UNIVERSITI PUTRA MALAYSIA

CELLULAR APOPTOSIS OF 4T1 BREAST CANCER CELLS INDUCED BY V4-UPM NEWCASTLE DISEASE VIRUS

MAHANI MAHADI

IB 2007 7
CELLULAR APOPTOSIS OF 4T1 BREAST CANCER CELLS INDUCED BY V4-UPM NEWCASTLE DISEASE VIRUS

By

MAHANI MAHADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master Science.

January 2007
Dedicated to my mother,

Patimah Jantan, my greatest source of inspiration

Also to my brothers and sisters:

_Especially to Along, Azmi Mahadi,
Mashitah Mahadi
Zaid Mahadi
Maimon Mahadi
Abdul Aziz Mahadi
Zubir Mahadi
Azizan Mahadi
Mokhtar Mahadi
Azizul Mahadi_

To my husband:

Mohd Firdaus Hamat

Thank you for the everlasting support and advice.
CELLULAR APOPTOSIS OF 4T1 BREAST CANCER CELLS INDUCED BY V4-UPM NEWCASTLE DISEASE VIRUS

By

MAHANI MAHADI

January 2007

Chairman: Professor Aini Ideris, PhD

Institute: Bioscience

This study was carried out to investigate the effects of Newcastle disease virus (NDV) strain V4-UPM in eliminating breast cancer cells through the apoptosis machinery process and the potential use of the virus as an agent for breast cancer therapy. Oncolytic effects of V4-UPM NDV on 4T1, a mouse mammary cancer cell line was investigated via *in-vitro* and *in-vivo* assays, and three of the apoptosis characteristic were evaluated through various methods. Propagation of V4-UPM NDV was conducted in the allantoic fluid of 10 day old embryonated chicken eggs after 5 to 7 days incubation. The fluid was harvested, purified, and the haemagglutination (HA) test was carried out to determine the HA titre of the virus. The HA titre obtained from purified V4-UPM NDV was $131,072$ or 2^{17}. Cytotoxic effects of V4-UPM NDV on 4T1 cell line were first carried out using microculture tetrazolium (MTT) assay to determine the amount required to kill 50% of cancer cells. It was observed that $32,768$ or 2^{15} HA unit was required to kill
50% of the 4T1 cells. Further studies were done by observing the morphological changes in treated cells under scanning electron microscope (SEM). The cells treated with V4-UPM NDV showed apoptotic characteristics such as shrinkage and reduction in cell size, cell indentation, membrane blebbing and dispersion of cells, compared with oval to round, smooth surface of untreated 4T1 cells. By using confocal microscope, localization of tumor suppressor gene p53 and mitochondria activity in treated cells were evaluated to identify the involvement during the process of apoptosis. Positive localization of p53 in the nucleus of untreated cells was observed after labeling with anti-p53 monoclonal antibody and the localization of p53 outside the nucleus was clearly seen after treatment. V4-UPM NDV is suggested to enhance the function of p53 to cause 4T1 cells to commit suicide. The mitochondrial activity was investigated by using mitotracker red staining and low involvement of mitochondria activity in cancer cells was observed in untreated cells. Greenish fluorescence was observed in treated cells showing higher involvement of mitochondrial activity during apoptosis.

Further investigations were carried out based on the in-vitro studies as a preclinical trial on an animal breast cancer model (in-vivo) to evaluate the effects of V4-UPM NDV on cancer tissue. Female inbred Balb/c mice were used as an animal model and induction of cancer was done through inoculation of 4T1 cells into subcutaneous mammary fat pad. After 10 to 14 days, the tumor growth was observed in all induced mice. The statistical
analysis of tumor development showed a significant difference (p ≤ 0.05) of tumor volume between control cancer cells and cancer cells treated with V4-UPM NDV. However, no significant changes were observed in body weight and tumor mass. Cell proliferation was significantly reduced as shown by the measurement of apoptotic:mitotic cell via lesion score counted under light microscope. Confirmation of apoptotic cells by specific labeling of DNA fragment with TdT mediated dUTP nick end labeling (TUNEL) assay showed a higher apoptotic percentage counted in cancer cells treated with V4-UPM NDV as compared with cancer control cells. Ultrastructural features of treated tissue were viewed under energy filtered transmission electron microscope (EFTEM) to confirm that cell death due to V4-UPM NDV is via apoptotic pathway. Cells were observed to be tightly connected with other cells, with clear boundaries and with the normal structure of organelles in cancer control cells. The distinct ultrastructural changes prominently seen in 4T1 cells treated with V4-UPM NDV were the apoptotic characteristics, such as, cell shrinkage and resulting spaces in between cells, membrane blebbing, shrunken nucleus and also the presence of numerous numbers of mitochondria and endoplasmic reticulum (ER). From these findings, it was confirmed that the mode of cell death induced by V4-UPM NDV, to eliminate the cancer cells is by apoptosis. This suggested that V4-UPM NDV is a potential agent for breast cancer treatment.
SELLULAR APOPTOSIS PADA 4T1 SEL KANSER PAYUDARA YANG DIRANSANG OLEH V4-UPM VIRUS PENYAKIT NEWCASTLE

Oleh

MAHANI MAHADI

APRIL 2007

Kajian ini dilakukan untuk menyelidik kesan virus penyakit Newcastle (NDV) strain V4-UPM dalam menghapuskan sel kanser payu dara melalui proses apoptosis dan juga potensi virus ini bertindak sebagai agen untuk terapi kanser payudara. Kesaran onkolitik NDV V4-UPM pada 4T1, sel kanser payudara mencit diselidik secara in-vitro dan in-vivo, dan tiga ciri apoptosis disiasat melalui pelbagai kaedah. V4-UPM NDV di propagasi dalam cecair alantoik telur ayam berembrio berusia 10 hari yang telah dieramkan selama 5 hingga 7 hari. Cecair alantoik tersebut dikumpulkan, dipurifikasi dan ujian hemagglutinasi (HA) dilakukan untuk menentukan HA titer virus ini. HA titer yang diperolehi daripada virus V4-UPM NDV yang telah ditulenkan ialah 131 072 atau 2^{17}. Kesaran sitotoksik V4-UPM NDV pada sel 4T1 telah dilakukan kali pertama dengan menggunakan ujian ‘microculture tetrazolium’ (MTT) untuk menentukan jumlah yang diperlukan bagi membunuh 50% sel kanser. Ianya didapati sebanyak 32 768 atau 2^{15} HA unit diperlukan untuk
membunuh 50% sel 4T1. Kajian seterusnya dilakukan dengan melihat perubahan morfologi dalam sel yang dirawat dengan menggunakan mikroskop pengimbas elektron (SEM). Sel yang dirawat dengan V4-UPM NDV menunjukkan ciri-ciri apoptosis seperti sel mengecut and saiznya mengecil, sel meleukuk ke dalam, membran menggelembung dan sel pecah dibandingkan dengan sel 4T1 yang tidak dirawat, yang menunjukkan sel yang membulat serta permukaan membran yang licin. Dengan penggunaan mikroskop konfokal, lokasi gen perencat tumor, p53 dan aktiviti mitokondria di kaji untuk mengenalpasti penglibatan semasa apoptosis berlaku. Lokasi p53 terletak di dalam nukleus pada sel 4T1 yang tidak dirawat setelah dilabel menggunakan antibodi monoklonal anti p53, dan perubahan lokasi p53 diluar nukleus dilihat dengan jelas selepas dirawat. V4-UPM NDV dijangka meningkatkan fungsi p53 untuk menyebabkan sel 4T1 mati. Aktiviti mitokondria dikaji dengan menggunakan perwarnaan ‘mitotracker red’ dan aktiviti mitokondria yang rendah dalam sel kanser dilihat pada sel yang tidak dirawat. Warna hijau floures diperolehi dalam sel yang dirawat menunjukkan penglibatan aktiviti mitokondria yang tinggi semasa apoptosis berlaku.

Kajian seterusnya dilakukan berdasarkan hasil kajian in-vitro sebagai percubaan pra klinikal menggunakan model haiwan kanser payudara (in-vivo) untuk melihat kesan V4- UPM NDV pada tisu kanser. Balb/c mencit betina yang sebaka digunakan sebagai model haiwan dan kanser induksi dilakukan dengan menginokulasi sel 4T1 ke dalam lemak di bawah lapisan
mamari. Selepas 10 hingga 14 hari didapati semua mencit yang di induksi menunjukan pertumbuhan tumor. Statistik analisis pertumbuhan tumor menunjukan perbezaan yang signifikan \((p \leq 0.05) \) isipadu tumor di antara sel kanser kawalan dan sel kanser yang dirawat dengan V4-UPM NDV. Walau bagaimanapun, tiada perubahan yang signifikan diperolehi ke atas berat badan dan jisim tumor. Proliferasi sel menurun dengan signifikan seperti yang ditunjukkan selepas mengukur sel apoptotik:mitotik melalui kaedah skor lesi yang di kira di bawah mikroskop cahaya. Pengenalpastian sel apoptotik menggunakan label spesifik pecahan DNA iaitu ujian ‘TdT mediated dUTP nick end labeling’ (TUNEL) menunjukkan peratusan apoptotik yang tinggi pada kanser sel yang dirawat dengan V4-UPM NDV dibandingkan dengan kanser sel kawalan. Bentuk ultrastruktur tisu yang dirawat di kaji menggunakan mikroskop elektron pancaran penuras tenaga (EFTEM) untuk menentukan bahawa kematian sel disebabkan oleh V4-UPM NDV adalah melalui mekanisma apoptosis. Sel didapati bersusun dengan rapat diantara satu sama lain dengan sempadan yang jelas serta struktur normal organel pada kanser sel kawalan. Perubahan ultrastruktur yang jelas dan ketara dilihat pada sel 4T1 yang dirawat dengan V4-UPM NDV menunjukan ciri-ciri apoptosis, seperti sel mengecil dan menyebabkan kehadiran ruang diantara sel, membran menggelembung, nukleus mengecut dan juga mitokondria dan endoplasmik retikulum yang banyak. Daripada penemuan ini, didapati cara sel mati yang diransang oleh V4-UPM NDV untuk menghapuskan sel kanser adalah melalui apoptosis. Ini menunjukan
V4-UPM NDV adalah agen yang berpotensi sebagai rawatan kanser payudara.
ACKNOWLEDGEMENTS

First of all, thank to ALLAH almighty for the blessing and the strength given to fulfill my dream in finishing my master study. I would like to take this opportunity to thank all the important people who have contributed to my study.

First of all, my indebtedness to Associate Professor Dr Fauziah Othman for introducing me to my supervisor Professor Dr Aini Ideris and the field of cancer research. I would like to express my gratitude and appreciation to Professor Dr. Aini Ideris, Chairman of the Supervisory Committee for providing guidance, understanding and valuable comments and support in my Master research, thank you for being very understanding. I have been receiving sponsorship from Majlis Kanser Nasional (MAKNA) for three and half years for my Master programme and would like to acknowledge with my sincere thanks to MAKNA particularly to Yg Berbahagia Dato' Mohd. Farid Ariffin, President of MAKNA for the sponsorship.

I also would like to express my sincere thanks to Associate Professor Dr Fauziah Othman and Associate Professor Dr Asmah Rahmat, members of the supervisory committee for their advice, suggestions, guidance and encouragement throughout my Master research. Not to forget to Associate Professor Dr Rahman Omar for the opinion, guidance and his willingness to teach us.
My sincere appreciation also goes to the staff of the Laboratory of Microscopy Imaging and Nanoscience, Institute of Bioscience; Mrs Faridah Akmal Hussein, Mr Ho Oi Kuan, Mrs Noraini Ain, Miss Azilah Abdul Jalil, Mr Rafiuzzaman Harun and Mr Saparis Mohd for their assistance.

I would also like to give credit to both Kak Hanim and En. Pili for being excellent mentors in the lab. I wish to thank all my other labmates, past and present, especially to my best friend Nani, thank you for always being supportive, Noi, Kak Dess, Shahrul, Mun Yee, Sally, Kak Yoges and Suria. Without their help and friendship, the last several years would have been more challenging. I am also grateful for all of their help.

Finally, to my family that have been the source of my strength with their unfailing encouragement and constant faith in my abilities especially to my mother, Patimah Jantan. I will always be grateful to them for all the opportunities they gave me that enabled me to reach this juncture in my life. Thank you very much for being there for me and making my life full of color.
I certify that an Examination Committee has met on 26th January 2007 to conduct the final examination of Mahani Bt Mahadi on her Master of Science thesis entitled “Cellular Apoptosis of 4T1 breast Cancer Cells Induced By V4-UPM Newcastle Disease Virus” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Sheikh Omar Abdul Rahman, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Mohd Hair Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Rozita Rosli, PhD
Associate Professor
Faculty of Medicine and Health Sciences,
Universiti Putra Malaysia
(Internal Exeminer)

Yasmin Anum Mohd.Yusof, PhD
Associate Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 APRIL 2007
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

AINI IDERIS, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

FAUZIAH OTHMAN, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ASMAH RAHMAT, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 MAY 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

__

MAHANI MAHADI

Date: 27 MARCH 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1

2 LITERATURE REVIEW

6

2.1 Cancer

6

2.1.1 Breast Cancer

7

2.1.2 Risk Factors of Breast Cancer

8

2.1.3 Symptoms and Etiology of Breast Cancer

9

2.1.4 Treatment of Breast Cancer

9

2.1.4.1 Surgery

10

2.1.4.2 Radiation Therapy

11

2.1.4.3 Systemic Therapy

12

2.1.4.4 Chemotherapy

12

2.1.4.5 Hormonal Therapy

13

2.1.4.6 Gene and Virus Therapy

13

2.2 Newcastle Disease Virus

14

2.2.1 History of Newcastle Disease

14

2.2.2. Newcastle Disease Virus

15

2.2.3 Pathogenicity of Newcastle Disease Virus

16

2.2.4 Newcastle Disease Virus and Cancer Treatment

18

2.2.4 V4-UPM Strain of Newcastle Disease Virus

19

2.3 Tamoxifen

20

2.4 Apoptosis

21

2.4.1 Morphological Characteristics of Apoptosis

23

2.4.2 Biochemical Properties of Apoptosis

25

2.4.3 Apoptosis in Cancer

26

2.4.4 Apoptosis and Viruses

27
2.4.5 Apoptosis and Tumor Suppressor Gene, p53 28
2.5 Apoptosis Detection Techniques 29
 2.5.1 Terminal Deoxyribonucleotide Transferase Mediated dUTP-Nick End Labeling (TUNEL) Assay 29
 2.5.2 Mitochondrial Membrane Potential Disruption Assay 31
 2.5.3 Immunohistochemistry 32
 2.5.4 Transmission Electron Microscope 33
 2.5.5 Scanning Electron Microscope 34
 2.5.6 Microculture Tetrazolium (MTT) Proliferation Assay 35
2.6 Animal Model in Cancer Research 37
 2.6.1 Mice as Model in Cancer Research 38
 2.6.2 4T1 Mouse Mammary Cancer Cell Lines 39

3 QUALIFICATION OF APOPTOSIS DETECTION IN 4T1 MOUSE MAMMARY CANCER CELL LINES TREATED WITH V4-UPM NEWCASTLE DISEASE VIRUS 40

3.1 Introduction 35
3.2.1 Materials 42
 3.2.1.1 Virus 42
3.2.2 Methods 43
3.3 Results 55
 3.3.1 Virus Propagation 55
 3.3.2 MTT Assay 55
 3.3.3 Scanning Electron Microscope 55
 3.3.4 Immunofluorescent Staining 56
 3.3.5 Mitochondrial Membrane Disruption Assay Detection 57
3.4 Discussion 61

4 MORPHOLOGICAL STUDIES OF BREAST CANCER TISSUE TREATED WITH V4-UPM NEWCASTLE DISEASE VIRUS 66

4.1 Introduction 66
4.2 Materials and Methods 68
 4.2.1 Experimental Animals 68
 4.2.2 Balb/c Mice Maintenance 69
 4.2.3 Induction of Breast Cancer by 4T1 Cell Inoculation 69
 4.2.4 In-vivo Assay 70
 4.2.5 Data Collection and Sampling 71
 4.2.6 Histology Processing 71
 4.2.7 Staging of Tumor Size 72
 4.2.8 Apoptotic and Mitotic Index 73
4.2.9 Statistical Analysis

4.3 Results

4.3.1 Induction of Mammary Breast Cancer to Balb/c Mice Using 4T1 Cell Line

4.3.2 Mean Value of Body Weight (Balb/c mice) after Treatment with PBS, NDV V4-UPM and TAM

4.3.3 Mean Value of Tumor Volume

4.3.4 Mean Value of Tumor Mass at Death Time

4.3.5 Mean Score of Apoptotic and Mitotic Index

4.4 Discussion

5 QUANTIFICATION OF APOPTOTIC CELLS AND CONFIRMATION OF APOPTOSIS IN BREAST CANCER TISSUE TREATED WITH V4-UPM NEWCASTLE DISEASE VIRUS

5.1 Introduction

5.2 Materials and Methods

5.2.1 Sample Collection

5.2.3 Sample Processing for TUNEL Assay

5.2.4 Quantification of Apoptosis

5.2.5 Statistical Analysis

5.2.6 Sample Processing for Transmission Electron Microscope

5.2.7 Quantification of Apoptosis Features

5.3 Results

5.3.1 Fluorescent Micrographs of Breast Cancer Tissue Treated with PBS, NDV V4-UPM and TAM

5.3.2 Quantification of Apoptotic Cell (Percentage of Apoptotic Cells)

5.3.3 Mean Score of Apoptotic Cells Among the Three Groups

5.3.4 Ultrastructural Morphology of Breast Cancer Tissue

5.3.5 Mean Score of Apoptotic Features

5.4 Discussion

6 GENERAL DISCUSSION AND CONCLUSION

REFERENCES

APPENDICES

BIODATA OF THE AUTHOR

LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Symptoms of different pathotypes</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Mean value ± standard deviation of body weight of Balb/c mice treated with PBS, V4-UPM NDV and tamoxifen at week 1, 2, 3 and 4 weeks post treatment</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>Mean value ± standard deviation of tumor volume of Balb/c mice treated with PBS, V4-UPM NDV and tamoxifen at week 1, 2, 3 and week 4 post treatment</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Mean value of tumor mass at death time ± standard deviation of Balb/c mice breast cancer tissue treated with PBS, V4-UPM NDV and tamoxifen at week 1, 2, 3 and week 4 post treatments.</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>Mean score ± standard deviation of apoptotic cell counted of breast cancer tissue treated with PBS, V4-UPM NDV and tamoxifen at week 1, 2, 3 and week 4 post treatment.</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Mean score ± standard deviation of mitotic cell counted on breast cancer tissue treated with PBS, V4-UPM NDV and tamoxifen at week 1, 2, 3 and week 4 post treatment.</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>The percentage and statistical analysis of mean ± standard deviation of apoptotic cells on breast cancer tissue treated with PBS for cancer control, tamoxifen and V4-UPM NDV per time sampling.</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>The statistical analysis of mean ± standard deviation of apoptotic features counted in response of breast cancer tissue treated with PBS, V4-UPM NDV and tamoxifen.</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structural changes of cells undergoing necrosis or apoptosis</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Biochemical changes of cell during apoptosis</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Preparation of virus V4-UPM NDV dilution</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Scanning electron microscope micrographs of morphological changes of 4T1 cell treated with V4-UPM NDV</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>Confocal micrographs of the localization of tumor suppressor gene, p53.</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>Confocal micrographs of the localization of mitochondria in the 4T1 cells.</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>Photographs of the induction of mammary breast cancer to Balb/c mice using 4T1 cell line.</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>Photographs of breast cancer tissue collection after treatment.</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>Light micrographs of the histology examination of cancer control cells.</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>Light micrographs of breast cancer tissue after treatment with V4-UPM NDV.</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>Light micrographs of the histology examination of breast cancer tissue after treatment with tamoxifen.</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>12</td>
<td>Fluorescent micrographs of breast cancer tissues treated with PBS stained by TUNEL technique, double stained with fluorescein 12-dUTP and propidium iodide.</td>
<td>116</td>
</tr>
<tr>
<td>13</td>
<td>Fluorescent micrographs of breast cancer tissues treated with V4 UPM NDV stained by TUNEL technique, double stained with fluorescein 12-dUTP and propidium iodide.</td>
<td>117</td>
</tr>
<tr>
<td>14</td>
<td>Fluorescent micrographs of breast cancer tissues treated with tamoxifen stained by TUNEL technique, double stained with fluorescein 12-dUTP and propidium iodide.</td>
<td>118</td>
</tr>
<tr>
<td>15</td>
<td>Electron micrographs of the ultrastructural morphology of breast cancer tissue.</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Apoptotic Bodies</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptosis Inducing Factor</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AI</td>
<td>Apoptotic Index</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BSE</td>
<td>Breast Self Examination</td>
</tr>
<tr>
<td>DMBA</td>
<td>Dimethylbenz(a)anthracene</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxynucleic Acid</td>
</tr>
<tr>
<td>dUTP</td>
<td>Deoxynucleotide Triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>EFTEM</td>
<td>Energy Filtered Transmission Electron Microscope</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>F</td>
<td>Fusion Protein</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothycyanat</td>
</tr>
<tr>
<td>GLOBOCAN</td>
<td>Global of Cancer</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>HA test</td>
<td>Heamagglutination Test</td>
</tr>
<tr>
<td>HN</td>
<td>Haemagglutinin-Neuraminidase</td>
</tr>
<tr>
<td>IP</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IT</td>
<td>Intratumor</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Inhibition Concentration at 50 Percent</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>L</td>
<td>Large Polymerase Protein</td>
</tr>
<tr>
<td>MTT</td>
<td>Microculture Tetrazolium</td>
</tr>
<tr>
<td>ME</td>
<td>Numerous Mitochondria and Endoplasmic Reticulum</td>
</tr>
<tr>
<td>MB</td>
<td>Membrane Blebbing</td>
</tr>
<tr>
<td>MI</td>
<td>Mitotic Index</td>
</tr>
<tr>
<td>NTE</td>
<td>NaCl tris-HCl EDTA</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle Disease Virus</td>
</tr>
<tr>
<td>NP</td>
<td>Nucleocapsid Protein</td>
</tr>
<tr>
<td>O<sub>3</sub>O<sub>4</sub></td>
<td>Osmium Oxide</td>
</tr>
<tr>
<td>P</td>
<td>Phosphoprotein</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PI</td>
<td>Propodium Iodide</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Cell</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SC</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>SSC</td>
<td>Saline Sodium Citrate</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SN</td>
<td>Shrunken Nucleus</td>
</tr>
</tbody>
</table>
TAM Tamoxifen
TEM Transmission Electron Microscope
TUNEL Terminal Deoxynucleotide Transferase-Mediated dUTP Nick End Labeling
TdT Terminal Deoxynucleotidyl Transferase
USA United States of America
UPM Universiti Putra Malaysia
CHAPTER 1

INTRODUCTION

‘Cancer’ is a well-known word among people in the world and it often strikes fear in people. Indeed, cancer is considered to be one of the major causes of death around the world including Malaysia. Globocan (2000) reported that an estimated 5.4 million people all over the world are afflicted with cancer and 51% of those affected are in developing countries.

The incidence of various kinds of cancer in Malaysia has been estimated to be around 30,000 annually and constitutes 10.3% of medically certified death, which is the fourth leading cause of death (Lim et al., 1993; Gerard 2002). The most predominant cancer affecting males in Malaysia are cancers of the lung, nasopharynx, mouth, stomach and liver, while the most prevalent cancers among females are cancers of the breast, cervix, lung and stomach (Gerard, 2002).

Breast cancer is the first leading cause of death among women. It is the most frequently diagnosed in the western world with approximately 180,000 new cases identified annually in the United States of America (USA) alone and currently the second leading cause of cancer-related mortality in women in USA (McPherson et al., 2000). The estimated breast cancer incidence in