLYOL

TEUKU RIHAYAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Doctor Of Philosophy

November 2007

DEDICATION

Thanks to my beloved wife, sons, parents and my loving family for their patience and support during the long preparations of this thesis

Abstract of thesis presented to the Senate of Universiti Putra Malaysia In fulfilment of the requirements for the degree of Doctor of Philosophy

DEVELOPMENT OF POLYURETHANE/CLAY NANOCOMPOSITES BASED ON PALM OIL POLYOL

By

Teuku Rihayat

November 2007

Chairman:Assoc.Prof. Dr. Saari B. MustaphaFaculty:Engineering

Polyurethanes (PURs) are very versatile polymeric materials with a wide range of physical and chemical properties. PURs have desirable properties such as high abrasion resistance, tear strength, shock absorption, flexibility and elasticity. Although they have relatively poor thermal stability, this can be improved by using treated clay. Polyurethane/clay nanocomposites have been synthesized from renewable sources. A polyol for the production of polyurethane by reaction with an isocyanate was obtained by the synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (CTAB-mont) and octadodecylamine (ODA-mont). The *d*-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively and larger than that of the pure-mont (1.142 nm). The organoclay was completely intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern.

Polyurethane/clay nanocomposites were prepared by a pre-polymer method and were evaluated by fourier transform infrared (FTIR) spectra to determine micro-domain structures of segmented PU, CTAB-mont-PU 1, 3, 5 wt% and ODA-mont-PU 1, 3, 5 wt%. The morphology of the nanocomposites was characterized by X-ray diffraction (X-RD) and the pattern showed that all of the nanocomposites produced from this work are of the intercalated type. These were further confirmed by transmission electron microscopy (TEM) observation and scanning electron microscopy (SEM) when the surfaces of the materials were studied. Thermal stability was investigated with thermogravimetric analysis (TGA). The results showed that adding clay demonstrated better thermal stability in comparison with the virgin polyurethane. Onset degradation of pure PU is at 200°C, and is lower than that of the CTAB-mont PU and ODA-mont PU which takes place at about 318°C and 330°C, respectively. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites, were measured. The modified organoclay had a remarkably beneficial effect on the strength and elongation at break of the nanocomposites, which both increased with increasing clay content with the increase of the tensile strength of more than 214% and 267% by the addition of only 5 wt% of the montmorillonite CTAB-mont PU and ODA-mont PU, respectively.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

Pembangunan Poliuretana/tanah liat Bernano Komposit Berasaskan Poliol Minyak Sawit

Oleh

Teuku Rihayat

Nopember 2007

Pengerusi	:	Prof. Madya Dr. Saari B. Mustapha
Faculti	:	Kejuruteraan

Poliuretana (PUR) merupakan bahan polimer yang sangat versatil yang mempunyai ciriciri fizikal dan kimia yang sangat luas. PUR juga mempunyai sifat-sifat yang menarik seperti ketahanan lelasan, kekuatan koyak, penyerapan kejutan, fleksibiliti dan kekenjalan yang tinggi. Walaupun PUR mempunyai kestabilan terma yang rendah tetapi ia masih boleh diperbaiki dengan mengunakan tanah liat terawat. Polyurethane/tanah liat bernano komposit telah disintesa daripada bahan boleh diperbaharui. Bahan poliol bagi penghasilan polyurethane melalui tindakbalas dengan isosianat telah diperolehi melalui sintesis asid oleic dari minyak sawit dengan gliserol. Asid dodecylbenzene sulfonic (DBSA) pula berfungsi sebagai pemangkin dan pengemulsi. Tanah liat asal (Kunipia-F) telah dirawat dengan cetyltrimethyl bromide ammonium (CTAB-mont) dan octadodecylamine (ODA-mont). Jarak *d* pada CTAB-mont dan ODA-mont adalah 1.571 nm dan1.798 nm yaitu lebih besar daripada mont tulen (1.142 nm). Tanah liat telah tersisip ke dalam PU sebagai ditunjukkan pada corak WAXD.

PU/tanah liat bernano komposit telah disediakan daripada kaedah prapolimer dan dinilai melalui fourier transform infra red (FTIR) rajah bagi menentukan struktur mikro domain bersegmen PU, CTAB-mont PU 1, 3, 5 wt% dan ODA-mont-PU 1, 3, 5 wt%. Morfologi ke atas nanokomposit telah digambarkan sifatnya melalui belauan X-ray (X-RD) dan corak tersebut menunjukkan bahawa kesemua nanokomposit yang terhasil dalam kajian adalah dari jenis "intercalated". Kajian lebih lanjut dilakukan dengan menggunakan kaedah "transmission electron microscopy" (TEM) dan "scanning electron microscopy" (SEM) untuk mempelajari permukaan dari bahan material tersebut. Kestabilan terma bahan dikaji melalui analisis termogravimetri (TGA). Kajian menunjukkan penambahan tanah liat menghasilkan kestabilan terma yang lebih baik berbanding PU tulen. Sifatsifat mekanikal (termasuk sifat-sifat mekanikal dinamik) bagi PU tulen dan PU/tanah liat bernano komposit telah diukur. Kajian mendapati tanah liat berorgano memberikan peningkatan yang memberangsangkan dalam sifat tegang dan suhu peralihan kaca, dimana kedua sifat tersebut meningkat dengan penambahan tanah liat berorgano, dimana kenaikan terhadap kekuatan tegangan sebanyak 214% dan 267% dengan penambahan hanya 5 wt% CTAB-mont PU dan ODA-mont PU.

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest praise to Allah S.W.T who has given me the patience, strength, determination and courage to the complete this thesis.

I would like to express my appreciation to all of the individuals who contributed to this project, in particular, the chairman of my supervisory committee, Associate Professor Dr. Saari B. Mustapha, for his guidance, constructive comments, continuous support, and advice throughout the duration of this study. I extent my sincerely thank to my members of the supervisory committee, Professor Dr. Wan Md Zin B. Wan Yunus, Dr. Suraya Abdul Rashid and Dr. Khairul Zaman B. Hj. Mohd. Dahlan for their supervision, support and suggestions. I also wish to express my appreciation to Mr. Mohd Hilmi B.Mahmood, this work could have not been complete without the aid of him.

Profound gratitude is also extended to Universiti Putra Malaysia (UPM), and Malaysian Nuclear Agency (Nuclear Malaysia) in providing the needed facilities and equipment. Sincere thanks are also extended due Mr. Mohd. Zahid, Mr. Rosley Che Ismail, Kamarolzaman Hussein and Ms. Rida Anak Tajau for their assistance and constructive advice during the experimental work

Last but not least, my deepest affection and gratitude goes to my dearest, sons, parents, my loving family and friends for their constant support and care that made things possible.

I certify that an Examination Committee has met on 15 November 2007 to conduct the final examination of Teuku Rihayat on his Doctor Of Philosophy thesis entitled "Development of Polyurethane/ Clay Nanocomposites Based on Palm Oil Polyol" In accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree.

Members of the Examination Committee are as follows:

Robiah Yunus, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Fakhru'l-Razi Ahmadun, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Luqman Chuah Abdullah, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Zainal Ariffin Mohd. Ishak, PhD

Professor School of Material & Mineral Resource Engineering Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies University Putra Malaysia.

Date: 29 January 2008

This thesis submitted to the Senate of University Putra Malaysia and has been accepted as fulfilment of requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Saari Mustapha, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Chairman)

Wan Md. Zin B. Wan Yunus, PhD

Professor Fakulty of Science University Putra Malaysia (Member)

Suraya Abd. Rashid, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Khairul Zaman B. Hj Mohd. Dahlan, PhD

Malaysian Nuclear Agency (Member)

AINI IDERIS, PhD

Professor and Dean School Of Graduate Studies University Putra Malaysia

Date: 21 February 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

TEUKU RIHAYAT

Date: 27 January 2008

LIST OF FIGURES

Figure		Page
1.1	Structure of 2:1 phyllosilicates (modified from Alexandre, M. and Dubois, P., 2000)	8
2.1.	First synthesized aliphatic isocyanates by Wurtz	14
2.2.	DuPont's Carothers reaction to form nylon 66 (modified from Markush, P.H., and Schmelzer, H.G., 1997)	14
2.3.	Father of Polyurethane chemistry (Modified from Edwards, K.N., 1981)	15
2.4.	(a) Schematic representation of the structure of segmented polyurethanes and (b) two-phase structure of the bulk polymer (Modified from Petrovic, Z.S and Ferguson, J., 1991)	19
2.5.	Chemical structures of the major commercial diisocyanates	20
2.6.	Resonance possibilities in the isocyanate group	22
2.7.	Reaction of active hydrogen containing compound on the isocyanate group	22
2.8.	Reaction of isocyanate with alcohol	23
2.9.	Reaction of reversal urethane to be isocyanate and alcohol	23
2.10.	Reaction of isocyanate with water to be urethane foam	24
2.11.	Produce a substituted urea	24
2.12.	Reaction of carboxylic acids react with isocyanates through the hydroxyl group	25
2.13.	Reaction of isocyanates reacts with amines to produce disubstituted ureas	25
2.14.	Reaction between the urea (from amine plus isocyanate) and the isocyanate forms a biuret	26

2.15.	Reaction between the urethane (from alcohol plus isocyanate) and the isocyanate forms an allophanate	26
2.16.	General structure of polyether (modified from Oertel, G., 1985)	29
2.17.	Structure of polyester (modified from Oertel, G., 1985)	30
2.18.	Reaction of castor oil (modified from M.Hilmi, 1987)	33
2.19.	Water chain extender (modified from Hilmi Mahmood, M., 1987)	35
2.20.	TDI and MDI prepolymer reaction	41
2.21	1.4-butanediol	42
2.22.	(a) world polyurethane consumption(b) Southeast Asia polyurethane	45
2.23.	Alkyl chain aggregation in 2/1 clay mineral: (a) monolayer, (b) bilayer, (c) pseudotrimolecular layer of chain lying flat on the surface, and paraffin-type monolayer (modified from Lagaly, G., 1986)	52
2.24	Alkyl chain aggregation models: (a) short chain lengths, the molecules are effectively isolated from each other, (b) medium lengths, quasidiscrete layers form with various degree of in plane disorder and interdigitation between the layers and (c) long lengths, interlayer order increases leading to a liquid-crystalline polymer environment. Open circles represent the CH ₂ segments while cationic head groups are represented by filled circles. (modified from Vaia, R.A., et al., 1999).	53
2.25.	Scheme of possible polymer-layered silicate structures: (a) phase separated microcomposites; (b) intercalated nanocomposite and (c) exfoliated nanocomposite. (modified from Alexandre, M. and Dubois, P., 2001)	54
2.26.	XRD patterns of the SWy-2 (left) and the CWC (right) clays before (bottom) and after (top) alkylammonium treatment. The spectra are displaced vertically for clarity. (modified from Kornmann, X., et al., 2001)	55

2.27.	Bragg's law dependencies for Cu-K α_1 radiation with $\lambda = 0.1540562$ nm. The straight line is given by Equation 2.19; correlation coefficient R = 1.0000. (modified by Utracki, L.A, 2004)	57
2.28	Temperature dependence of storage modulus (<i>G</i> '), loss modulus (<i>G</i> "), and their ratio (tan δ) for PLACNs and the corresponding matrices: (a) with out o-PCL and (b) with o-PCL. (modified from Ray, S.S. et al., 2002)	61
2.29	Temperature dependence of storage G', loss G" moduli and tan δ for the PP-MA and PPCNs (modified from Nam, P.H., et al., 2001)	63
2.30	Schematic illustration of formation of hydrogen bonds in N6/MMT nanocomposites (modified from Ray, S.S. and Okamoto, M., 2003)	64
2.31	View of the applied deformation (tensile tests) as compared with the preferential orientation of the montmorillonite sheets. (modified from Varlot, K.M., 2001)	66
2.32	Effects of C16–MMT loading on the mechanical tensile properties of the hybrids. (modified from Chang, J.H. and Park, D.K., 2001)	69
2.33.	TGA curves of PE and PE/clay nanocomposites in nitrogen atmosphere (modified from Zhao, C. et al., 2005)	71
2.34.	TGA thermograms of epoxy with (a) OC series and (b) UC series (modified from Mohan, T.P. et al. 2006)	73
2.35.	TGA thermographs of TGDDM and modified TGDDM. (modified from Hussain, M. and Simon, G.P. 2003)	74
2.36.	TGA thermograms of clay, organoclay, and PBT hybrids. (modified from Chang, J.H., et al. 2003)	75
3.1.	Synthesis of polyurethane	82
3.2.	Synthesis of organophilic clays	83
3.3.	Thermo Haake Polydrive machine	84
3.4.	HSINCHU hot and cold press machine	85

3.5.	(a) montmorillonite modified (b) PU/clay nanocomposites based on palm oil	85
3.6.	Gel Permeation Chromatography (HLC-8020 TOSOH, Japan) Machine	87
3.7.	Fourier Transform Infrared Spectra (FTIR Spectrum 2000, Perkin Elmer, USA) Machine	88
3.8.	Dynamic mechanical analysis machine	90
3.9.	Instron 4468 machine	90
3.10	Representative samples for PU/clay nanocomposite before tensile test	91
3.11	Representative samples for PU/clay nanocomposite after tensile test	91
3.12	Mitutoyo thickness gage	92
3.13	A Perkin Elmer instrument thermogravimetric analyses (TGA)	94
4.1.	The FTIR spectra of the synthesized polyol based on palm oil	102
4.2.	The FTIR spectra of the synthesis polyurethane based on palm oil polyol	102
4.3	The GPC profiles of the polyol based on palm oil	105
4.4.	The GPC profiles of the synthesis polyurethane based on palm oil polyol	106
4.5.	The WAXD pattern of pure-PU	109
4.6.	Dispersive behavior of montmorillonite	110
4.7.	The WAXD pattern of CTAB-mont-PU	111
4.8.	The WAXD pattern of ODA-mont-PU	111
4.9.	The FTIR spectra of pure PU and 1,3,5% CTAB-mont-PU	113
4.10.	The FTIR spectra of pure PU and 1,3,5% ODA-mont-PU	114

4.11.	Tensile strength of pure PU and PU/clay nanocomposites	118
4.12.	Elongation at break of pure PU and PU/clay nanocomposites	119
4.13.	Experimentally measured modulus and theoretical predictions by two different models : Guth and Halpin-Tsai equations for (a) CTAB-mont-PU and (b) ODA-mont-PU.	121
4.14.	DMA curves for tan δ of pure PU and PU/clay nanocomposites CTAB-mont- PU	124
4.15.	DMA curves for tan δ of pure PU and PU/clay nanocomposites ODA-mont- PU	124
4.16.	The TGA curves of pure PU and PU/clay nanocomposites CTAB-mont- PU	126
4.17.	The TGA curves of pure PU and PU/clay nanocomposites CTAB-mont- PU	126
4.18.	First order kinetic plot for pure polyurethane	129
4.19.	First order kinetic plot for PU/Clay nanocomposites CTAB 1 wt%	129
4.20.	First order kinetic plot for PU/Clay nanocomposites CTAB 3 wt%	130
4.21.	First order kinetic plot for PU/Clay nanocomposites CTAB 5 wt%	130
4.22.	First order kinetic plot for PU/Clay nanocomposites ODA 1 wt%	131
4.23.	First order kinetic plot for PU/Clay nanocomposites ODA 3 wt%	131
4.24.	First order kinetic plot for PU/Clay nanocomposites ODA 5 wt%	132
4.25.	SEM micrographs of interfacial adhesion between nanoclay and matrix PU	133
4.26.	SEM micrographs of a good dispersion between nanoclay and ODA-Mont- PU 3 wt%	133

4.27.	First order kinetic plot for PU/Clay nanocomposites CTAB 1 wt%	136
4.28.	First order kinetic plot for PU/Clay nanocomposites ODA 1 wt%	136
4.29.	First order kinetic plot for PU/Clay nanocomposites CTAB 3 wt%	137
4.30.	First order kinetic plot for PU/Clay nanocomposites ODA 3 wt%	137
4.31.	First order kinetic plot for PU/Clay nanocomposites CTAB 5 wt%	138
4.32.	First order kinetic plot for PU/Clay nanocomposites ODA 5 wt%	138

LIST OF SYMBOLS AND ABBREVIATIONS

Å	Amstrong
API	Alliance for the polyurethanes industry
ASTM	American Society for Testing and Materials
C18	Octadecylammonium
C18-MMT	Octadecyl ammonium montmorillonite
CEC	Cation exchange capacity
CTA-MMT	Cetyltrimethyl ammonium montmorillonite
DDA-MMT	Dodecyl ammonium montmorillonite
DMA	Dynamic mechanical analysis
Eb	Elongation at break
EVA	Poly(ethylene-co-vynil acetate)
EVOH	Ethylene vynil alcohol
FTIR	Fourier transforms infrared spectroscopy
GPC	Gel permeation chromatography
HSC	Hard segment concentration
HCl	Hydrochloric acid
HDPE	High molecular weight
HRR	High release rate
MMW	Medium molecular weight
M_W	Molecular weight
MMT	Montmorillonite
MPa	Mega Pascal

MWD	Molecular weight distribution
Na-MMT	Sodium montmorillonite
NCH	Nylon clay hybrid
NR	Natural rubber
PCL	Poly(ϵ -caprolactone)
phr	Part per hundred
PLA	Poly (L-lactide)
PLS	Polymer layered silicate
PS	Polystyrene
PPMA	Poly (n-propyl methacrylate)
PP-MA	Maleic anhydride modified polypropylene
PUEs	Polyurethane Elastomers
PUR	Polyurethane
PVA	Poly(vynil alcohol)
PVC	Poly vynil chloride
PVCH	Poly(vynilpyridine)
SSC	Soft segment concentration
Tg	Glass transition temperature
TGA	Thermogravimetric analysis
TS	Tensile strength
TGDDM	Terafunctional epoxy resin tetraglycidyl diaminodiphenylmethane
Wt%	Weight percent
WAXD	Wide angle x-ray diffraction

XRD X-ray diffraction

µm Micrometer

12-mont 12-aminolauric acid modified montmorillonite

LIST OF TABLES

Table		Page
2.1.	Production volume of castor oil by major producers (x1000 t)	33
2.2.	Chemical formula and characteristic parameter of commonly used 2:1 phyllosilicates	51
2.3	Tensile Properties of Organoclay/BTDA-ODA Nanocomposites at Different Compositions. (modified from Tyan, H.L., 2000)	67
2.4.	Tensile Properties of PETN/C ₁₆ -MMT (modified from Chang, J.H. and Park, D.K., 2001)	69
2.5	General properties of PBT nanocomposite fiber by in-situ interlayer polymerization (modified from Chang, J.H., et al. 2003)	75
4.1.	Summary of the <i>d</i> -spacing (nm) and 2θ (degree) for Pure PU, CTAB-mont, ODA-mont, CATB-mont-PU and ODA-mont-PU	112
4.2.	Assigments of the Absorption Bands in FT-IR Spectra of Polyurethane (mofied from Seymour, et al., 1970; Tien Y.I and Wei K.H., 2001 and Dai, X et al., 2004)	115
4.3.	Absorption of carbonyl and degree of phase separation	116
4.4.	The number-average molecular weight and mechanical properties of Pure PU and PU/clay nanocomposites	117
4.5	Measured tensile modulus E for Pus-clay nanocomposites	120
4.6	A summary of the kinetics parameters obtained using the simple linear regression method	128

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLE	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xxi

CHAPTER

I.	INTR	INTRODUCTION			
	1.1	Backgr	ound	1	
	1.2	-	ves and Scopes of Work	9	
II.	LITE	RATURE	REVIEW		
	2.1	Introdu	ction	12	
	2.2	Polyure	Polyurethanes History		
	2.3	Polyure	thane Elastomers	17	
		2.3.1	Definitions	18	
		2.3.2	Chemistry of polyurethane (PUR)		
			Elastomers	19	
	2.4	Polyols	from Natural Oils for the		
		Manufa	Manufacture of Polyurethanes		
		2.4.1	Synthesis of Polyols based on Palm Oil	36	
	2.5 Preparation Methods for Polyurethane		tion Methods for Polyurethane	38	
		2.5.1	Solvent-free reactions	38	
	2.6	Structu	re and Physical Properties		
		of Polyurethane Elastomers			
		2.6.1	Phase separation in segmented polyurethane	42	
		2.6.2	Mechanical properties of polyurethane:		
			The effect of structure on tensile strength	44	
	2.7	Market	and application of Polyurethanes	44	
	2.8	Applica	Applications of polyurethanes		
	2.9	Synthes	sis of Polyurethane based on Palm Oil		
		Polyols	-	46	
	2.10	Polyure	ethane/ Clay nanocomposites	48	
		2.10.1	Structure of organically modified		
			layered silicate	49	

		2.10.2	Types of nanocomposites	53
	2.11	Characte	erization techniques of nanocomposites	54
		2.11.1		55
	2.12	Nanocor	mposites preparation	57
	2.13		mposites properties	59
		2.13.1	Mechanical properties	59
		2.13.2		70
	2.14	Kinetic	study of thermal degradation	77
III.	METH	IOD FOR	DEVELOPMENT EXPERIMENTAL	
	3.1	Introduc	tion	79
	3.2	Materials		79
	3.3.	Synthesis of polyol base on palm oil		80
	3.4	Preparation of Thermoplastic		
		Polyure	thane Elastomers (TPU)	81
	3.5	Preparation of Organophilic Clays		82
	3.6	Preparation of Polyurethane/		
		Clay Na	nocomposites	84
	3.7	Characte	erization Techniques	85
		3.7.1	Gel Permeation Chromatography (GPC)	86
		3.7.2	Fourier Transform Infrared Spectra (FTIR)	87
		3.73	X-ray diffraction (X-RD)	89
		3.7.3	Dynamic mechanical Analysis(DMA)	89
		3.7.5	Tensile properties	90
		3.7.6	Modeling Young's Modulus	
			of Polyurethane/Clay Nanocomposites	92
		3.7.7	Thermal stability	94
		3.7.8	Kinetic Studies	95
		3.7.9	Scanning Electron Microscopy	98
		3.7.10	Transmission Electron Microscopy	98
IV	RESU	LT AND I	DISCUSSIONS	
	4.1		Synthesis of polyurethane based on	
		palm oil polyol		100
		4.1.1	FTIR Spectroscopy Analysis	101
		4.1.2	Molecular Weight	103
	4.2		tion of untreated clay to be	
		clay nanocomposites with difference surfactants i.e. Cetyl trimethyl ammonium		
			Bromide (CTAB) and Octadecylamines (ODA)	
	4.3			107
		•	c with clay nanocomposites as reinforcement	109
		4.3.1	WAXD curves	109
		4.3.2	FTIR Spectra	113
		4.3.3	Molecular weight (MW)	113
		4.3.4	Mechanical properties	117
		п.Э.т		110

Modeling Young's Modulus of Polyurethane/				
Clay nanocomposites	120			
Thermal stability	125			
Kinetic study on thermal degradation of				
PU/Clay nanocomposites	127			
Scanning Electron Microscopy (SEM)	132			
Transmission Electron Microscopic (TEM)	135			
	139			
VI RECOMMENDATIONS				
REFERENCES BIODATA OF THE STUDENT				
LIST OF PUBLICATIONS				
AWARDS				
PUBLICATIONS				
	Clay nanocomposites Thermal stability Kinetic study on thermal degradation of PU/Clay nanocomposites Scanning Electron Microscopy (SEM) Transmission Electron Microscopic (TEM)			

