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Chairperson  : Zulkifly Abbas, PhD 
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This thesis presents a critical study on the use of an open-ended coaxial sensor for the 

determination of both complex permittivity and moisture content of oil palm fruits of 

various degrees of fruit ripeness at ( )125 ± oC. The sensor was studied based on the 

calculation of reflection coefficient using an integral admittance approach and finite 

element method (FEM). 

 

In this work, the computation of reflection coefficient of the oil palm fruits was realized 

using MATLAB and FEMLAB GUI software for the admittance approach and finite 

element method (FEM), respectively. The results were compared with the measured 

reflection coefficient using the open-ended coaxial sensor in conjunction with a 

HP8720B vector network analyzer (VNA). The sensor operating between 1 GHz and 5 

GHz was fabricated from a 4.1 mm outer diameter sub-miniature A type (SMA) coaxial 
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stub contact panel. The measuring end of the sensor was calibrated by a transmission 

line procedure.  

 

The integral admittance formulation was simplified into a series expression. The local 

truncation errors of the series approximation were critically analyzed. The two-

dimensional FEM was used to solve the rotationally symmetric region of the open-ended 

coaxial line. The FEM results are closed to the measurements data than calculated 

admittance formulation. The maximum absolute errors of FEM and measurement results 

for magnitude and phase reflection coefficient are less than 0.02 and 0.1 rad, 

respectively, compared with 0.05 and 0.2 rad of admittance formulation and 

measurement results, respectively. However, the results were in good agreement that the 

minimum thickness of a sample under test is 2 mm. 

 

An inverse solution based on two admittance models (lumped-parameter admittance and 

integral admittance formulations) has been utilized to derive complex permittivity from 

measured reflection coefficient. The lumped-parameter admittance or closed form 

capacitance model is simpler in the calculation than integral admittance model. 

Unfortunately, it is not accurate for high operating frequencies (>5 GHz). However, the 

permittivity results from both models agree with measured data using HP 85070B 

coaxial probe and publish values (Cole-Cole model) ranging 1 GHz to 5 GHz.       

 

A calibration equation has been developed based on the relationship between the 

measured moisture content obtained by the oven drying method and the phase of the 

reflection coefficient of the sensor. The moisture content predicted by the sensor was in 
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good agreement with those obtained using the standard oven drying method with its 

absolute error within 5 % moisture content, when tested on 145 different fruits samples.  

 

A model detailing two dielectric relaxation process parameters was proposed in order to 

represent the permittivity of oil palm mesocarp based on measured data using HP 

85070B coaxial probe from 0.13 GHz to 20 GHz. The model successfully estimated the 

complex permittivity for various ripeness stages of oil palm mesocarp as a function of 

frequency, moisture and ionic conductivity, as well as the bulk density.  

 

A dielectric measurement software has been developed to control and acquire data from 

the VNA using Agilent VEE. The software is also used to calibrate measurement at the 

aperture plane of sensor and to calculate the complex permittivity from the measured 

reflection coefficient between 1 GHz and 5 GHz.  
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Pengerusi  : Zulkifly Abbas, PhD 
 
Institut : Penyelidikan Matematik 
 
 
Tesis ini memperihalkan kajian kritis terhadap penggunaan pengesan sepaksi hujung 

terbuka untuk menentukan kedua-dua ketelusan kompleks dan kandungan kelengasan 

bagi buah kelapa sawit berbagai peringkat kematangan pada oC. Pengesan 

tersebut telah dikaji merujuk kepada kiraan pekali pantulan menggunakan pendekatan 

pengamiran admitans dan kaedah unsur terhingga (FEM). 

( 125 ± )

 

Dalam kerja ini, pengkomputeran pekali pantulan bagi buah kelapa sawit telah dilakukan 

dengan menggunakan perisian MATLAB dan FEMLAB GUI masing-masing untuk 

pendekatan admitans dan kaedah unsur terhingga (FEM). Keputusannya telah 

dibandingkan dengan ukuran pekali pantulan daripada peranti deria sepaksi hujung 

terbuka yang bersambung dengan penganalisis rangkaian vektor HP8720B (VNA). 

Pengesan ini yang beroperasi antara 1 GHz hingga 5 GHz telah dibina daripada pucuk 
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panel sentuhan sepaksi jenis A 4.1 mm diameter luaran SMA. Pada hujung penyukat 

pengesan telah ditentukurkan dengan menggunakan tatacara garisan transmisi.   

 

Formula pengamiran admitans telah dipermudahkan kepada ungkapan siri. Ralat 

pangkasan setempat bagi penghampiran siri tersebut telah dianalisis secara kritis. FEM 

dua dimensi telah digunakan untuk menyelesaikan rantau simetri putaran garisan sepaksi 

hujung terbuka. Keputusan FEM adalah hampir dengan data-data pengukuran daripada 

kiraan formula admitans. Ralat mutlak maksimum bagi keputusan FEM dan pengukuran 

untuk magnitud and fasa pekali pantulan adalah masing-masing kurang daripada 0.02 

dan 0.1 rad, berbanding dengan 0.05 and 0.2 rad bagi formula admitans dan keputusan 

pengukuran. Bagaimanapun, keputusan adalah bersetuju bahawa ketebalan minimum 

bagi sampel yang diuji adalah 2 mm.     

 

Penyelesaian songsang yang merujuk kepada dua bentuk model admitans (formula 

parameter-gumpalan admitans dan pengamiran admitans) telah digunakan untuk 

menentukan ketelusan kompleks daripada ukuran pekali pantulan. Parameter-gumpalan 

admitans atau model kapasitans bentuk tertutup adalah lebih mudah dalam kiraan 

daripada pengamiran admitans. Malangnya, model ini tidak jitu untuk frekuensi 

pengoperasian yang tinggi (>5 GHz). Bagaimanapun, keputusan ketelusan daripada 

kedua-dua model adalah setuju dengan data-data ukuran yang menggunakan pengesan 

sepaksi  HP 85070B dan juga nilai-nilai yang dipaparkan (model Cole-Cole) dalam julat 

1 GHz hingga 5 GHz. 
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Persamaan penentukuran telah dibina berasaskan kepada hubungan antara sukatan 

kandungan kelengasan kaedah piawai pengeringan oven dengan fasa pekali pantulan 

kaedah pengesan. Ramalan kandungan kelengasan oleh pengesan tersebut amat setuju 

dengan nilai-nilai diperolehi daripada kaedah pengeringan oven dengan ralat mutlaknya 

dalam linkungan 5 % kandungan kelengasan apabila diuji terhadap 145 buah sampel 

yang berlainan.   

 

Model hasil tambah dua proses santaian dielektrik telah disyor supaya mewakili  

ketelusan mesocarp kelapa sawit berasaskan kepada data-data ukuran pengesan sepaksi 

HP 85070B dalam julat 0.13 GHz hingga 20 GHz. Model tersebut telah berjaya 

meramalkan ketelusan kompleks bagi mesocarp kelapa sawit yang berbagai peringkat 

kematangan sebagai fungsi kepada frekuensi, kelengasan dan kekonduksian ion, serta 

ketunpatan pukal.   

 

Perisian pengukuran dielektrik telah dibina untuk mengawal dan memperolehi data-data 

daripada VNA dengan menggunakan Agilent VEE. Perisian ini juga digunakan supaya 

menentukurkan pengukuran pada satah bukaan bagi pengesan tersebut dan mengira 

ketelusan kompleks daripada pengukuran pekali pantulan antara 1 GHz and 5 GHz.  
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