

UNIVERSITI PUTRA MALAYSIA

DESIGN AND ANALYSIS OF FILAMENT- WOUND COMPRESSED NATURAL GAS CARBON FIBRE - REINFORCED COMPOSITE TANK

NURUL ZUHAIRAH MAHMUD ZUHUDI

FK 2008 33

DESIGN AND ANALYSIS OF FILAMENT- WOUND COMPRESSED NATURAL GAS CARBON FIBRE - REINFORCED COMPOSITE TANK

NURUL ZUHAIRAH MAHMUD ZUHUDI

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2008

DESIGN AND ANALYSIS OF FILAMENT- WOUND COMPRESSED NATURAL GAS CARBON FIBRE - REINFORCED COMPOSITE TANK

Ву

NURUL ZUHAIRAH MAHMUD ZUHUDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Master of Science

May 2008

DEDICATION

Especially to Abah, Hj. Mahmud Zuhudi Tahir and Umi, Hjh. Kamariah Mohd Noor...this is my special gift to both of you. To my beloved husband, Mohd Azan Che Noh, kakak (Nurul Izzati Amali) and abang (Muhammad Ameerul Wajdi), they have been and will be my inspiration...

ABSTRACT

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DESIGN AND ANALYSIS OF FILAMENT - WOUND COMPRESSED NATURAL GAS CARBON FIBRE - REINFORCED COMPOSITE TANK

By

NURUL ZUHAIRAH MAHMUD ZUHUDI

May 2008

Chairman: Professor Fakhru'l-Razi Ahmadun, PhD

Faculty: Faculty of Engineering

First ply failure (FPF) strengths of laminated composite tank subjected to uniform internal pressure loads are studied via both analytical and finite element analysis approaches. The filament-wound CNG carbon fibre reinforced composite tanks are designed with a T6-6061 aluminium cylinder with elliptical end closures acts as the liner which is overwrapped with high modulus carbon fibre-reinforced epoxy composite.

The objectives of this study are to optimize the composite layer thickness and to optimize fibre orientation configurations of carbon fibre laminate as to have a lightweight and high performance filament-wound CNG carbon fibre-reinforced composite tanks. In analytical approaches, in order to predict the first-ply failure (FPF) pressure of filament-wound CNG carbon fibre-reinforced composite tanks, the stresses and strains

throughout the laminate were determined using the classical lamination theory which were then used in three most common composite failure theories, that are the maximum stress theory, maximum strain theory, and quadratic or Tsai-Wu failure theory.

Optimal general design of fibre orientations were then used to carry out in lay-up optimization or arrangement of composite layer stage to be used for filament winding process in order to study the effect of fibre orientation angles using an equal thickness of composite layer on the tank performance. The range of helical angles used is in between 0° to 60°, which is based on the traditional theoretical optimal helical angles from classical lamination theory. The ratio of 2:1 hoop to helical angles is used to predict the maximum first-ply failure (FPF) pressure.

The optimization results gave the optimal fibre orientations of the $[(30/-30)_{11}/90_{24}]$ with b/a = 1.093 for CNG 1, b/a = 1.110 for CNG 2 and b/a = 1.128 for CNG 3 which obtained were then used for stress analysis in finite element analysis using ANSYS version 7.1 software. The accuracy of the theoretical and finite element analysis of first-ply failure (FPF) pressure is verified by a verification study where a similar finite element model from literature have been modelled and analysed using similar method used to design filament wound CNG carbon fibre-reinforced composite tanks in order to verify a valid finite element method used. The results were then being compared literature study.

ABSTRAK

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

REKA BENTUK DAN ANALISIS TANGKI KOMPOSIT FILAMEN BERLILIT BERISI GAS ASLI MAMPAT DENGAN GENTIAN KARBON DIPERKUKUHKAN

Oleh

NURUL ZUHAIRAH MAHMUD ZUHUDI

May 2008

Pengerusi: Professor Fakhru'l-Razi Ahmadun, PhD

Fakulti: Fakulti Kejuruteraan

Kegagalan lapisan pertama (FPF) kekuatan-kekuatan tangki komposit yang berlapis bawah muatan-muatan tekanan dalaman yang seragam adalah dikaji melalui analisis kedua-dua pendekatan iaitu analitikal dan analisis unsur terhingga. Tangki-tangki komposit filamen berlilit gentian karbon CNG yang diperkukuhkan direka bentuk dengan satu silinder aluminium T6-6061 dengan penutupan akhir yang bujur berfungsi sebagai lapisan dalaman yang akan dibungkus besar dengan gentian karbon bermodulus tinggi yang diperkukuhkan dengan rencam epoksi.

Objektif-objektif kajian ini adalah untuk mengoptimumkan ketebalan lapisan komposit dan untuk mengoptimumkan orientasi gentian konfigurasi-konfigurasi lapis gentian karbon sebagai untuk menghasilkan tangki-tangki komposit berfilamen berlilit gentian karbon CNG yang

diperkukuhkan yang ringan dan berprestasi tinggi. Dalam pendekatanpendekatan analisis, untuk meramalkan tekanan bagi kegagalan lapisan pertama (FPF) tangki-tangki komposit berfilamen gentian karbon CNG yang diperkukuhkan, tekanan dan terikan sepanjang lapis adalah ditentukan menggunakan teori pelapisan klasik yang telah kemudiannya digunakan dalam tiga rencam paling popular dalam teori-teori kegagalan, yang adalah teori tegasan maksimum, teori keterikan maksimum, dan kuadratik atau teori kegagalan Tsai-Wu.

Corak umum optimum orientasi-orientasi gentian adalah kemudian digunakan bagi menjalankan dalam mengumpul pengoptimuman atau susunan peringkat lapisan komposit teratur untuk digunakan dalam proses lilitan filamen bagi mengkaji kesan sudut-sudut orientasi gentian menggunakan ketebalan yang sama rata lapisan tangki komposit. Julat sudut-sudut berlingkar digunakan adalah dalam antara 0° to 60°, yang adalah diasaskan ketradisionalan sudut-sudut yang berlingkar teori dan optimum daripada teori pelapisan klasik. Nisbah 2:1 gelung untuk sudut-sudut berlingkar adalah digunakan untuk meramal maksimum tekanan kegagalan lapisan pertama (FPF).

Hasil-hasil pengoptimuman memberi orientasi-orientasi gentian optimum $[(30/-30)_{11}/90_{24}]$ dengan b/a = 1.093 untuk CNG 1, b/a = 1.110 untuk CNG 2 dan b/a= 1.128 untuk CNG 3 yang diperolehi adalah kemudiannya digunakan untuk analisis tegasan dalam analisis unsur

terhingga menggunakan perisian ANSYS versi 7.1. Ketepatan analisis teori dan analisis unsur terhingga bagi tekanan kegagalan lapisan pertama (FPF) disahkan oleh satu pengesahan kajian di mana satu elemen terhad serupa daripada maklumat kajian bertulis terdahulu telah dijadikan contoh dan dianalisis menggunakan kaedah serupa digunakan untuk mereka tangki-tangki komposit berfilamen berliku gentian karbon CNG yang diperkukuhkan untuk mengesahkan satu kaedah unsur terhingga yang tepat digunakan. Hasilnya adalah kemudian dibandingkan dengan kajian terdahulu.

ACKNOWLEDGEMENTS

One page to acknowledge all those who encouraged, inspired, and hung out with the author during her stay at UPM... my 1st supervisor, Dr. El Sadig Mahdi for his guidance and generous support and also for his solid, logical suggestions for conquering obstacles, instead of his casual, nurturing relationship that allowed some of my rather abstract and often harebrained ideas to mature into interesting scientific questions. Indeed his moral and kind guidance was one in a kind.

The author also extend her gratitude to Prof. Fakhru'l-Razi Ahmadun, her current supervisor, Dr. Mohd Amran and his team (Fuel Storage Team) which she deeply indebted to them for their help in so many aspects of her work and life. The author would like to thank her friends and lab mates, past and present, for their collaboration as colleagues and support as friends.

Finally, and most importantly the author would like to thank her family particularly her parents, for the obvious reasons (i.e., her birth) and for their enthusiastic support. The author's brothers and sisters get credits for they lifted her up when she could not reach. They are the ones who held her up and never let she fall. And last but not least, especially for the author beloved husband, Mohd Azan, her child Izzati Amali and Ameerul Wajdi, they have been and will be her inspiration.....

I certify that an Examination Committee met on 28 May 2008 to conduct the final examination of Nurul Zuhairah Mahmud Zuhudi on her Master Science thesis entitled "Design and Analysis Of Filament-Wound Compressed Natural Gas Carbon Fibre-Reinforced Composite Tank" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree.

Members of the Examination Committee are as follows:

Robiah Yunus, Ph.D. Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Sapuan Salit, Ph.D. Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Mohamed Tarmizi Ahmad, M.Sc. Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Che Hassan Che Haron, Ph.D. Professor Faculty of Engineering Universiti Kebangsaan Malaysia (External Examiner)

> HASANAH MOHD. GHAZALI, Ph.D. Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master Science. The members of the Supervisory Committee were as follows:

Prof. Fakhru'l-Razi Ahmadun, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Dr. Mohd Amran Mohd Salleh, PhD

Faculty of Engineering Universiti Putra Malaysia (Member)

Dr. Mohd Rizal Zahari, PhD

Faculty of Engineering Universiti Putra Malaysia (Member)

Dr. El Sadig Mahdi Ahmed Saad, PhD

Faculty of Engineering International Islamic University Malaysia (Member)

AINI IDERIS, PhD Professor and Dean School of Graduate Studies

Universiti Putra Malaysia

Date: 14th August 2008

DECLARATION

I declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or is not concurrently, submitted for any other degree at UPM or other institutions.

> NURUL ZUHAIRAH BINTI MAHMUD ZUHUDI

Date: 10th July 2008

TABLE OF CONTENTS

ABSTRACT	iii
ABSTRAK	Vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF FIGURES	xvi
LIST OF TABLES	xix
LIST OF ABBREVIATIONS	xxii

CHAPTER

1

INTF	RODUCTION	1
1.1	Introduction	1
1.2	Problems Statement	2
1.3	Scope of Work	3
1.4	Objectives	4
1.5	Thesis Layout	4

2 LITERATURE REVIEW

2.1	Composite Pressure Vessels	7
2.2	Compressed Natural Gas Storage	20
2.3	First-Ply Failure	22
2.4	Composite Failure Theories	25
2.5	Fibre Orientations Angle Optimization	30
2.6	Filament Winding Process	31
2.7	Fabrication of Filament Wound CNG Carbon Fibre	
	Reinforced Composite Tank	35
2.8	Finite Element Analysis	41
2.9	Composite Materials	42
2.10	Conclusion	51

3 MATERIALS AND METHODS

3.1	Introduction	52
3.2	Design Methodology	53
	3.2.1 Modelling of Problem	54
	3.2.2 Analytical Analysis	56
	3.2.3 Optimization of Composite Strength	56
	3.2.4 FEA of Composite Tank	56
3.3	Design Configuration	57
3.4	Material and Mechanical Properties	60
3.5	Analytical Analysis	
	3.5.1 Introduction	61
	3.5. 2 Methodology	61

	3.6	 3.5. 3 Design Formulation 3.5. 4 Elastic Analysis 3.5. 5 Initial Yielding of Liner 3.5. 6 Post-yield Overpressure 3.5. 7 Pressure at Failure 3.5. 8 Residual Stress Optimization of Composite Strength 3.6. 1 Introduction 3.6. 2 Methodology 	63 64 68 69 70 72 75 75
4	-	ULTS AND DISCUSSION	
	4.1	 Analytical Analysis Results 4.1.1 Result of Theoretical Stresses and Strains 4.1.2 First Ply Failure Analysis of Filament Wound CNG Carbon Fibre Reinforced 	80
	4.0	Composite Tanks	82
	4.2	Optimization Results 4.2. 1 Effect of the Fibre Orientation Angle 4.2. 2 CNG 1 4.2. 3 CNG 2 4.2. 4 CNG 3 4.2. 5 Lay-up Optimization	84 85 90 95 99
	4.3		100
5	FINI 5.1 5.2		102 102 105 107 109 109 111
	5.3	Result and Discussion 5.3.1 Element Optimization 5.3.2 Composite Stress Analysis	113 120
		5.3.3 Analysis Tank Cross Section	123
	5.4	5.3.3 Analysis Tank Cross Section	123 124 124 125
6	SUN	5.3.3 Analysis Tank Cross SectionFinal Design for Fabrications Procedure5.4.1 Introduction5.4.2 Tank Sizing	124 124

LIST OF FIGURES

Figure		Page
2.1	The Design and Atmospheric Pressure and Temperature according to the Code Definition adopted from Hoa [22]	20
2.2	A Basic Filament Winding Technique (Adopted from Shen [35])	32
2.3	Figure 2.3: The Type of Winding angle from Shen [35]	39
2.4	Principal Axes of the Composite and the Corresponding Elastic Constant	49
3.1	Flow Chart of Research Methodology	53
3.2	CNG 3 Tank Placement	58
3.3	CNG 1 and CNG 2 Tank Placement	58
3.4	Free-Body Diagram of Relating Pressure Drop across the Liner and the Hoop Stress in the Liner from Swanson [49]	68
3.5	Liner Hoop Stress as a Function of Pressure in a CNG Tank with Liner Reinforced by a Composite Over Wrap from Swanson [49]	74
3.6	Flow Chart of Optimization Method	76
3.7	Cylindrical Cross Section of Tank	78
4.1	First Ply Failure (FPF) Pressures (MPa) versus Helical Angles (Deg)	83
4.2	FPF Pressures of Optimal Winding Angles at $[(30/-30)_{11}/90_{24}]$ for Three Failure Theories using b/a = 1.093	87
4.3	FPF Pressures of Optimal Winding Angles at $[(30/-30)_{11}/90_{24}]$ for Three Failure Theories using b/a = 1.110	92

4.4	FPF Pressures of Optimal Winding Angles at $[(30/-30)_{11}/90_{24}]$ for Three Failure Theories using b/a = 1.128	96
5.1	The Flow Chart of Finite Element Analysis Procedures	104
5.2	Finite Element Grid of Filament Wound CNG Pressure Tank with Aluminium Liner	106
5.3	The Element of Shell99	108
5.4	The Boundary Condition used in the FEA	110
5.5	The Final Model after Applied Loading Condition to be Submitted for Solving Analysis	111
5.6	Stress Distribution through the Thickness at the Mid-Length of the verification of SAUVIM model	112
5.7	Strain Distribution through the Thickness at the Mid- Length of the verification of SAUVIM model.	113
5.8	The Finite Element Grid of CNG Tank with various Global Element	117
5.9	Maximum Radial and Hoop Strain Distribution for Global Element Size.	117
5.10a	Maximum Radial Stress Distribution for Global Element Size.	118
5.10b	Maximum Hoop Stress Distribution for Global Element Size	118
5.10c	Maximum Axial Stress Distribution for Global Element Size.	118
5.11a	Maximum Radial and Hoop Stress Distribution for Element Shape of Quadratic and Triangle element.	119
5.11b	Maximum Radial and Hoop Strain Distribution for Element Shape of Quadratic and Triangle element.	119
5.12	The Radial, Hoop and Axial Stress Distribution at the Mid Length through the Thickness.	121

5.13	The Radial, Hoop and Axial Strain Distribution at the Mid Length through the Thickness.	122
5.14	A Cross Section Layout for FPF Predictions	123

LIST OF TABLES

Table		PAGE
3.1	CNG Composite Tank Design Requirements	59
3.2	CNG Tank Design Configurations	59
3.3	The Composite Thickness and b/a ratio for a Given Configuration used to Investigate the Effect of FPF Pressure for CNG 1	78
3.4	The Composite Thickness and b/a ratio for a Given Configuration used to Investigate the Effect of FPF Pressure for CNG 2	78
3.5	The Composite Thickness and b/a ratio for a Given Configuration used to Investigate the Effect of FPF Pressure for CNG 3	79
4.1	Theoretical Result of the Stress Strain Predictions using Formulation	80
4.2	FPF Pressures for Three Failure Theories for each Lamination Arrangement of Fibre Orientation	84
4.3	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.039	87
4.4	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a= 1.049	88
4.5	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a= 1.063	88
4.6	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a= 1.078	88
4.7	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a= 1.082	89
4.8	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a= 1.093	89
4.9	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.046	92
4.10	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.058	93

4.11	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.075	93
4.12	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.092	93
4.13	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.097	94
4.14	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.110	94
4.15	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.053	96
4.16	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.067	97
4.17	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.087	97
4.18	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.107	98
4.19	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.113	98
4.20	FPF Pressures of Optimal Winding Angles for Three Failure Theories using b/a = 1.128	98
4.21	FPF Pressures (MPa) of Optimal Winding Angles $[(30/-30)_{11}/90_{24}]$ for Three Failure Theories of CNG 1	99
4.22	FPF Pressures (MPa) of Optimal Winding Angles $[(30/-30)_{11}/90_{24}]$ for Three Failure Theories of CNG 2	100
4.23	FPF Pressures (MPa) of Optimal Winding Angles $[(30/-30)_{11}/90_{24}]$ for Three Failure Theories of CNG 3	100
5.1	The Geometric Dimension and Design Pressure of Finite Element Grid of CNG Composite Tank for CNG 1	106
5.2	The Total Nodes and Elements Developed For	115

Each Global Element Size.

5.3	The Maximum Stress and Strain Level at different temperature at TsaiWu Failure Criteria	118
5.4	Tank Sizing Configuration of CNG Composite Tanks	125
5.5	Weight Estimation of CNG Composite Tanks	126

LIST OF ABBREVIATIONS

List		Page
$\sigma_{_1}$	Stress in x direction	48
σ_{2}	Stress in y direction	48
$ au_{12}$	Tau in 1-2 direction	48
X_{T}	Tension in x-direction	48
X _c	Compression in x-direction	48
Y_T	Tension in y-direction	48
Y _C	Compression in y-direction	48
S	Inverse of the stifness matrix	48
\mathcal{E}_{l}	Epsilon 1 direction	48
\mathcal{E}_2	Epsilon 2 direction	48
γ_{12}	Gamma 1,2 direction	48
F_i	Force initial	50
ASTEB	Advanced test evaluation bottle	23
Q	Stiffness matrix	49
E_{11}	Axial parallel elastic modules	48
<i>E</i> ₁₂	Transverse elastic modules	48

v_{12}	Poisson's ratio	48
G_{12}	Shear Modules	48
R	Tensor strain	51
Т	Tensor rotation	51
θ	Fibre orientation angle	47
\overline{Q}	The elastic properties of composite at arbitrary angle to the fibres	52
β	Cone vertex angle	74
δ	Transverse deformation	74
FEA	Finite Element Analysis	106

CHAPTER 1

INTRODUCTION

1.1 Introduction

Known pressure vessels that can operate at high pressures include all metallic vessels. An all-metallic vessel which would satisfy the strength requirements for operating at high pressures generally requires high grade steel whose cost makes commercial production of such vessels unfeasible. Filament-wound composite pressure tanks, which utilize a filament winding fabrication technique to form high strength and light weight reinforced plastic parts, are a major type of high pressure vessels and are widely used in commercial and aerospace industries such as fuel tanks, and rocket motor cases as reported by Shen [35].

Due to the rapid development of material science, the composite material industry has been growing at a dramatic pace in order to meet the challenges of the future. The lightweight, high strength and high performance composite structures can offer a significant weight savings over their traditional metal parts studied by Chang [26].

Continuous filament winding has provided opportunities for designers to gain the ultimate strength out of materials and to efficiently place

materials where is needed. The successful development of filamentwound pressure tanks with metal liner has provided significant weight savings over the conventional metal pressure tanks. The basic concepts of this design is to use a thin metallic liner designed mainly as permeation barrier with little load carrying capacity capability, while the composite is sized to carry all the pressure loads. Therefore, the weight savings can be derived from the dramatic difference in specific strength between metal and composite. The leaks before burst or rupture characteristics of the filament-wound metal lined pressure vessel further enhance the safety of the overall system.

1.2 Problem Statement

Among present known fuels natural gas is one of the cheapest, the most environmentally friendly and provides the highest safety margin during operation. The most important component of natural gas fuel systems is the compressed natural gas (CNG) storage tank. The high-pressure tank must safely (statically) withstand, without leakage or cracking, the maximum operational pressure and fatigue load cycles resulting from recharging. The problems or issues involved in the design and analysis of a filament-wound composite tank is to optimise composite layer thickness and optimise fibre orientation configuration of composite laminated in order to have high pressure tank.

