PRODUCTION OF CHITINASE BY *TRICHODERMA VIRENS* UKM1 FROM COLLOIDAL CHITIN AND SHRIMP WASTE

CHRISTINE CHERYL FERNANDEZ

IB 2007 11
PRODUCTION OF CHITINASE BY TRICHODERMA VIRENS UKM1 FROM COLLOIDAL CHITIN AND SHRIMP WASTE

By

CHRISTINE CHERYL FERNANDEZ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2007
For Allah the Almighty
and for my parents…
for this gift called LIFE…

For my dearest jaan…
the reason for the multitude of colours in my LIFE…
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PRODUCTION OF CHITINASE BY TRICHODERMA VIRENS UKM1 FROM COLLOIDAL CHITIN AND SHRIMP WASTE

By

CHRISTINE CHERYL FERNANDEZ
(MARIAM AISHA FATIMA)

October 2007

Chairman: Associate Professor Suraini Abdul Aziz, PhD
Institute: Institute of Bioscience

Shrimp waste being the main waste from marine industry is a source of surface pollution in coastal areas consisting of mainly protein, calcium carbonate and chitin. Chitin, the second most abundant biopolymer is a β-(1,4)-linked N-acetyl-D-glucosamine (GluNac) heterogeneous polymer that has versatile biological and agrochemical applications. Chitinase a glycosyl hydrolase is produced constitutively as isozymes in fungus for de novo chitin metabolism. Chitin chains are converted into chitooligosaccharides and GluNac reducing sugars by chitinase with specific modes of action at the reducing ends. In this study, shrimp waste was pretreated with chemical and physicochemical methods to determine the best pretreatment before fermentation with a locally isolated fungus, Trichoderma virens UKM1. Experiments in shake flasks and 2 L stirred tank reactor (STR) demonstrated sun dried ground shrimp waste as the best pretreatment, 1 x 10^6 spores/mL as the best total spore concentration and fermentation pH control at pH 6.0 as the most effective for chitinase production. Subsequent optimisation in 2 L STR showed that fermentation at 200 rpm and 0.33 vvm gave the highest chitinase productivity of 4.1 U/L/h and 5.97 U/L/h, respectively. Microbial chitin bioconversion employing optimal
conditions in medium with colloidal chitin and medium with sun dried ground shrimp waste as the sole carbon source showed an increase of 7.25 fold and 1.57 fold in chitinase activity, respectively from shake flasks culture to 2 L STR. The respiration rate ($Q_{O_2}X$) during the highest chitinase productivity was 3.864 mg of DO g$^{-1}$ of fungal biomass h$^{-1}$ while the specific respiration rate (Q_{O_2}) was 20.337 mg of DO g$^{-1}$ of fungal biomass h$^{-1}$ and the maximum specific growth rate, μ_{max} was 0.0078 h$^{-1}$ with the corresponding doubling time, t_d of 88.85 hours. Concentration and partial purification of crude chitinase showed that ammonium sulphate precipitation at 80% saturation gave highest chitinase activity in line with the results of enzymatic chitin bioconversion from DNS chitinase assay and HPLC analysis.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHASILAN KITINASE OLEH TRICHODERMA VIRENS UKM1 DARIPADA KITIN KOLOID DAN SISA UDANG

Oleh

CHRISTINE CHERYL FERNANDEZ
(MARIAM AISHA FATIMA)

Oktober 2007

Pengerusi: Profesor Madya Suraini Abdul Aziz, PhD
Institut: Institut Biosains

Sisa udang ialah sisa utama dari industri marin yang merupakan punca pencemaran permukaan di kawasan persisiran pantai. Ia terdiri daripada sebahagian besarnya protein, kalsium karbonat dan kitin. Kitin, biopolimer kedua terbanyak terdiri daripada polimer heterogenus N-asetil-glikosamin (GluNac) dengan ß-(1,4) ikatan glikosidik yang mempunyai ciri-ciri biologi dan kegunaan serbaguna agrokimia. Kitinase merupakan glikosil hidrolase yang dihasilkan secara konstitutif sebagai isozim oleh kulat untuk metabolisme de novo kitin. Rantai kitin ditukar kepada gula penurun kito-oligosakarida dan GluNac oleh kitinase melalui mekanisme spesifik di hujung penurun rantai tersebut. Dalam kajian ini, sisa udang telah dirawat terlebih dahulu dengan kaedah kimia dan fisiokimia untuk mengenal pasti prarawatan yang terbaik sebelum fermentasi dengan kulat pencilan tempatan iaitu Trichoderma virens UKM1. Eksperimen di dalam kelalang goncangan dan 2 L reaktor tangki pengaduk (STR) menunjukkan bahawa sisa udang kisar yang dikeringkan di bawah cahaya matahari merupakan prarawatan yang terbaik. Kepekatan spora keseluruhan terbaik adalah 1 x 10^6 spora/mL dan fermentasi dengan pH terkawal pada pH 6.0 adalah paling efektif untuk penghasilan kitinase. Pengoptimuman di dalam 2 L STR
menunjukkan fermentasi pada 200 psm dan 0.33 vvm memberikan hasil kitinase tertinggi iaitu masing-masing sebanyak 4.1 U/L/h dan 5.97 U/L/h. Biopenukaran kitin oleh mikrob menggunakan keadaan optimum untuk medium dengan kitin koloid dan sisa udang kisar yang dikeringkan di bawah cahaya matahari sebagai punca karbon tunggal menunjukkan peningkatan aktiviti kitinase masing-masing sebanyak 7.25 ganda dan 1.57 ganda daripada fermentasi kelalang goncangan ke 2 L STR. Kadar respirasi (Qo₂X) semasa penghasilan kitinase tertinggi ialah 3.864 mg DO g⁻¹ biomas kulat jam⁻¹ manakala kadar respirasi spesifik (Qo₂) ialah 20.337 mg DO g⁻¹ biomas kulat jam⁻¹. Kadar pertumbuhan spesifik maksimum, µ_max ialah 0.0078 jam⁻¹ dengan masa penggandaan, t_d selama 88.85 jam. Pemekatan dan penulenan separa campuran kitinase menunjukkan bahawa pemendakkan amonium sulfat dengan 80% ketepuan menghasilkan aktiviti kitinase tertinggi bersamaan dengan keputusan analisis DNS dan HPLC biopenukaran kitin secara berenzim.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful

“Take time to work, it is the price of success
Take time to think, it is the source of power
Take time to read, it is the fountain of wisdom
Take time to pray, it is the foundation of everything”

A word of thanks and appreciation is indeed insufficient to express my deepest gratitude to those who have vigilantly educated me with the meaning of perseverance, diligence, and patience through the course of this study as well as to those who have unwearingly broadened my perspective of the beauty of research in the field of industrial biotechnology.

My foremost appreciation goes to my supervisor, Assoc. Prof. Dr. Suraini Abdul Aziz who has generously and patiently guided me through this project with her suggestions and continuous motivation and has inculcated me with the virtues of a novice researcher; and to co-supervisors, Dr. Madiah Salleh and Prof. Dr. Mohd. Ali Hassan, who have done no less in giving invaluable support and subtle advices to improve the research and myself. And to Mr. Rosli of bioprocess and Mr. Azman of food tech, the two best lab assistants any student could wish for, thank you for the technical aid and advice.

Heartfelt thanks to my fellow postgraduate students of the Institute of Bioscience and Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, UPM who have been wonderful laboratory mates in times of work, need and play and who have in not one but many ways shared with me the skills and trills of research. Those who have been through those testing times together are Zuraidah, Zulkrami, Mohd Fadly, Farah, Yunus, Teh Lay Sin, Munta, Siti Wahidah, Azlina Mansor, Shamzi, Sobri, Safarul, Azman, Majd, Mojtaba, Sauvaphap, Siti Mariam, Murni, Herman, Azlan, See Leng Min and Helmi. You guys made two years worth the sweet sweat and time, tricky trials and lessons, intellectual discussions and fun. Road trips, evening walks, tea treats, progress meetings, all could have not been better.

My undivided gratitude goes to my parents and dear brother who have supported me. You are the ones providing consolation when the going gets too tough or when the burden gets too heavy; a shoulder to pout and cry on when the world turns a deaf ear. To the one who loves me, my better half who never ceased to have great faith in me, for the tremendous motivation in completion of this thesis and much more, without you, it might have taken longer.

Not forgetting the administrative staff of the Institute of Bioscience, Faculty of Biotechnology and Biomolecular Sciences, lecturers, my examiners and all those who have aided me directly or indirectly in the completion of this Masters research, you have been invaluable. Thank you.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.

Members of the Supervisory Committee were as follows:

Suraini Abdul Aziz, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohd. Ali Hassan, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Madihah Salleh, PhD
Lecturer
Faculty of Science
Universiti Teknologi Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 February 2008
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHRISTINE CHERYL FERNANDEZ

Date: 5 December 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

1.1 Introduction

1.2 Objectives of the Research

2. **LITERATURE REVIEW**

2.1 Introduction

2.1.1 Shrimp Waste

2.1.2 Environmental Pollution

2.2 Chitin

2.2.1 Physical and Chemical Properties of Chitin

2.2.2 Derivatives of Chitin

2.2.3 Applications of Chitin

2.3 Chitinase Enzymes

2.3.1 Family Classification of Chitinolytic Enzymes

2.3.2 Nomenclature of Chitinolytic Enzymes

2.3.3 Sources of Chitinolytic Enzymes

2.4 Applications of Chitinase

2.4.1 Agriculture and Biological Control

2.4.2 Generation of Fungal Protoplast

2.4.3 Degradation of Aquaculture Waste

2.4.4 Production of Chitooligosaccharides, Glucosamine and N-acetyl-D-glucosamine

2.5 Chitinase Producing Fungus

2.5.1 *Trichoderma* spp.

2.6 Production of Fungal Chitinase Enzymes for Bioconversion

2.7 Production of Chitinases Using Batch Fermentation for Fungus

2.7.1 Agitation and Aeration Rates

2.7.2 k_{1}a Determination

2.7.3 Effect of Spore Concentration

2.7.4 Effect of Fungal Morphology
3 MATERIALS AND METHODS

3.1 Microorganism and Strain Cultivation 35
3.2 Preparation of Colloidal Chitin 35
3.3 General Experimental Overview 36
3.4 Pretreatment of Shrimp Waste 37
 3.4.1 Raw Shrimp Waste 37
 3.4.2 Sun Dried Shrimp Waste 37
 3.4.3 Alkaline Treated Shrimp Waste 38
 3.4.4 Enzyme Treated Shrimp Waste 38
3.5 Proximate Analysis for Chitin Sources 39
 3.5.1 Moisture Content 39
 3.5.2 Ash Content 39
 3.5.3 Crude Fat Content 40
 3.5.4 Crude Fibre Content 40
 3.5.5 Crude Nitrogen and Protein Content 41
 3.5.6 Carbohydrate Content 41
3.6 Initial Growth Medium 42
3.7 Preparation of Spore Inoculum 42
3.8 Shake Flask Preliminary Experiments 43
3.9 Pre-germination and Production Media 43
3.10 Two Litre Stirred Tank Bench-top Reactor 45
 3.10.1 Static Method of $k_L a$ Determination 49
 3.10.2 Dynamic Method of Respiration Rate and $k_L a$ Determination 50
3.11 Analytical Methods 52
 3.11.1 Protein Determination Assay 52
 3.11.2 Dinitrosalicylic Acid (DNS) Chitinase Assay 52
 3.11.3 Cell Dry Weight and Residual Substrate 54
3.12 Ammonium Sulphate Precipitation 54
3.13 HPLC 55

4 RESULTS AND DISCUSSION

4.1 Introduction 56
4.2 Preliminary Experiments for Chitinase Enzyme Production 57
 4.2.1 Effect of Different Pretreated Shrimp Waste 57
 4.2.2 Effect of Different Medium Composition 62
 4.2.3 Effect of pH 6.0 (Controlled and Initial pH 6.0) 66
 4.2.4 Effect of Different Spore Inoculum Concentration 71
 4.2.5 Proximate Analysis of Best Pretreated Shrimp Waste 74
4.3 Optimisation of 2 L Stirred Tank Reactor (STR) Variables 76
 4.3.1 Effect of Agitation Speed 76
 4.3.2 Effect of Aeration Rate 82
 4.3.3 Static $k_L a$ Determination 85
 4.3.4 Scale Up Considerations 87
4.4 Production of Chitinase in 2 L STR Using Optimised Medium and Parameters
 4.4.1 Microbial Chitin Bioconversion in 2 L STR 88
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Protein and mineral composition in shrimp head waste</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Shrimp waste processing via chemical or biological means and the respective end products</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>List of review papers over the years on chitin and chitinases and related subjects</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Nomenclature of the chitinolytic enzyme system</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Previous studies on the induction and production of chitinases from several fungal species</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of standard and optimised Media 4 and 5</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Geometrical measurements and components of 2 L STR</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Pretreatment of raw shrimp waste</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of bioreactor runs with and without fermentation pH control at pH 6.0 in M4CC and M5CC</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Proximate analysis of colloidal chitin as reference substrate and sun dried shrimp waste</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Volumetric mass transfer coefficient in different media, agitation and aeration rates in 2 L STR</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of chitinase enzyme activity in shake flask culture and bioreactor</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Purification table on ammonium sulphate precipitation profiling of crude enzyme from M5CC and M5SDG</td>
<td>96</td>
</tr>
<tr>
<td>4.7</td>
<td>Chitooligosaccharide standards and the respective retention times via HPLC, Merck 10 µm NH2 LiChroCART® column, 1 mL/min flow rate</td>
<td>97</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison between enzymatic chitin bioconversion and microbial chitin bioconversion of colloidal chitin and sun dried ground shrimp waste</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The structure of shrimp integument or shrimp shell</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical structure of chitin and chitosan</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Various steps of bioconversion screening for chitinase production</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>General experimental overview for the induction of chitinase enzymes from Trichoderma virens UKM1 for chitin bioconversion</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>The schematic diagram of a 2 litre stirred tank reactor with two Rushton turbine impellers</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between the effects of different pretreated shrimp waste on volumetric chitinase productivity</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>General pelleted growth formation of Trichoderma virens UKM1 in submerged fermentation in M5CC at day 2</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison between media 4 and 5 for the effect of fermentation pH 6.0 control and uncontrolled</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Matured Trichoderma virens UKM1 on potato dextrose agar after a week of incubation at 30°C</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of volumetric chitinase productivity vs log of spore concentration per mL of medium 4 and medium 5 with different chitin sources</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of agitation speed of 120 rpm, 200 rpm, 240 rpm, 480 rpm, and 600 rpm respectively in a 2 L STR using M5CC</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>Light micrograph of Trichoderma virens UKM1 in M5CC submerged fermentation day 3 at 400 X magnification (a) 200 rpm and (b) 600 rpm</td>
<td>78</td>
</tr>
<tr>
<td>4.8</td>
<td>Light micrograph of Trichoderma virens UKM1 in M5CC submerged fermentation at 40 X magnification showing the comparison of pellet size at different agitation rates</td>
<td>80</td>
</tr>
<tr>
<td>4.9</td>
<td>Schematic representation on pelleted growth of filamentous fungi in submerged fermentation</td>
<td>81</td>
</tr>
</tbody>
</table>
4.10 Effect of aeration rate using M5CC

4.11 Light micrograph of *Trichoderma virens* UKM1 in M5CC submerged fermentation day 3 at 400 X magnification (a) 0.33 vvm and (b) 2.00 vvm

4.12 Light micrograph of *Trichoderma virens* UKM1 in M5CC submerged fermentation at 40 X magnification showing the comparison of pellet size at different aeration rates

4.13 Specific enzyme activity and net enzyme activity of *Trichoderma virens* UKM1 in medium 5 with colloidal chitin in 2 L STR employing optimal conditions

4.14 Specific enzyme activity and net enzyme activity of *Trichoderma virens* UKM1 in medium 5 with sun dried shrimp waste in 2 L STR employing optimal conditions

4.15 Growth profile of *Trichoderma virens* UKM1 in medium 5 with colloidal chitin in 2 L STR submerged fermentation and the corresponding enzyme activity

4.16 Light micrograph of *Trichoderma virens* UKM1 in M5SDG at day 3 of submerged fermentation
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DNS calibration curve after (NH₄)₂SO₄ precipitation for N-acetylglucosamine (GluNac / NAG)</td>
<td>112</td>
</tr>
<tr>
<td>B</td>
<td>DNS calibration curve of N-acetylglucosamine</td>
<td>114</td>
</tr>
<tr>
<td>C</td>
<td>Lowry protein determination calibration curve for bovine serum albumin standard</td>
<td>116</td>
</tr>
<tr>
<td>D</td>
<td>Micrographs of Trichoderma virens UKM1 in submerged fermentation with optimal conditions</td>
<td>118</td>
</tr>
<tr>
<td>E</td>
<td>Preparation of sodium phosphate buffer for enzyme assay and dialysis</td>
<td>121</td>
</tr>
<tr>
<td>F</td>
<td>Calibration curve of N-acetyl-D-glucosamine standard for HPLC analysis</td>
<td>123</td>
</tr>
<tr>
<td>G</td>
<td>Preparation of sulphuric acid at specific molarity for pH control</td>
<td>124</td>
</tr>
<tr>
<td>H</td>
<td>Graph of ln biomass against time for fungal exponential growth</td>
<td>125</td>
</tr>
<tr>
<td>I</td>
<td>Calculations for $k_{L\alpha}$ determination by dynamic gassing out technique</td>
<td>127</td>
</tr>
<tr>
<td>J</td>
<td>Estimation of the economic aspects for overall chitinase production</td>
<td>130</td>
</tr>
<tr>
<td>K</td>
<td>Chromatogram of chitin bioconversion</td>
<td>132</td>
</tr>
<tr>
<td>L</td>
<td>Set up of 2 L STR</td>
<td>134</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AG NaOH treated ground shrimp waste
AUG NaOH treated unground shrimp waste
B Baffle width
BSA Bovine serum albumin
CC Colloidal chitin
CCRB Colloidal chitin treated with Remazol Brilliant Blue dye
C_E Saturated dissolved oxygen concentration
C_L Actual dissolved oxygen concentration
C_o Initial dissolved oxygen concentration
D_i Impeller diameter
DNS Dinitrosalicyclic acid
DO Dissolved oxygen
DOT Dissolved oxygen transfer
D_v Vessel diameter
EG Cellobiase treated ground shrimp waste
EUG Cellobiase treated unground shrimp waste
Glu Glucosamine
GluNac N-acetyl-D-glucosamine
h Hour
H^+ Hydrogen ion
H_i Impeller height from sparger
H_L Liquid height
HPLC High pressure liquid chromatography
$k_l a$ Volumetric mass transfer coefficient
M4 Optimised medium 4
M4CCpH Optimised medium 4 with colloidal chitin with pH 6.0 control
M4SDGpH Optimised medium 4 with sun dried ground shrimp waste with pH 6.0 control
M5 Medium 5 or optimised medium 4 without peptone and yeast extract
M5CCpH Medium 5 with colloidal chitin with pH 6.0 control
M5SDGpH Medium 5 with sun dried ground shrimp waste with pH 6.0 control
N Impeller speed in seconds
NAG N-acetyl-D-glucosamine
OTR Oxygen transfer rate
OUR Oxygen uptake rate or respiration rate
PDA Potato dextrose agar
Qo₂ Oxygen uptake rate or respiration rate
Qo₂X Specific oxygen uptake rate or specific respiration rate
rpm Revolutions per minute
RSG Raw ground shrimp waste
RSM Response surface methodology
RSUG raw unground shrimp waste
S Impeller spacing
SDG Sun dried ground shrimp waste
SDUG Sun dried unground shrimp waste
sf Shake flask
sp. Species (singular)
spp. Species (plural)
STR Stirred tank reactor or stirred tank bioreactor
\(t_L \) Time corresponding to \(C_L \)
\(t_o \) Initial time
U Unit of enzyme activity
UDP Uridino di-phospho
v/v Volume per volume
Vtip Impeller tip speed
vvm Volume of air per minute per volume of solution
w/v Weight per volume
\(W_i \) Impeller height
CHAPTER 1
INTRODUCTION

1.1 Introduction

Shrimps have been a popular raw material for the burgeoning marine and food industry contributing to increasing marine waste. Shrimp waste which is rich in organic compounds is an abundant source of chitin, a natural polymer of N-acetyl-D-glucosamine (GluNac), a reducing sugar. Essentially, shrimp waste constitutes 45 – 60% of the whole shrimp in the form of the head and body carapace and only 25% is recovered as meat (Sachindra and Mahendrakar, 2005 and Coward-Kelly et al., 2006). More importantly Tharanathan and Kittur, (2003) cited that of the organic weight of shrimp cuticle 69.5% on average is chitin.

Chitin and chitinolytic materials are abundant renewable natural resources obtained from marine invertebrates, insects, fungi, yeast and algae. Chitin occurs in nature as ordered crystalline microfibrils forming structural components in the exoskeleton of arthropods or in cell walls of fungi. Although 22 to 44% of fungal cell wall comprises of chitin, its amount in terms of chitin production is negligible in comparison to marine sources (Patil et al., 2000). It is abundantly derived mainly from crustacean waste, the shrimp and crab (Rinaudo, 2006). Almost 10% of the global landings of aquatic products consist of organisms rich in chitinous material (10-55% on dry weight basis). These include shrimps, crabs, squids, oysters, and cuttlefish. It was estimated that the worldwide recovery of chitin from the processing of marine invertebrates alone was 37, 300 tonnes in 1991 (Shaikh and Deshpande,
1993). Approximately 75% of the total weight of shellfish are considered waste. Out of this, 20 – 58% of the dry weight are chitin (Dahiya et al., 2006). Chitin is a polymer of unbranched chains of β-1,4-linked sugar (N-acetyl-D-glucosamine) residues, whereas chitosan, the deacetylated form of chitin, contains glucosamine residues. In fact, chitin is the second most abundant natural biopolymer in the world, behind only cellulose. It is also the most abundant naturally occurring polysaccharide that contains amino sugars. This abundance, combined with the specific chemistry, bioversatility and biocompatibility of chitin and its next best derivative chitosan, make for the array of its potential applications. Owing to its abundant and cheap resource and biocompatibility, chitin has the potential for bioconversion to simpler molecules of N-acetyl-D-glucosamine monomers and chitooligosaccharides by means of enzyme catalyzed reactions or chemical procedures with the ease in production coming from the former (Kumar, 2000, Tharanathan and Kittur, 2003, Rinaudo, 2006).

In Malaysia, aquaculture industry has been one of the emerging industries promoted by the government. Shrimps and prawns are alone harvested to an astounding total of 99, 377 tonnes locally in 2003 (FAOSTAT, 2005). Recent statistical database showed that the import quantity for crustaceans in Malaysia for 2004 alone was 368, 800 tonnes (FAOSTAT, 2006). One of the main issues that need to be resolved is the by-products or waste generated by the shrimp industry. Normally, the shrimp waste would be discarded as mere kitchen waste or some lucrative industries would employ it for conversion to chitosan and chitin through chemical means which involved heavy usage of acid and alkaline in the chemical treatment, creating additional environmental issues. Due to the annual mass volume of shrimps and prawns harvest,
it is only feasible to utilise the waste that is derived from the industry to address environmental issues and to produce industrial viable products using low cost substrates via environmentally friendly processes.

Preliminary work has been done in 2004 on aquaculture waste (especially shrimp waste) processing enzymes, mainly on chitinases in order to develop an environmentally-friendly system for converting shrimp waste into useful industrial specialty chemical products via biotechnological means by shake flask culture using a locally isolated fungus. A number of significant studies have been performed on chitinolytic enzymes from *Trichoderma* spp. especially on *Trichoderma harzianum* in which some seven individual chitinases have been elucidated (De La Cruz *et al.*, 1992 and Gokul *et al.*, 2000, Duo-Chuan, 2006). All the studies reported that chitinase production in fungal batch fermentation was carried out in laboratory scale shaker flask and their potential in shellfish waste biodegradation was modestly studied. From most of the bioreactor studies, an investigation utilised shrimp waste as a supplementary carbon source in a rich medium for chitinase production from *Verticillium lecanni* and another attempted *Trichoderma harzianum* as their fungus of choice with chitin flakes as the chitinase inducer in a defined salt medium for chitinase production in a 1 L stirred tank reactor (Felse and Panda, 2000b, Liu *et al.*, 2003).

Therefore, the main objective of this research is to increase the production of chitinase by *Trichoderma virens* UKM1, a locally isolated fungus in a 2 L stirred tank reactor (STR) from colloidal chitin and shrimp waste using the optimised conditions previously obtained in prior preliminary studies. At the same time to
identify the different methods of shrimp waste pretreatments that are the best for producing chitinolytic enzymes from *Trichoderma virens* UKM1. After obtaining the optimal parameters from the 2 L STR, further microbial and enzymatic shrimp waste bioconversion shall be expounded with colloidal chitin as the reference substrate. This is to study the concentration of end products of shrimp waste bioconversion which are GluNac, reducing sugars and proteins that may be extrapolated to conclude the significance of this entire study.

Thus, the objectives of this study are as follows:

1. To determine the production of chitinase by *Trichoderma virens* UKM1 using various pretreatments of shrimp waste.
2. To optimise the 2 L stirred tank reactor variables for chitinase production by *Trichoderma virens* UKM1 from colloidal chitin as reference substrate.
3. To compare the microbial and enzymatic chitin bioconversion of colloidal chitin and pretreated shrimp waste.
CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Rapid increase in the world population has led to the search for alternative forms of protein sources. Consumers being more educated and health conscious prefer organic sources of protein in the forms of seafood rather than the more recent forms being offered via biotechnology in single cell proteins, which spurred minimal interest. Entrepreneurs have seen much potential in the burgeoning marine industry to fulfil this nascent demand (Zeller and Pauly, 2005). Apart from fishes, crustaceans and molluscs are the major raw materials for the marine industry. Shrimps and prawns being one of the more popular of these are alone harvested to an astounding total of 99,377 tonnes locally in 2003 (FAOSTAT, 2005). Recent statistical database showed that the import quantity for crustaceans in Malaysia for 2004 alone was 368,800 tonnes (FAOSTAT, 2006).

2.1.1 Shrimp Waste

Shrimps come in a myriad of varieties according to its origins from the different continents. Generally, in the biological hierarchy they come under the phylum arthropoda, class crustacea, and subclass malacostrae, however, they differ in their order henceforth according to its fishing origins (Dore and Frimodt, 1987).