

# **UNIVERSITI PUTRA MALAYSIA**

# EVALUATION OF IDEALIZED CAPACITY CURVE GENERATION FOR REINFORCED CONCRETE FRAMED-STRUCTURES SUBJECTED TO SEISMIC LOADING

**MEHRDAD SEIFI** 

FK 2008 41



## EVALUATION OF IDEALIZED CAPACITY CURVE GENERATION FOR REINFORCED CONCRETE FRAMED-STRUCTURES SUBJECTED TO SEISMIC LOADING

By

**MEHRDAD SEIFI** 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

September 2008



DEDICATION

Dedicated to my parents and my brother owing to their precious support during my studies



### EVALUATION OF IDEALIZED CAPACITY CURVE GENERATION FOR REINFORCED CONCRETE-FRAMED STRUCTURES SUBJECTED TO SEISMIC LOADING

By

#### MEHRDAD SEIFI

#### September 2008

#### Chairman : Associate Professor Jamaloddin Noorzaei, PhD

Faculty : Engineering

The designing of R/C framed structures subjected to seismic excitation generally is performed by linear elastic method, while current trend of the codes of practice is moving toward increasing emphasis on evaluating the structures using nonlinear static pushover (NSP) approaches. Recently, several NSP approaches, with varying degree of vigor and success have been proposed. In this study, initially a comparative study has been made among different nonlinear static methods for adopting the most suitable method of extracting the capacity curve of R/C framed structures. Then, a program was developed to overcome the difficulties of graphical iterative procedure of idealization proposed by FEMA-356.

Subsequently, the comparative tool which is a combination of the superior NSP method detected and the developed program was used to investigate the effects of significant structural variables on idealized parameters of capacity curves of population of R/C framed structures. Eventually, the applicability of replacing the time-consuming NSP procedure by ANN for deriving the capacity curve was tested. The outcomes demonstrated the outperformance of interstorey-based scaling adaptive pushover in



addition to high precision of the developed program. Furthermore, the distinct effects of each one of the considered structural variables on idealized parameters were unveiled. Finally, an acceptable performance of ANN as an alternative to NSP procedure was observed.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

## PENILAIAN DALAM PENGHASILAN KAPASITI LENGKUNGAN DIIDEALKAN UNTUK STRUKTUR KONKRIT-BERSANGGA DIDEDAHKAN KEPADA GELOMBANG

Oleh

#### MEHRDAD SEIFI

September 2008

#### Pengerusi: Professor Madya Jamaloddin Noorzaei, Ph.D.

#### Fakulti: Kejuruteraan

Rekaan struktur konkrit bersangga berdasarkan rangsanagn gempa biasanya terbentuk daripada kaedah *linear elastic method*, sementara itu pendekatan sekarang mengenai kod proktis sentiasa meningkat kehadapan dengan menekankan pengukuran struktur menggunakan kaedah *nonlinear static pushover (NSP)*. Terbaru, beberapa kaedah NSP dengan pelbagai sudut vigor telah mencapai kejayaan. Dalam kajian ini , biasanya kajian perbandingan telah dibuat dikalangan kaedah 'non linear static method' yang berbeza untuk memilih kaedah yang paling sesuai dalam meningkatkan kapasiti lengkuk struktur konkrit bersangga. Seterusnya program telah dibina untuk mengatasi masalah *graphical interactive procedure* yang dicadangkan oleh FEMA-356.

Selepas itu , alat perbandingan yang mengandungi kombinasi kaedah NSP telah dikesan dan program tersebut telah digunakan untuk menyiasat kesan perubahan pada struktur berdasarkan populasi parameter lengkung keupayaan struktur konkrit bersangga. Kesudahannya, keterapan perubahan prosedur pengukuran masa NSP daripada



ANN untuk mengukur kapasiti lengkungan telah diuji. Keputusan yang ditunjukkan daripada keupayaan program inter storey based scaling pushover yang dibina mempunyai ketepatan yang tinggi. Sebagai tambahan, kesan berlainan pada pelbagai struktur pada parameter dapat dilihat. Akhir sekali, keupayaan ANN sebagai alternative pada prosedur NSP diiktiraf atau diterimapakai.



#### ACKNOWLEDGEMENTS

Allah, the dominion of the heavens and the earth belongs to him. No son has he be gotten nor has he a partner in his dominion. It is he who created all things and ordered them in due proportions (Holly Quran 25:2).

First of all, I would like to express my deepest gratefulness to my supervisor Assoc. Prof. Dr. Jamaloddin Noorzaei for his patient direction, encouragement, cooperation, full support and close consultation throughout the research and thesis writing. In addition, special thanks are due to Assoc. Prof. Dr. Mohamad Saleh Jaafar for his invaluable comments, guidance, consultation and support throughout the thesis. I also appreciate for advice and suggestions of Prof. Dr. Waleed Thanoon.

Secondly, I would like to express my sincere gratitude to my parents and my brother who encourage and support me to do my researches. This goal has not been reached without their everlasting love.

Finally, I would like to express my gratitude to my friends and colleagues too neumerous to mention here, some of them are Mr.Avakh, Mr. Hadi, Mr. Hakim, Mr. Hejazi, Mr. Homayooni, Mr. Javidmoayyed, Mr. karimoddiny, Mr. Kohrangi, Mr. Pakanahad, Mr. Yazdanpanah and Mr. Zamani. Your nice help, I would never forget.



I certify that an Examination Committee met on 14 July 2008 to conduct the final examination of Mehrdad Seifi on his Master of Science thesis entitled "Evaluation of Idealized Capacity Curve Generation for Reinforced Concrete-Framed Structures Subjected to Seismic Loading" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

## **Bujang Kim Huat, PhD**

Professor Faculty of Engineering University Putra Malaysia (Chairman)

### Ir. Abang Abdullah Abang Ali, PhD

Professor Faculty of Engineering University Putra Malaysia (Internal Examiner)

### Thamer Ahmed Mohammed, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Internal Examiner)

### Pradeep Bhargava, PhD

Professor Department of Civil Engineering Indian Institute of Technology Roorkee (External Examiner)

### HASNAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 26 August 2008



This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science.

The members of the Supervisory Committee were as follows:

### Jamaloddin Noorzaei, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Chairman)

## Mohammad Saleh Bin Jaafar, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Member)

## Waleed A. M. Thanoon, PhD Professor Faculty of Engineering University of Technology Petronas (Member)

## **AINI IDERIS, PhD**

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 September 2008



## DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

## MEHRDAD SEIFI

Date: 22 September 2008



# TABLE OF CONTENTS

# Page

| DEDICATION            | ii   |
|-----------------------|------|
| ABSTRACT              | iii  |
| ABSTRAK               | v    |
| ACKNOWLEDGEMENTS      | vii  |
| APPROVAL SHEETS       | viii |
| DECLARATION           | х    |
| LIST OF TABLES        | XV   |
| LIST OF FIGURES       | xvii |
| LIST OF ABBREVIATIONS | XX   |

## CHAPTERS

| 1 | INTI | RODUCTION                                                                | 1  |
|---|------|--------------------------------------------------------------------------|----|
|   | 1.1  | Brief Background                                                         | 1  |
|   | 1.2  | Problem Statement                                                        | 4  |
|   | 1.3  | Objectives of the Study                                                  | 5  |
|   | 1.4  | Scope of the Work                                                        | 5  |
|   | 1.5  | Limitation of the Study                                                  | 7  |
|   | 1.6  | Layout of the Study                                                      | 7  |
| 2 | LITI | ERATURE REVIEW                                                           | 10 |
|   | 2.1  | Introduction                                                             | 10 |
|   | 2.2  | Overview on the Origin of<br>Performance-Based Design Engineering (PBDE) | 11 |
|   | 2.3  | Nonlinear Static Pushover (NSP) Analysis,<br>Background and Fundamentals | 12 |
|   |      | 2.3.1 Traditional Pushover Theoretical Background                        | 14 |
|   |      | 2.3.2 Fundamental Concepts on Pushover                                   | 16 |
|   | 2.4  | Challenges and Enhancements on Pushover Analysis                         | 17 |
|   | 2.5  | Recent Studies on Application of Pushover in PBDE Domain                 | 29 |
|   | 2.6  | Critical Discussion on Proceeding of<br>Pushover Analysis                |    |



| 2.7 | Artific<br>Applic | cial Neural Network (ANN) and cations in PBD             | 36 |
|-----|-------------------|----------------------------------------------------------|----|
|     | 2.7.1             | Neural Networks Basics                                   | 37 |
|     | 2.7.2             | Classification of Neural Networks                        | 38 |
|     | 2.7.3             | Designing Neural Network                                 | 40 |
|     | 2.7.4             | ANN Applications in Performance-Based Design Engineering | 42 |
| 2.8 | Justifi           | cation of Selecting the Proposed Problem                 | 46 |
| 2.9 | Concl             | uding Remarks                                            | 50 |
| мет | HODO              | LOGY AND COMPUTER CODIFICATIONS                          | 52 |
| 3.1 | Introd            | uction                                                   | 52 |
| 3.2 | Overa             | ll View of Implemented Study                             | 53 |
| 3.3 | Addre             | essing Format                                            | 55 |
| 3.4 | Prelim            | ninary Modeling and Analysis                             | 56 |
|     | 3.4.1             | Vertical and Lateral (Seismic) Loading                   | 57 |
|     | 3.4.2             | Preliminary Modeling and Analysis Criteria               | 58 |
|     | 3.4.3             | Displacement Control                                     | 59 |
| 3.5 | Design            | ning Criteria                                            | 60 |
| 3.6 | Detail            | ing                                                      | 60 |
| 3.7 | Finite            | Element Modeling                                         | 61 |
|     | 3.7.1             | Finite Element Idealization of Framed Structure          | 63 |
|     | 3.7.2             | Modeling of R/C Section                                  | 64 |
|     | 3.7.3             | Constitutive Modeling                                    | 64 |
| 3.8 | Loadi             | ng                                                       | 69 |
|     | 3.8.1             | Gravitational Load                                       | 69 |
|     | 3.8.2             | Lateral Load Distribution                                | 69 |
|     | 3.8.3             | FEMA-356 Approaches                                      | 69 |
|     | 3.8.4             | Adaptive Pushover Analysis (APA) Methods                 | 70 |
| 3.9 | Incren            | nental Dynamic Analysis (IDA)                            | 76 |



| 3.10 | Comparative Study among Applied Methods 77                                       |     |
|------|----------------------------------------------------------------------------------|-----|
| 3.11 | Comparative Study among Applied Methods                                          | 81  |
|      | 3.11.1 FEMA-356 Bilinear Idealization Criteria                                   | 82  |
|      | 3.11.2 Necessity of Programming                                                  | 83  |
|      | 3.11.3 Surmounting the Major Problem of Programming                              | 83  |
|      | 3.11.4 Computational Algorithm                                                   | 84  |
| 3.12 | Influence of Structural Variable on Idealized<br>Capacity Curve                  | 88  |
| 3.13 | Replacing Artificial Neural Network (ANN)                                        | 89  |
|      | 3.13.1 Feedforward Back Propagation Neural Network                               | 90  |
|      | 3.13.2 Accelerated Training of a Multilayer<br>Neural Network                    | 92  |
|      | 3.13.3 Selection of Entering Data                                                | 93  |
|      | 3.13.4 Representing the Data                                                     | 93  |
|      | 3.13.5 Structuring the Network                                                   | 94  |
|      | 3.13.6 Training and Testing of Networks                                          | 95  |
| 3.14 | Concluding Remarks                                                               | 97  |
| RESU | JLTS AND DISCUSSION                                                              | 99  |
| 4.1  | Introduction                                                                     | 99  |
| 4.2  | Preliminary Analyze, Design and Detailing<br>of Residential R/C Frame Structures | 100 |
|      | 4.2.1 Analyze and Design                                                         | 102 |
|      | 4.2.2 Detailing                                                                  | 104 |
| 4.3  | Finite Element Modeling                                                          | 107 |
| 4.4  | Generation of Loading Pattern by Conventional<br>and Adaptive NSP Methods        | 111 |
| 4.5  | Earthquake Record Applied through IDA and NSP Analysis                           | 113 |
| 4.6  | Performance Evaluation of Different NSP Methods                                  | 114 |
|      | 4.6.1 Capacity Curve Evaluation                                                  | 115 |
|      | 4.6.2 Assessing of Interstorey Drifts                                            | 119 |



|           |            | 4.6.3            | Selection of the Outstanding Method                                      | 123 |
|-----------|------------|------------------|--------------------------------------------------------------------------|-----|
|           | 4.7        | Capac            | ity Curve Bilinear Idealization                                          | 124 |
|           |            | 4.7.1            | Generation of Bilinear Idealized Curve<br>by Using the Developed Program | 124 |
|           |            | 4.7.2            | Results of Applying Methods for Other<br>Frame Structures                | 131 |
|           | 4.8        | Influe<br>on Ide | nce of the Structural Variable Parameters<br>ealized Capacity Curve      | 135 |
|           |            | 4.8.1            | Achievement of Comparative Tool                                          | 135 |
|           |            | 4.8.2            | Generation of Idealized Capacity Curve for Population of R/C Buildings   | 135 |
|           |            | 4.8.3            | Discussion on the Results                                                | 138 |
|           |            | 4.8.4            | Elapsed Time for Computational Procedure,<br>Uniqueness of Outcomes      | 140 |
|           | 4.9        | Extrac<br>Substi | ction of Idealized Capacity Curve by itutable ANN Approach               | 140 |
|           |            | 4.9.1            | Configuration of Appropriate ANNs                                        | 141 |
|           |            | 4.9.2            | Selection of ANNs                                                        | 142 |
|           |            | 4.9.3            | Extraction of errors and Data Analyzing                                  | 146 |
|           | 4.10       | Concl            | uding Remarks                                                            | 148 |
| 5         | CON<br>FOR | CLUSI<br>FUTUI   | ONS AND RECOMMENDATION<br>RE SCOPES                                      | 151 |
|           | 5.1        | Concl            | usions                                                                   | 151 |
|           | 5.2        | Recor            | nmendation for future works                                              | 157 |
| REFRENC   | ES         |                  |                                                                          | 158 |
| APPENDIC  | CES        |                  |                                                                          | 164 |
| BIODATA   | OF STU     | DENT             |                                                                          | 183 |
| LIST OF P | UBLICA     | ATION            | S                                                                        | 184 |



# LIST OF TABLES

# Table

## Page

| 1.1  | Some of recent destructive earthquakes                                                            | 2   |
|------|---------------------------------------------------------------------------------------------------|-----|
| 2.1  | Preliminary ideas on pushover analyze                                                             | 33  |
| 2.2  | Criticism of preliminary NSP methods                                                              | 33  |
| 2.3  | Enhancements and advanced method on NSP procedure                                                 | 34  |
| 2.4  | Recent investigations related on pushover analysis                                                | 36  |
| 2.5  | Applications of artificial neural network (ANN) in<br>Performance-based design engineering (PBDE) | 46  |
| 3.1  | The whole possible types of structural models on the bases of the adopted variables               | 56  |
| 4.1  | Modeled structures utilized during study                                                          | 100 |
| 4.2  | Material properties for the selected case study                                                   | 101 |
| 4.3  | Lateral load distribution along the height of 6f3s4l4b3 by UBC-97 code                            | 102 |
| 4.4  | Storey drift ratio for 6f3s4l4b3                                                                  | 103 |
| 4.5  | Column sections of 6f3s4l4b3                                                                      | 106 |
| 4.6  | Beam sections of 6f3s4l4b3                                                                        | 106 |
| 4.7  | Feature of selected structural sections                                                           | 107 |
| 4.8  | Defined concrete parameters for the 6f3s4l4b3 model                                               | 108 |
| 4.9  | Defined Steel parameters for the 6f3s4l4b3 model                                                  | 107 |
| 4.10 | Assumed element lengths during study                                                              | 109 |
| 4.11 | Section properties of b11 as a template of R/C T-sections                                         | 110 |



| 4.12 | Section properties of C1 as a template<br>of RC rectangular sections                                                   | 110 |
|------|------------------------------------------------------------------------------------------------------------------------|-----|
| 4.13 | Computation of lateral load based<br>on FEMA-356 approaches                                                            | 111 |
| 4.14 | Characteristics of El-Centro record                                                                                    | 114 |
| 4.15 | Roof displacement-Base Shear (Capacity Curve) computed by different methods                                            | 116 |
| 4.16 | Absolute Relative Percentage Error (ARPE) of Base Shear calculation by different NSP methods vs. IDA results           | 117 |
| 4.17 | Inter-storey drifts computed by different method for 0.54%, 0.93% and 2.00% of structure height as the total drift     | 120 |
| 4.18 | Relative Percentage Error (RPE) of drift estimations by different NSP method vs. IDA-max results                       | 121 |
| 4.19 | Relative Percentage Error (RPE) of drift estimations by different NSP methods vs. IDA results                          | 122 |
| 4.20 | Mean of Absolute Relative Percentage Error (MARPE) of<br>computed Inter-Storey drifts by different NSP methods         | 123 |
| 4.21 | Measuring the accuracy of estimated capacity curve for 6f3s4l4b3                                                       | 126 |
| 4.22 | Final results for 6f3s4l4b3                                                                                            | 128 |
| 4.23 | Final results for 5f2s3.5l4b3                                                                                          | 131 |
| 4.24 | Structural variable parameters vs. corresponding extracted<br>nonlinear parameter (Idealized capacity curve parameter) | 136 |
| 4.25 | Standardized value of models utilized for training                                                                     | 142 |
| 4.26 | Standardized value of randomly selected models for testing                                                             | 142 |
| 4.27 | Comparison of ANNs predicted nonlinear parameters and the real ones                                                    | 147 |
| 4.28 | Trained ANNs for prediction of nonlinear parameters                                                                    | 150 |



# LIST OF FIGURES

# Figure

# Page

| 2.1  | Multilinear and bilinear static base shear vs. roof<br>displacement response of an assumed MDOF structure | 15 |
|------|-----------------------------------------------------------------------------------------------------------|----|
| 2.2  | Conventional lateral load distribution:                                                                   | 16 |
| 2.3  | Considered structural system: (a) wall; (b) frame                                                         | 30 |
| 2.4  | Capacity curves of buildings under different lateral load pattern and corresponding bilinear idealization | 31 |
| 2.5  | Main evolutions through the studies<br>on pushover analysis                                               | 32 |
| 2.6  | Biological neural network                                                                                 | 37 |
| 2.7  | Single layer neural network                                                                               | 38 |
| 2.8  | Classification of neural networks                                                                         | 38 |
| 2.9  | Three-layer feedforward back-propagation network                                                          | 39 |
| 2.10 | Procedure of a neural network designing                                                                   | 41 |
| 3.1  | Flow chart of overall Performed Study                                                                     | 54 |
| 3.2  | Preliminary analyze cases of model                                                                        | 59 |
| 3.3  | Flow chart of learning process of SeismoStruct applied during this study                                  | 62 |
| 3.4  | Finite element model of 6f3s4l4b3 structure                                                               | 63 |
| 3.5  | Fiber modeling of RC section (SeismoStruct)                                                               | 64 |
| 3.6  | Comparison of different compressive concrete stress-strain based curve                                    | 66 |
| 3.7  | Menegotto- Pinto steel model                                                                              | 67 |
| 3.8  | Incremental updating procedure                                                                            | 75 |



| 3.9  | Example of information extracted from IDA study of 20-storey moment-resisting steel frame  | 77  |
|------|--------------------------------------------------------------------------------------------|-----|
| 3.10 | Flowchart of the program developed for extraction of absolute maximum interstorey drifts   | 80  |
| 3.11 | Post-yield stiffness behavior of structures                                                | 82  |
| 3.12 | Capacity curve bilinear idealization program Flow chart                                    | 87  |
| 3.13 | Flow chart of the procedure passed for each of the 30 models created for comparative study | 89  |
| 4.1  | Computed loads for the 6f3s4l4b3                                                           | 102 |
| 4.2  | Finalized design of 6f3s4l4b3                                                              | 104 |
| 4.3  | Employed frame sections for 6f3s4l4b3 model                                                | 105 |
| 4.4  | R/C T-Section for beams, (b11)                                                             | 109 |
| 4.5  | R/C rectangular section for columns, (C1)                                                  | 110 |
| 4.6  | Lateral load distribution for 6f3s4l4b3 model based on FEMA- 356 approaches                | 112 |
| 4.7  | El-Centro earthquake                                                                       | 113 |
| 4.8  | IDA-envelope of 6f3s4l4b3 for El-centro record                                             | 116 |
| 4.9  | Dynamic capacity curve vs. Static capacity curves<br>of 6f3s4l4b3 for El-centro record     | 118 |
| 4.10 | Actual capacity curve (Blue) of 6f3s4l4b3 vs. the estimated one (Green)                    | 127 |
| 4.11 | Capacity curve of 6f3s4l4b3 vs. precise idealized bilinear one                             | 129 |
| 4.12 | Capacity curve of 5f2s3.5l4b3 (SeismoStruct Package)                                       | 130 |
| 4.13 | Estimated capacity curves vs. their bilinearization                                        | 134 |
| 4.14 | Schematic representation of passed and current study steps                                 | 137 |



| 4.15 | Superior trained ANNs, inputs, outputs and structures                                   | 145 |
|------|-----------------------------------------------------------------------------------------|-----|
| 4.16 | Connection weights histogram in 6-12-12-1 trained FFBPNN for prediction of $\alpha K_e$ | 148 |



# LIST OF ABREVIATIONS

| α                               | Learning rate on neural network, a positive constant less than unity |
|---------------------------------|----------------------------------------------------------------------|
| $\alpha K_{e}$                  | Post-yield stiffness of structure                                    |
| β                               | Momentum term in neural network                                      |
| $\Gamma_j$                      | Modal participation factor of the <i>j</i> th mode                   |
| $\Delta \lambda_0$              | Initial step increment in load factor of adaptive pushover           |
| $\delta_k(P)$                   | Error gradient                                                       |
| $\Delta_{_M}$                   | Storey drift ratio in <i>j</i> th floor                              |
| $\Delta P$                      | load increment vector in adaptive pushover                           |
| $\Delta_{\scriptscriptstyle W}$ | Difference of displacement of two consecutive floors                 |
| $\Delta w_{_{jk}}$              | Weight corrections" related to output layer of a neural network      |
| E <sub>c</sub>                  | Strain at peak stress for concrete                                   |
| $oldsymbol{	heta}_{j}$          | Threshold on neuron <i>j</i>                                         |
| λ                               | Load factor of adaptive pushover                                     |
| μ                               | Strain hardening parameter of steel                                  |
| ξ                               | Damping ratio                                                        |
| $\phi$                          | Size of applied reinforcement                                        |
| $oldsymbol{\phi}_j$             | Modal shape                                                          |
| $a_1 \& a_2$                    | Transition curve shape calibrating coefficients of steel             |
| $a_3 \& a_4$                    | Isotropic hardening calibrating coefficients of steel                |



| $D_{ij}$         | <i>i</i> th storey displacement due to <i>j</i> th mode             |
|------------------|---------------------------------------------------------------------|
| $E_s$            | Modulus of elasticity of steel                                      |
| $f_{c}$          | Compressive strength of concrete                                    |
| $f_i$            | Storey safety                                                       |
| $f_t$            | Tensile Strength of concrete (or) Total reduction factor            |
| $F_i$            | Proportion of load of each storey                                   |
| $F_t$            | Whiplash effect                                                     |
| $F_y$            | Yielding strength of reinforcement                                  |
| $\overline{F}$   | Normalized scaling vector in adaptive pushover                      |
| $\overline{F_i}$ | Calculation of relative values of story forces                      |
| $h_i$            | Height of <i>i</i> th floor above the base.                         |
| $I_g$            | Gross moment of inertia                                             |
| k <sub>e</sub>   | Confinement factor of concrete                                      |
| K <sub>e</sub>   | Effective lateral stiffness of structure                            |
| $P_0$            | Nominal counterpart of load vector in force based adaptive pushover |
| $R_o$            | Transition curve initial shape parameter of steel                   |
| $S_a(j)$         | Spectral amplification of the <i>j</i> th mode                      |
| $T_1$            | Fundamental natural vibration period of structure in second         |
| $V_{b}$          | Base shear of structure                                             |
| $W_i$            | Weight of the <i>i</i> th floor                                     |
|                  |                                                                     |



| $V_{\operatorname{int} \operatorname{er} \operatorname{sec} t}$ | Base shear at the intersection point between idealized and main curve   |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| V <sub>max</sub>                                                | Maximum base shear among all coordinates in capacity curve              |
| V <sub>y</sub>                                                  | Effective yield strength of structure                                   |
| $W_{ij}$                                                        | Preliminary weight of input <i>i</i> for neuron <i>j</i>                |
| $X_{int  er  sec  t}$                                           | Displacement at the intersection point between idealized and main curve |
| $x_{i,s}$                                                       | Standardized variable value for <i>p</i> th model                       |
| x <sub>max</sub>                                                | Maximum value of the specific variable among all models                 |
| $x_{\min}$                                                      | Minimum value of the specific variable among all models                 |



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

### EVALUATION OF IDEALIZED CAPACITY CURVE GENERATION FOR REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC LOADING

By

#### **MEHRDAD SEIFI**

#### December 2007

#### Chairman : Associate Professor Jamaloddin Noorzaei, PhD

#### Faculty : Engineering

Under different circumstances various approaches starting from simplistic linear static to the accurate but cumbersome, time-consuming nonlinear time-history procedure are applicable for analysis of buildings. Performance-based design engineering (PBDE) as one of the major domains in earthquake engineering, is concerned with performance evaluation of structures under seismic excitation. Nonlinear static pushover (NSP) as main product of PBDE is compromise of simplicity and accuracy has been legitimatized and found its way into codes such as Federal Emergency Management Agency (FEMA), Eurocode... One of the momentous outcomes of this method is capacity curve, declares the relating between base shear force and lateral displacement of control node.

The conventional pushover method applying in real-life engineering relies on incremental pushing the structure with constant distribution of lateral load that is not exempt of error. Several methods have been proposed to overcome its deficiencies by the researchers. By criticizing them adaptive pushover analysis (APA) that considers all deficits of conventional method seems to be more logic. Although, various



techniques have been suggested for pushover analysis, there is solidarity for bilinearization and extraction of idealized parameters based on iterative graphical method of FEMA. Moreover, parallel to evolution of pushover analysis procedure they become more rigorous. Consequently, applications of artificial neural network (ANN) as an alternative for solving PBDE problems have been noted recently. This study focused on R/C regular 2D frames by extensive comparative study among five alternatives of conventional and adaptive pushover, codifying a program to overcome deficiencies of graphical iterative bilinearization method, study on effect of structural variables on idealized parameters and just testing this issue that whether it is applicable to use ANN as replacement of pushover for idealization.

Along the line of study, preliminary static analyze, designing and detailing, finite element modeling including physical and material modeling as close as possible to practical structure have been done for 30 case studies. Then, procedure of loading a case study by five various conventional and adaptive pushover procedure and also incremental dynamic analysis (IDA) as reference were implemented and an comprehensive comparative study procedure in aspects of capacity curve and interstorey drift evaluation has been made. Developing a program for accurate bilinearization and overcoming the deficiency of graphical iterative procedure of FEMA was the next stage. Achieving a comparative tool as combination of best NSP method and the developed program results in extensive course of actions for application of this tool for 30 created different models. Eventually, feed forward back propagation method process as a prevalent type of ANN have been studied for testing its applicability for replacing outstanding NSP method of deriving capacity curve.

