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The onset of steady Marangoni convection induced by surface tension gradients 

along the upper surface of a horizontal layer of fluid have been the subject of a great 

deal of theoretical work since the pioneering theoretical investigations of Pearson 

(1958). The system is heated from below and cooled from above. The purpose of the 

thesis is to study in detail the onset of Marangoni convection with temperature-

dependent viscosity. Few cases of boundary conditions at the bottom surface are 

studied which are conducting with no-slip, conducting with free-slip and insulating 

with no-slip. We perform a detailed numerical calculation of the marginal stability 

curves. We showed that the effect of a temperature-dependent viscosity may be 

either stabilizing or destabilizing depending on the measurement of the relative 

variation of viscosity in the fluid volume (viscosity group, Rv). We also present the 

problem to a case where the fluid layer is overlying a solid layer and here, we 

undertake a detailed investigation to look at the effect of the thickness or the 
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conductivity of the solid layer to the onset of Marangoni convection with 

temperature-dependent viscosity. Again we perform a detailed numerical calculation 

of marginal stability curves. We showed that the coupled effect of the solid layer 

depth (or its conductivity) and a temperature-dependent viscosity (with negative sign 

of variation of viscosity with temperature) is to stabilize the fluid layer.  
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Permulaan olakan Marangoni mantap yang wujud disebabkan kecerunan tegangan 

permukaan diatas permukaan bebas menjadi penting sejak Pearson (1958) 

mengkajinya secara teori. Sistem pemodelan ini dipanaskan dari bawah dan 

disejukkan daripada atas. Tujuan tesis ini adalah untuk mengkaji secara terperinci 

kesan kelikatan bersandar pada suhu ke atas permulaan olakan Marangoni. Beberapa 

syarat sempadan pada permukaan bawah telah dikaji iaitu berkonduksi dengan tak 

gelincir, berkonduksi dengan bebas gelincir, dan berpenebat dengan tak gelincir. 

Kami menunjukkan secara berangka lengkung kestabilan sut dan mengkaji samada 

kelikatan bersandar kepada suhu akan menstabilkan atau menyahstabilkan sistem 

yang mana ia bergantung pada pekali variasi relatif kelikatan di dalam ruang bendalir 

(kumpulan kelikatan, Rv). Seterusnya, kami mengkaji kesan ketebalan atau 

kekonduksian satu lapisan pejal terhadap permulaan olakan Marangoni mantap 

dengan kelikatan bersandar kepada suhu sekiranya ia berada di bawah satu lapisan 
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bendalir. Sekali lagi, kami tunjukkan secara terperinci pengiraan berangka lengkung 

kestabilan sut. Kami tunjukkan bahawa kedua-dua faktor ketebalan (atau 

kekonduksian) lapisan pejal dan kelikatan bersandar kepada suhu (dimana pekali 

variasi kumpulan kelikatan bernilai negatif) akan menstabilkan lapisan bendalir.   
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CHAPTER 1 

 

INTRODUCTION 

 

Convection is the transfer of heat by the motion of or within a fluid. It may arise 

from the temperature differences either within the fluid or between the fluid and its 

boundary, other sources of density variations (such as variable salinity) or from the 

application of an external motive force. It is one of the three primary mechanisms of 

heat transfer, the others being conduction and radiation. Convection has a wide range 

of applications, including calculating forces and moments on aircraft, determining 

the mass flow rate of petroleum through pipelines and to predict weather patterns. 

Some of its principles are even used in traffic engineering, where the traffic is treated 

as a continuous fluid. Generally, convection means fluid motion caused by 

temperature difference with the temperature gradient pointing in any direction 

(Chapmen 1984).  

 

In this thesis, the stability on convection in a plane horizontal fluid layer heated from 

below is considered as it is one of the most common types of convection. It was 

studied for the first time by Pellew and Southwell (1940) and then was summarized 

by Chandrasekhar’s (1961) book, where a nearly complete picture of the linear 

analysis called Rayleigh-Bénard convection was presented. Usually, the term 

Rayleigh-Bénard convection is attributed to convection due to buoyancy mechanism, 

while the term Marangoni convection refers to surface tension gradient mechanism.  



(b) (a) 

 

 
Figure 1.1: (a) Honeycomb like pattern observed in Bénard convection and 

           (b) Hexagon geometry showing the wavelength λ  
                        (Maroto et al. 2007) 
 

1.1 Convection in a Fluid Layer 

 

When a fluid layer in a horizontal plane is heated from below, instabilities arise when 

the temperature gradient across the layer exceeds a certain critical value which is 

caused by buoyancy or by the surface tension gradient. Bénard (1900) and Block 

(1959) were the pioneers of the comprehensive investigation of convection for both 

mechanism.  

 

Bénard (1900), carrying his experiment on a thin horizontal layer of molten 

spermaceti with a free surface observed the establishment of a regular, steady pattern 

of flow cells when the layer is heated from below. These cells, which are known as 

Bénard cells, were mainly hexagonal, and the pattern resembled a honeycomb as 

shown in Figure 1.1. The distance between the central points of neighbouring 

hexagonal cells defines the wavelength of the system. Bénard (1900) believed that 

the phenomenon was caused by buoyancy and therefore, this experiment was 

regarded as the starting point of convection instabilities. But later, Block (1956) and 
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Pearson (1958) suggested that the convection was caused by surface tension gradient 

as the case studied used a thin fluid layer with a free surface where buoyancy may 

not exist. 

 

Block (1956) is the pioneer of convection that is caused by a surface tension gradient 

and the study is known as Marangoni convection. The experimental investigation of 

the convection led to the conclusion that the hexagonal pattern observed by Bénard 

(1900) was due to the surface tension gradient and not the buoyancy. In the 

experiment, a thin hydrocarbon film less than one millimeter with a free surface was 

used and Block (1956) observed that convection would stop when the fluid layer was 

covered on the top by a thin silicone layer. Hence, Block (1956) concluded that the 

convection in a fluid layer with a free surface was caused by surface tension gradient. 

Later, Pearson (1958) furthers the study of Marangoni convection theoretically. 

 

1.1.1 Physical Mechanism for Marangoni Convection 
 

 

Consider a horizontal fluid layer bounded from below by a rigid boundary and from 

above by a free surface. An infinitesimal disturbance of the temperature on the 

surface, say a warm spot, creates surface tension traction on the surface if the surface 

tension coefficient of the fluid is a function of temperature. Since surface tension 

usually decreases with temperature, a warm spot will be a soft spot at the surface 

from which the fluid will be pulled away laterally as shown in figure 1.2. The fluid 

underneath the warm spot must consequently rise. The fluid motion at the surface  
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Warm spot  

 

 

 

 

Figure 1.2: Convection mechanism caused by surface tension gradient 

will be transmitted by viscosity to the interior of the fluid layer, but viscosity will 

also dampen the motion. The motion in the fluid can be sustained only if energy is 

provided to overcome the frictional losses. The required energy can be provided by a 

vertical temperature differences across the fluid layer, which can be heated from 

below. If sufficient energy is supplied, and if a critical vertical temperature difference 

is reached, convection caused by surface tension gradients will commence and will 

be sustained. 

 

1.1.2 Convection with Variable Viscosity Effect 

 

Viscosity is a measure of the resistance of a fluid to deform under shear stress. 

Realistically, viscosity in a fluid depends on density. The higher the density of the 

fluid, the higher the viscosity will be. Fluid also possess a temperature-dependent 

viscosity which influences heat transport and the spatial structure of the fluid. When 

the temperature increases, the viscosity decreases, but for gases, the viscosity will 

increase. Viscosity varies widely with temperature, but temperature variation has the 

opposite effect on the viscosities of fluids because of their fundamentally different  
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