AUTOMATED MEASUREMENT OF LEVITATION FORCE USING LABVIEW PROGRAMMING LANGUAGE

By

ABDUL MAJEED BIN MOHAMED SHARIFF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

November 2006

DEDICATION

In memory of my parents, Abbah and Bibi,

Special thanks to My parents-in-law Gulam Nabi and Mariam

> Wife Khursaid Bebe

Children Hazim and Nuur Aqilah

fellow course mates and friends. Who had been a source of flames of inspiration and perspiration. Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

AUTOMATED MEASUREMENT OF LEVITATION FORCE USING LABVIEW PROGRAMMING LANGUAGE

By

ABDUL MAJEED BIN MOHAMED SHARIFF

November 2006

Chairman: Professor Abdul Halim Shaari, PhD

Faculty: Science

This study deals with the development of an automated system for the investigation of levitation forces through three sets of experiments. The first set is a study of levitation forces between moving superconductors or conductors with a permanent magnet. The superconductors were used in field cooled and zero field cooled states. The second set deals with the study of levitation forces between a moving small discs shaped magnet with a much larger square magnet. The third set deals with the study of levitation forces between two identical magnets with a superconductor placed between them. An automated experimental setup was successfully setup that uses a computer, together with the LabVIEW software, an electronic balance, a DC motor controlled by a PWM circuit, a rpm sensor circuit and an actuator to achieve the stated objectives. The superconductors used were Bi_{1.6}Pb_{0.4}Sr₂Ca_{2-x}Cd_xCu₃O₁₀ (where x=0.00(pure), x=0.02, x=0.05, x=0.07 and x=0.1). The conductors used were copper and aluminium of various thicknesses. The levitation force between a moving conductor and a permanent magnet can be measured and compared to it's calculated values. It was shown that the levitation forces can be used to find the lift off speed of aluminium of thickness 4.75 mm to be 14.88 m/s. The first set of experiments revealed that levitation forces are depended upon the speed of the moving conductors but not on moving superconductors. It was also found that the levitation forces for superconductors are stronger in the zero field cooled states then the field cooled state. The second set of experiments showed that the levitation force between two magnets varies in a rotating field. The third set of experiments showed that the levitation forces between two identical magnets are not affected by the presence of a disc shaped superconductor. The system that has been developed can be used as an effective teaching aid for the teaching of magnetic levitation principles.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGUKURAN DAYA APUNGAN SECARA AUTOMATIK DENGAN MENGGUNAKKAN LABVIEW

Oleh

ABDUL MAJEED BIN MOHAMED SHARIFF

November 2006

Pengerusi: Professor Abdul Halim Shaari, PhD

Fakulti: Sains

Penyelidikan ini bertujuan membangunkan suatu sistem automatik untuk mengkaji daya apungan melalui tigi siri experimen. Siri yang pertama iala mengkaji daya apungan diantara konduktor atau superconductor yang sedang bergerak dan magnet kekal.Superkonduktor telah digunakkan dalam keadaan medan magnet beku dan tidak beku. Siri kedua ialah berkenaan daya apungan diantara sebuah magnet berbentuk cakera yang bergerak dan sebuah magnet besar. Siri ketiga ialah mengkaji daya apungan diantara dua magnet yang serupa dengan meletakkan suatu superkonduktor berbentuk cakera diantara mereka. Penyusunan eksperimen secara automatik bersama penggunaan komputer digabungkan dengan software LabVIEW, alat penimbang elektronik, aktuator, pengesan kelajuan serta sistem pengawalan kelajuan motor DC dengan menggunakan litar PWM telah berjaya melakukan semua siri eksperimen tersebut. Superkonduktor Bi_{1.6}Pb_{0.4}Sr₂Ca_{2-x}Cd_xCu₃O₁₀ (dimana x=0.00(tulen), x=0.02, x=0.05, x=0.07 dan x=0.1) telah digunakkan. Konduktor yang digunakkan merupakan kepingan kuprum dan aluminium yang berlainan tebal. Daya apungan diantara konduktor yang bergerak dengan magnet boleh diukur dan dibandingkan dengan nilai yang dikirakan. Ia dapat ditujukkan bahawa nilai dayadaya apungan boleh digunakkan untuk mencari halaju apungan bagi aluminium ketebalan 4.75 mm ialah 14.88 m/s. Siri experimen yang pertama menujukkan daya apungan bergantung kepada halaju konduktor tetapi tidak kepada halaju superkonduktor. Ia juga telah didapati bahawa daya apungan lebih kuat didalam medan magnet tidak beku berbanding dengan medan magnet yang beku.Siri eksperimen kedua telah menunjukkan daya apungan diantara dua magnet berubah dengan putaran magnet. Siri eksperimen ketiga telah menunjukkan daya apungan diantara superkonduktor yang berbentuk cakera. Sistem yang dibangunkan boleh digunakan sebagai alat bantu mengajar yang berkesan untuk mengajar prinsip-prinsip keapungan magnet.

ACKNOWLEDGEMENTS

Faithful thanks and appreciation are extended first to my supervisor, Professor Dr. Abdul Halim bin Shaari, co supervisor Associate Professor Dr. Ionel Valeriu Grozescu and Professor Dr. Elias Saion; for their charismatic guidance, prevailing assistance in all aspects, priceless suggestions, comments and advice; from the beginning of this project till the curtains are drawn.

Financial support from the Ministry of Education, Malaysia is gratefully acknowledged. I would also like to thank laboratory assistants Mr. Razak Harun and Mr Roslim bin Mohamed for their invaluable assistance. Thanks and appreciations are also extended to my fellow course mates in the Superconductor and Thin Films Laboratory, Physics Department, UPM for their invaluable and generous assistance. They are Walter and Faisal.

I also would like to specifically thank Mr. Arrifin bin Abas for supplying the superconductor samples for magnetic levitation studies. Credit is also given to anyone who had either directly or indirectly contributed to the completion of this thesis and also this research project.

I certify that an Examination Committee met on to conduct the final examination of **Abdul Majeed Bin Mohamed Shariff** on his **Master of Science** thesis entitled "AUTOMATED MEASUREMENT OF LEVITATION FORCE USING LABVIEW PROGRAMMING LANGUAGE " in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Jumiah Hassan PhD

Faculty of Science Universiti Putra Malaysia (Chairman)

Zaidan Abdul Wahab PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Zulkifly Abbas PhD

Faculty of Science Universiti Putra Malaysia (Member)

Mohamed Deraman PhD

Professor Faculty of Science and Tecnology Universiti Kebangsaan Malaysia (Independent Examiner)

HASANAH MOHD. GHAZALI PhD. Professor/Deputy Dean

School of Graduate Studies Universiti Putra Malaysia

Date: 8 FEBRUARY 2007

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Abdul Halim bin Shaari, PhD

Professor Faculty of Science. Universiti Putra Malaysia (Chairman)

Ionel Valeriu Grozescu, PhD

Associate Professor Faculty of Science. Universiti Putra Malaysia (Member)

Elias Saion PhD

Professor Faculty of Science. Universiti Putra Malaysia (Member)

AINI IDERIS PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date : 8 FEBRUARY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ABDUL MAJEED BIN MOHAMED SHARIFF

Date: 27 DECEMBER 2006

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF SIMBOLS/ABBREVIATIONS	XXV

CHAPTER

1	INTRO	DUCTION	
-	1.1	Background of the study	1
	1.2	Scope of the present study	1
	1.3	Problem statement	2
	1.4	Research objectives	2
	1.5	Significance of the study	3
	1.6	Outline of the thesis	3

2 LITERATURE REVIEW

2.1	The disco	overy of eddy current levitation	4
2.2	Discovery	y of superconductor levitation	5
2.3	Methods	for measuring eddy current magnetic levitation	7
	2.3.1	A simpler method.	7
	2.3.2	A more accurate system for measuring electromagnetic lift and drag forces	7
	2.3.3	A method for measuring lift and drag forces for an attractive electromagnetic suspension system	11
	2.3.4	A method for measuring lift and drag forces for an electromagnetic suspension system	11
	2.3.5	Experimental data obtained from other methods regarding eddy current levitation	14
	2.4	Research and Methods foe measuring superconductor levitation phenomena	17
	2.4.1	Method for measuring levitation force between a magnet and a rotating superconductor	17
	2.4.2	Method for measuring lateral force with flux frozen into a superconductor	19
	2.4.3	Method for measuring lateral force without flux being	22

	frozen into a superconductor	
2.4.4	Another method to measure lateral force between a	22
	superconductor and a magnet with minimal frozen-in	
	flux	
2.5	A method for measuring the shielding properties of	23
	superconductors	

3 THEORY AND OPERATING PRINCIPLES OF MEASUREMENT SYSTEMS

3.1	Introduc	tion	27
3.2	Eddy cur	rrent levitation	27
3.3	Forces b	etween a permanent magnet and moving conductors	28
	3.3.1	Lift force	28
	3.3.2	Drag force	29
	3.3.3	Current heating and the warming rate	30
	3.3.4	Skin depth	32
	3.3.5	Forces between two magnets	32
3.4	Types of	f permanent magnets	32
3.5	The strue	cture of metals	34
3.6	The strue	cture of superconducting Bismuth Strontium Copper Oxides	37
3.7	Supercon	nductor	37
	3.7.1	Type I superconductor	38
	3.7.2	Type II superconductor	39
	3.7.3	Properties	39
	3.7.4	Zero resistance	40
	3.7.5	The Meissner Effect	41
	3.7.6	Flux Pinning and the vortex state	41
	3.7.7	The Suspension Effect	42
3.8	The rota	ting superconductor and magnetic force	45
3.9	Conduct	ors and superconductors with magnetic shielding	46
3.10	Theory h	nardware and software for experiment setup	47
	3.10.1	Electronic Balance Scientech SA 120	47
	3.10.2	Interfacing electronic balance with PC	52
	3.10.3	Handshaking between computer and electronic balance	52
3.11	DC mot	IOIS	55
	3.11.1	Driver circuits for DC motor	56
	3.11.2	Using a transistor as a switch	58
	3.11.3	Protection diode	58
	3.11.4	Connecting a transistor to the output of the DAQ	59
3.12	Stepper	motors	61
	3.12.1	Operation of a stepper motor	61
	3.12.2	The full and half step modes of operation	62
	3.12.3	Angular Resolution	66
	3.12.4	Drive Board for stepper motors	67
3.13	Safety O	pto-Isolator and output signal amplification circuits	67
3.14	Opto sw	itches or rpm sensors	71
	3.14.1	Opto switches	71
	3.14.2	Driver circuit for opto switches	72
3.15	Data acq	juisition board	75

3.16	The soft	ware: Introduction to LABVIEW programming	75
	3.16.1	Front panel	76
	3.16.2	Block diagram	76

4 METHODOLOGY

4.1	Introductio	on	78
4.2	Hardware	of System	78
	4.2.1	Stepper Motor Configuration	78
	4.2.2	Complete wiring diagram	79
	4.2.3	Electronic Balance Interfacing	87
4.3	The Softw	are of System: LabVIEW Programming	87
	4.3.1	Experiment Information	88
	4.3.2	Device Driver for Electronic Balance	88
	4.3.3	Stepper Motor Control Function	89
	4.3.4	Measuring rpm	96
	4.3.5	Measuring rpm via frequency to voltage converter	96
	4.3.6	Pulse Width Modulation Circuit	97
4.4	Experimen	ntal Set-Up	102
	4.4.1	Setup for measuring levitation force versus speed of conductor	102
	4.4.2	Setup for measuring electromagnetic drag force versus speed of conductor	105
	4.4.3	Setup for measuring repulsive force between two identical magnets	107
	4.4.4	Setup for measuring magnetic shielding between two identical magnets with similar or opposite poles facing each other	107
	4.4.5	Setup for measuring levitation force versus speed of the rotating superconductor in zero field cooled and field	110
	4.4.6	Setup for measuring the drag force between a fast rotating superconductor and a magnet in the zero field cooled and field cooled states	111
	4.4.7	Setup for the superconductor rotating slowly while in a zero field cooled or field cooled state	111
4.5	LabVIEW	Programs and Flowcharts	115
	4.5.1	Positioning PCB drill vertically by forward motion	115
	4.5.2	Positioning PCB drill vertically by reverse motion	116
	4.5.3	Program for rotating superconductor or conductor while	121
	4.5.4	Program for rotating superconductor using actuator for	121
	4.5.5	Program for measuring force between two magnets with distance while taking measurements for reverse movement	129
	4.5.6	Program for measuring force between two magnets with distance while taking measurements for forward movement	129

5 RESULT AND DISCUSSION

6

•			
	5.1	Introduction	134
	5.2	The Feature of the Automation System's User Interface	134
	5.3 The results of measurement and calculation of the repulsive force		137
between two identical magnets		between two identical magnets	
	5.4	The results of moving conductor and stationary magnet	137
		5.4.1 Lift force, drag force and lift/drag force ratio for copper	138
		thickness 3 mm with a gap of 14 mm at room	
		temperature	
		5.4.2 Lift force, drag forces and lift/drag force ratio for	142
		aluminium thickness 0.5mm, 1 mm and 4.75 mm with a	
		gap of 14 mm at room temperature	
		5.4.3 Lift force, drag forces and lift/drag force ratio for	143
		aluminium thickness 4.75 mm with a gap of 14 mm, 18	
		mm and 22 mm at room temperature	
		5.4.4 Lift force, drag forces and lift/drag force ratio for copper	143
		thickness 1 mm and aluminium thickness 4.75 mm with a	
		gap of 14 mm for room temperature	
	5.5	Levitation or lift force of type II superconductors for various speeds	148
	5.6	Drag force of type II superconductors for various speeds	148
	5.7	The force between a rotating magnet and a fixed magnet at constant	152
		gap	
	5.8	The rotational repulsive force of a type II superconductor	152
	5.9	Force between two magnets with and without a superconductor	159
		placed in between	
	5.10	Comparison between lift off speed for aluminium with results	161
		obtained by other experimenters	
	5.11	Error analysis	161
6	CONC	LUSION	
	6.1	Automation Design	163
	6.2	The Variation of magnetic force between a permanent magnet and	163
		moving conductors of various types and thickness	
	6.3	The measured lift/drag force ratio and the relationship with the	164
		calculated lift/drag ratio	
	6.4	The behaviour of the levitational forces of superconductors	164
	6.5	Shielding force of a superconductor	165
	6.6	The rotational repulsive force between identical permanent magnets	165
	6.7	Suggestions	165
BI	BLIOGI	RAPHY	167

APPENDICES	171
BIODATA OF THE AUTHOR	202