Structural, electrical and magnetic properties of BiFe_{1-x}Y_xO₃ ($0 \le x \le 0.6$) ceramics

ABSTRACT

The effect of Y substitution on the microstructure, dielectric, magnetic and leakage current properties of BiFe_{1-x}Y_xO₃ ($0 \le x \le 0.6$) ceramics was investigated. The BiFeO₃ phase that is dominant at x = 0.0 - 0.2 decreased with the increase of Y substitution. Other phases such as YFeO₃ and Bi_{1.46}Y_{0.54}O₃ emerged with Y substitution and became dominant in the range x = 0.3 - 0.4 and 0.5 - 0.6, respectively. The BiFe_{1-x}Y_xO₃ composites of rounded shape grains at x = 0.0 deformed at x = 0.1 - 0.3 and changed to melted-like grains at x = 0.4 - 0.6 with the incorporation of smaller grains at x = 0.5 and 0.6. The sample with x = 0.2 had the highest remnant magnetization (Mr = 0.09 emu/g) and saturation magnetization (Ms = 2.9 emu/g). The sample with x = 0.4 showed the highest dielectric constant of 104 and lowest loss tangent of 1.34×10^{-4} . The leakage current was significantly reduced to a lower value of 2.80×10^{-8} A/cm² at x = 0.6.

Keyword: Bismuth ferrite ceramic; X-ray diffraction; Solid-state reaction; Magnetic properties; Dielectric properties