EXPERIMENTAL INVESTIGATION AND NUMERICAL SIMULATION OF OHMIC HEATING FOR LIQUID FOOD PASTEURIZATION UNDER LAMINAR CONDITION

ELZUBIER AHMED SALIH ELFAKIE

FK 2008 22
EXPERIMENTAL INVESTIGATION AND NUMERICAL SIMULATION
OF OHMIC HEATING FOR LIQUID FOOD PASTEURIZATION UNDER
LAMINAR CONDITION

By

ELZUBIER AHMED SALIH ELFAKIE

May 2008

Chairman: Thomas Choong Shean Yaw, PhD

Faculty: Engineering

Pasteurization of liquid food - guava juice and soymilk by continuous ohmic
heating within a temperature range of 30-90 °C, was performed in a 3-D non –
axisymmetric ohmic heater. (Three stripe electrodes positioned along the walls
and oriented 120° to the axis of the pipe), using 3-phase 50-60 Hz alternative
voltages, with Delta connection.

A mathematical model describing the flow and thermal behavior of guava juice
and soymilk solution in a continuous ohmic heating unit was developed. The
equations for conservation of mass, momentum and energy and electric field
distributions including temperature dependent electrical conductivities, thermo
physical and rheological properties were solved using a commercial
Computational Fluid Dynamics (CFD) software package (FLUENT 6.1) which
was based on finite volume method of analysis. User defined functions (UDF’s)
employed in the original platform (FLUENT 6.1), were used for the solution of
scalar equations - electrical field model.

Thermo-physical and rheological properties of soymilk and guava juice were
measured. Soymilk was found to be Newtonian and guava juice a Non Newtonian
(power law n = 0.5978 and k = 0.117 Pa s\(^b\)). Measurements of electrical
conductivities at various temperatures for guava juice and soymilk were carried
out. These properties were then used as inputs for the CFD modelling.

The numerical calculation results have provided reasonable information for
optimizing the design of ohmic heating cell geometry to improve the uniformity
of the electrical and thermal fields across the heating cell in order to avoid over
and under-processing of liquid foods.

The heating rate of soymilk was found to be higher than that of guava juice. The
current density of both guava juice and soymilk was found to exceed the critical
value. However, experimentally the soymilk, a protein solution, was found to
rapidly deposit on the surface of the electrodes. No ohmic heating was conducted
thereafter with the soymilk.

Temperature, flow pattern, electrical field distribution and the slowest heating
zone (SHZ) during ohmic heating of both liquid foods (3D) were predicted.
Experimental and simulated temperatures were in good agreement at different
locations along the ohmic heating axis for guava juice, thus validating the CFD model and simulation.

The pasteurization calculations were done for guava juice (3.8 °brix) and soymilk (7.8±0.02 °brix) using the pathline of the highest velocity simulated from the CFD, and pasteurisation was adequately and rapidly achieved.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah

PEMERIKSAAN EKSPERIMEN DAN SIMULASI BERANGKA BAGI PEMANASAN OHMIC UNTUK PEMPASTEURAN MAKANAN CECAIR DIBAWAH KEADAAN LAMINER

Oleh

ELZUBIER AHMED SALIH ELFAKIE

Mei 2008

Pengerusi: Thomas Choong Shean Yaw, PhD

Fakulti: Kejuruteraan

Pempasteuran makanan cecair - jus buah jambu batu dan susu kacang soya melalui pemanasan ohmic berterusan di dalam julat suhu 30-90°C, dapat disimulasi dan disahkan dengan penggunaan model 3-dimensi bukan simetrik (Tiga elektrod jejalur yang disusun sepanjang dinding dengan orientasi 120° ke arah paksi paip), menggunakan voltan-voltan alternatif tiga fasa antara 50-60Hz, menerusi sambungan Delta.

Satu model matematik, yang dapat menggambarkan aliran dan ciri termo jus buah jambu batu dan susu kacang soya dalam unit pemanasan ohmic berterusan, telah dibangunkan. Persamaan-persamaan keabadian bahan, tenaga dan momentum, dan penyebaran medan elektrik termasuk konduktiviti elektrik yang bergantung kepada suhu, sifat – sifat termofisik dan reologi dapat di selesaikan dengan
penggunaan pakej perisian komersial, iaitu *Computational Fluid Dynamics* (FLUENT 6.1) yang berasaskan keadaan analisa isipadu makluk.

Fungsi-fungsi yang didefinisikan oleh pengguna dan tersediaada dalam landasan FLUENT 6.1, digunakan untuk penyelesaian persamaan *scalar* - model medan elektrik.

Sifat-sifat termofisik dan reologi bagi susu kacang soya dan jus buah jambu batu telah di ukur. Didapati susu kacang soya adalah *Newtonian* manakala jus buah jambu batu adalah bukan Newtonian (perundangan kuasa n = 0.0.5978 dan k = 0.117 Pa s\(^n\)). Pengukuran konduktiviti elektrik pada pelbagai suhu bagi jus buah jambu batu dan susu soya telah juga dijalankan. Sifat-sifat ini seterusnya digunakan untuk pemodelan CFD.

Keputusan perkiraan berangka telah memberi maklumat mengcukupi bagi tujuan mengoptimakan rekabentuk geometri sel pemanasan *ohmic* untuk meningkatkan keseragaman medan-medan elektrik serta termo diseberang sel pemanasan supaya dapat mengelakukan pemprosesan makanan cecair berlebihan atau berkurangan.

Semasa pemanasan *ohmic* bagi kedua-dua jenis makanan cecair, ciri-ciri suhu, corak aliran, pengedaran medan elektrik dan zon pemanasan paling pelan dapat diramalkan dalam 3-dimensi. Persetujuan antara suhu-suhu eksperimen dan simulasi didapati baik pada lokasi-lokasi berbeza sepanjang paksi pemanasan ohmic bagi jus buah jambu batu, maka dapat mengesahkan model CFD dan simulasi.

Perkiraan-perkiraan pempasteuran bagi jus buah jambu batu (3.8 °brix) dan susu soya (7.8±0.02 °brix) dibuat mengikut garisan simulasi kelajuan tertinggi dari CFD, dan proses pempasteuran dapat dijayakan dengan memadai dan cepat.
ACKNOWLEDGEMENT

IN THE NAME OF ALLAH, THE BENEFICENT, THE MERCIFUL

Thanks are to Allah, Lord of the worlds, the Creator and Sustainer of the world. To Him, we belong and to Him, we will return. He can never be thanked enough and for giving me the strength and the patient to let this work be finished. I would like to take this opportunity to extend my thanks to all my main advisors: Dr. Ibrahim Omer Mohammed, Dr. Sergey Spotar, Assoc. Prof. Dr Thomas Choong Shean Yaw, member of my advisory committee Dr. Wan Abdullah Haj Wan, and Dr Chin Nyuk Ling for their cooperation and support. I am also grateful to them for assistance and guidance in completing this research. Acknowledgement is also due to Mr. Kamarulzaman (KPM), Mr. Razali, and Mr Soib from FSTM. Finally, this work could not have been completed without the love and support of my family. I thank my beloved mother, father, brothers and sisters, for their endless support. Special thanks are also extended to the University of Jezeera, Sudan for finance and support during my study and special thanks to Dr. Ismaieel Hassan Hussain (Vice chancellor of Jezeara University, Sudan) for his great help and support. Without their help after Allah S.W.T the project will not be completed. More thanks to Project Leader, Mr. Hishamuldin Jamaluddin and his Msc. student Faiza for their help in the experimental work and for purchasing the ohmic heating equipments. Finally, I would like to thank my beloved family, my wife Najat, my son Mohammed and daughter Deema, for their love, sacrifice, support, patience and encouragement throughout everything I have ever done.
APPROVAL

I certify that an Examination Committee met on 7 May 2008 to conduct the final examination of Elzubier Ahmed Salih on his Doctor of Philosophy thesis entitled “Experimental investigation and numerical simulation of ohmic heating for liquid food pasteurization under laminar condition” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Name of relevant degree).

Members of the Examination Committee are as follows:

Russly abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Siti Aslina Hussain, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Siti Mazlina Mustapa Kamal, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohammed Sobri Takrif, PhD
Associate Professor Ir.
Faculty of engineering
Universiti Kambangsân Malaysia
(Independent Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 25-9-2008
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor Philosophy. The members of the Supervisory Committee were as follows:

Thomas Choong Shean Yaw PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Sergey Spotar, PhD
Associate Professor
Faculty of Engineering
Universiti Nottingham Malaysia
(Member)

Chin Nyuk Ling, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Member)

<table>
<thead>
<tr>
<th>AINI IDERIS, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor and Dean</td>
</tr>
<tr>
<td>School of Graduate Studies</td>
</tr>
<tr>
<td>Universiti Putra Malaysia</td>
</tr>
</tbody>
</table>

Date: 16 October 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ELZUBIER AHMED SALIH ELFAKIE

Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

1.1 Background

1.2 Research problem

1.3 Objectives of the study

1.4 Thesis organization

2 **LITERATURE REVIEW**

2.1 Introduction

2.2 Thermal processing and computer simulation

2.3 Ohmic heating and aseptic processing

2.4 Advantages of ohmic heating

2.5 Applications of ohmic heating

2.6 Design of ohmic heating

2.6.1 Electrolytic effects

2.6.2 Surface of electrodes

2.6.3 Energy efficiency

2.7 Electric conductivity

2.7.1 Measurement of electrical conductivity

2.7.2 Electrical conductivity of liquids

2.8 Ohmic heating of fluids

2.8.1 Parameters affecting the performance of ohmic heating

2.9 Modeling of the ohmic heating process

2.9.1 Simulation System

2.10 Different ohmic heating systems set up

2.10.1 Example 1

2.10.2 Example 2

2.11 Residence time distributions

2.12 Pasteurization

2.12.1 High Temperature Short Time Pasteurization

2.12.2 Microbial death kinetics

2.13 Soymilk
2.13.1 Methods of thermal processing of soymilk 51
2.13.2 Microorganisms in soymilk 55
2.14 Guava juice 58

3 RHEOLOGICAL AND THERMOPHYSICAL PROPERTIES OF SOYMILK AND GUAVA JUICE

3.1 Introduction 62
3.2 Material and Methods 62
3.2.1 Physiochemical analysis of soymilk 62
3.2.2 Rheological properties of soymilk 65
3.2.3 Physiochemical analysis of guava juice 67
3.2.4 Rheological properties of guava juice 70
3.3 Summary 72

4 NUMERICAL SIMULATION AND VALIDATION OF LIQUID FOOD IN THREE-DIMENSIONAL CONTINUOUS OHMIC HEATING

4.1 Introduction 73
4.2 Description of continuous ohmic heating system 73
4.3 Experimental procedure 78
4.4 Experimental conditions 78
4.5 Model verification 79
4.6 Governing equations 85
4.7 Assumptions 92
4.8 Boundary conditions 93
4.9 Initial condition 94
4.10 Computational Fluid Dynamics 94
4.10.1 Simulation technique 95
4.10.2 Grid construction 95
4.10.3 Solution procedure 97
4.10.4 User defined functions (UDF’s) 101
4.10.5 Solution steps 107
4.11 Results and discussion of guava juice 107
4.11.1 Solution convergence 108
4.11.2 Temperature profiles distributions 111
4.11.3 Velocity profiles distributions 117
4.11.4 Current density distributions 123
4.11.5 Electric field distribution 129
4.11.6 Joule heating rate 130
4.11.7 Voltage distribution 134
4.11.8 Effect of L and A on heating rate 136
4.11.9 Comparison of simulated with experimentally measured temperature 136
4.11.10 General discussions 139
4.12 Results and discussion for soymilk 142
4.12.1 Temperature profiles distributions 142
4.12.2 Velocity profiles distributions 146
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Major benefits of ohmic heating for particulate food processes</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of electrical conductivity values of food product</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Models proposed in literature for selection of minimum holding times in calculating holding tube sizes</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>Proximate composition of soymilk</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical and physical properties of soymilk</td>
<td>51</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of soymilk process SB = soybeans, RHHC = rapid hydration hydrothermal cooking</td>
<td>53</td>
</tr>
<tr>
<td>2.7</td>
<td>Different types of micro-organisms isolated from soymilk</td>
<td>57</td>
</tr>
<tr>
<td>2.8</td>
<td>The chemical composition of guava juice</td>
<td>60</td>
</tr>
<tr>
<td>2.9</td>
<td>Results for proximate analysis of guava juice (10°brix)</td>
<td>60</td>
</tr>
<tr>
<td>2.10</td>
<td>Typical values of heat resistance of A. Acidoterrestris spores</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Rheological and thermo physical properties of soymilk of 7.8±0.02°Brix</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Rheological and thermophysical properties of guava juice of 3.8°Brix</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>Pasteurization condition for guava juice</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental data of temperature of guava juice</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>The parameters used in simulation</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>The experimental and predicted temperature at different velocities for guava juice</td>
<td>141</td>
</tr>
<tr>
<td>4.5</td>
<td>Integrated lethality inside the pasteurizer for guava juice and soymilk</td>
<td>166</td>
</tr>
</tbody>
</table>
LISTS OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Operating region of electric conductivity</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Electrical conductivity of solids food as affected by temperature and field strength</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Electrical conductivity of liquid food as affected by temperature and solid contents</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>laminar flow in ohmic heater</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Diagram of the APV ohmic heater and position of Hall effect Sensors</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Detail of the ohmic heater column</td>
<td>39</td>
</tr>
<tr>
<td>2.7</td>
<td>Continuous flow ohmic heater</td>
<td>40</td>
</tr>
<tr>
<td>2.8</td>
<td>Derivation of the D-value for a given temperature (T) from a graph of the number of surviving organisms (N) versus (t)</td>
<td>46</td>
</tr>
<tr>
<td>2.9</td>
<td>Derivation of z values from plot of thermal death rate and D value versus temperature</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Electrical conductivity as a function of temperature for soymilk</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Specific heat as a function of temperature for soymilk</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Thermal conductivity as a function of temperature for soymilk</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Density as a function of temperature for soymilk</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Relationship between shear stress and shear rate of soymilk at temperature of 30, 40 and 50 °C and 7.8 ºBrix</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Thermal conductivity as function of temperature of guava juice ºBrix 3.8</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Specific heat capacity as function of temperature of guava juice ºBrix 3.8</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Density at function of temperature of guava juice ºBrix 3.8</td>
<td>69</td>
</tr>
</tbody>
</table>
3.9 Electrical conductivity as a function of temperature for guava juice 69
3.10 Shear stress shear rate as a function of temperature of guava juice 70
3.11 Logarithmic relationship between shear stress and shear rate 71
3.12 The viscosity of guava juice as a function of temperature 71
4.1 A schematic representation of the experimental set-up the of ohmic heating system 75
4.2 Ohmic heating unit 76
4.3 A schematic of ohmic heating cell 77
4.4 Ohmic heating cell 77
4.5 Temperature sensors positions along the heating cell 80
4.6 Experimental data of temperature at velocity of 0.034m/sec 81
4.7 Experimental data of temperature at velocity of 0.032m/sec 82
4.8 Experimental data of temperature at velocity of 0.032m/se 83
4.9 Grids generated with GAMBIT 2.0 and read by FLUENT 6.1 for ohmic heating cell geometry 97
4.10 Basic program structure 99
4.11 Overview of the Segregated Solution Method 99
4.12 Overview of the Coupled Solution Method 100
4.13 Schematic program of implementation of pasteurization process 101
4.14 Interpreting the user defined function in FLUENT 102
4.15 loading of parabolic inlet velocity user defined function in FLUENT 103
4.16 loading the compiled user defined functions in FLUENT 105
4.17 Specifying the user defined functions used for insulated wall 105
4.18 Specifying the user defined functions used for conducted wall

4.19 Specifying momentum, energy and electric field user defined functions

4.20 An algorithm to solve the theoretical model

4.21 Temperature profiles of guava juice

4.22 3-D Temperature contour of guava juice

4.23 y-z plane contour of static temperature at Inlet points - 0.5 m, 0.14 m, 0.17 m, 0.23 m and outlet

4.24 x-y plane contour of temperature

4.25 x-velocity profile of guava juice

4.26 y-z plane contour of x-velocity at inlet, 0.5m, 0.14m, 0.17m, 0.23m, outlet

4.27 x-y plane x-velocity contour

4.28 y-z plane of velocity vectors at 0.23m

4.29 y-z plane of velocity vectors at 0.17m

4.30 y-z plane of velocity vectors at 0.05m

4.31 Current density distribution of guava juice

4.32 Current density distribution of guava juice at all locations except at 0.05 and 0.23m

4.33 3D current density of guava juice

4.34 y-z plane contour of current density at inlet, 0.5m, 0.14m, 0.17m, 0.23m, outlet

4.35 x-y plane contour of current density

4.36 Joule heating rate distribution of guava juice

4.37 3D of Joule heating rate of guava juice

4.38 y-z plane contour of joule heating rate at inlet, 0.5 m, 0.14 m, 0.17 m, 0.23 m, outlet
4.39 x-y plane counter of joule heating rate
4.40 Voltage contour of guava juice 3D
4.41 y-z plane contours of voltages at inlet, 0.05 m, 0.14 m, 0.17 m, 0.23 m and outlet of guava juice
4.42 x-y plane contour of voltages of guava juice
4.43 Comparison between experimental and simulated temperature of guava juice
4.44 Temperature of center at 0.05 m, 0.17 m and 0.23 m as a function of time
4.45 Temperature distribution of x-y plot of soymilk
4.46 3D temperature contour of soymilk
4.47 x-y plane of temperature contour of soymilk
4.48 y-z plane of temperature profiles of soymilk
4.49 x-velocity profile of soymilk
4.50 x-y plane of x-velocity contour of soymilk
4.51 y-z plane of x-velocity contour of soymilk
4.52 y-z plane at 0.23 m of x-velocity vector of soymilk
4.53 y-z plane at 0.17 m of x-velocity vector of soymilk
4.54 y-z plane at 0.05 m of x-velocity vector of soymilk
4.55 Current density profiles of soymilk
4.56 Current density profiles of soymilk excluding 0.05 m and 0.23 m
4.57 3D Current density contour of soymilk
4.58 x-y plane of current density contour of soymilk
4.59 x-z plane of current density contour of soymilk
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.60</td>
<td>Joule heating rate profiles of soymilk</td>
<td>157</td>
</tr>
<tr>
<td>4.61</td>
<td>Joule heating rate profiles excluding 0.3 m and 0.05 m of soymilk</td>
<td>158</td>
</tr>
<tr>
<td>4.62</td>
<td>x-y plane of Joule heating rate contour of soymilk</td>
<td>158</td>
</tr>
<tr>
<td>4.63</td>
<td>y-z plane of Joule heating rate contour of soymilk</td>
<td>159</td>
</tr>
<tr>
<td>4.64</td>
<td>3D contour of Joule heating rate of soymilk</td>
<td>159</td>
</tr>
<tr>
<td>4.65</td>
<td>3D contour of voltage of soymilk</td>
<td>161</td>
</tr>
<tr>
<td>4.66</td>
<td>x-y plane of contour of voltage of soymilk</td>
<td>161</td>
</tr>
<tr>
<td>4.67</td>
<td>y-z plane of voltage contour at inlet, 0.05 m, 0.14 m, 0.17 m, 0.23 m and outlet of soymilk</td>
<td>162</td>
</tr>
<tr>
<td>4.70</td>
<td>Various steps involved in the design and optimization of a thermal system and in the implementation of the design</td>
<td>171</td>
</tr>
</tbody>
</table>
NOMENCLATURE

The following is a list of definitions of the main symbols used in this thesis. SI units are considered in the study.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cross-sectional surface area of the electrodes</td>
<td>([m^2])</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
<td>([A])</td>
</tr>
<tr>
<td>b</td>
<td>The coefficient of temperature dependent Electrical conductivity</td>
<td>([^0C^{-1}])</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient of performance</td>
<td>[dimensionless]</td>
</tr>
<tr>
<td>(C_p)</td>
<td>Specific heat of liquid food</td>
<td>([J\ kg^{-1}\ 0C^{-1}])</td>
</tr>
<tr>
<td>(D_T)</td>
<td>Decimal reduction time</td>
<td>([\text{min}])</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of the heating cell</td>
<td>([\text{m}])</td>
</tr>
<tr>
<td>(dv_r/dr)</td>
<td>Radial velocity gradient in the radial direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_r/d\theta)</td>
<td>Radial velocity gradient in angular direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_r/dz)</td>
<td>Radial velocity gradient in axial direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_{\theta}/dr)</td>
<td>Angular velocity gradient in radial direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_{\theta}/d\theta)</td>
<td>Angular velocity gradient in angular direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_{\theta}/dz)</td>
<td>Angular velocity gradient in axial direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_r/dr)</td>
<td>Axial velocity gradient in radial direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_r/d\theta)</td>
<td>Axial velocity gradient in angular direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dv_r/dz)</td>
<td>Axial velocity gradient in axial direction</td>
<td>([\text{ms}^{-1}\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dT/dr)</td>
<td>Temperature gradient in radial direction</td>
<td>([^0C\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dT/d\theta)</td>
<td>Temperature gradient in angular direction</td>
<td>([^0C\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dT/dz)</td>
<td>Temperature gradient in axial direction</td>
<td>([^0C\text{m}^{-1}])</td>
</tr>
<tr>
<td>(dV/dr)</td>
<td>Voltage gradient in radial direction</td>
<td>([\text{Vm}^{-1}])</td>
</tr>
<tr>
<td>(dV/d\theta)</td>
<td>Voltage gradient in angular direction</td>
<td>([\text{Vm}^{-1}])</td>
</tr>
<tr>
<td>(dV/dz)</td>
<td>Voltage gradient in axial</td>
<td>([\text{Vm}^{-1}])</td>
</tr>
</tbody>
</table>
direction

\(\frac{dP}{d\theta} \) Angular pressure gradient \([\text{Pam}^{-1}]\)

\(\frac{dP}{dz} \) Axial pressure gradient \([\text{Pam}^{-1}]\)

\(\frac{dP}{dr} \) Radial pressure gradient \([\text{Pam}^{-1}]\)

\(E \) Voltage gradient or local electric field intensity \([\text{Vm}^{-1}]\)

\(EE \) Electrical energy \([\text{W}]\)

\(EE_{\text{acum}} \) Accumulated electrical energy \([\text{W}]\)

\(E_{\text{loss}} \) Heating energy loss from the system \([\text{W}]\)

\(F \) Number of minutes required to destroy a given number of organisms at a given temperature \([\text{min}]\)

\(F_0 \) Cumulative thermal lethality \([\text{min}]\)

\(f \) Frequency \([\text{Hz}]\)

\(G \) Acceleration due to gravity \([\text{m/s}^2]\)

\(G_E \) Acceleration due to electric field \([g_E = E^2 bD^4]\)

\(H \) Height of the heating cell \([\text{m}]\)

\(I \) Current \([\text{A}]\)

\(J \) Current density \([\text{A/m}^2]\)

\(K \) Consistency index \([\text{Pa s}^n]\)

\(k \) Thermal conductivity of liquid being heated \([\text{w m}^{-1} \text{k}^{-1}]\)

\(\ln \) Natural logarithm

\(L_{\text{T}} \) Low temperature holding \([\text{C}]\)

\(L_e \) Distance between electrodes \([\text{m}]\)

\(L/A \) Ratio of distance between electrodes to diameter of heating cell

\(L_{\text{leth}} \) Lethality at specified time \([\text{min}]\)

\(L \) Electrode length \([\text{m}]\)

\(m' \) Volumetric flow rate \([\text{m}^3\text{s}^{-1}]\)

\(m_{\text{RT}} \) Minimum residence time \([\text{sec}]\)

\(n \) Flow behavior index \([\text{dimensionless}]\)

\(P_0 \) Power \([\text{W}]\)

\(P \) Pressure \([\text{Pa}]\)

\(Q \) Volumetric heating generation \([\text{w m}^{-3}]\)

\(RT \) Residence time \([\text{sec}]\)

\(r \) Radial position from center line \([\text{m}]\)
Resistance [Ω]
Reference temperature [°C]
Total soluble solids [°Brix]
Heating time [sec]
Time of the process [min]
Inlet fluid temperature [°C]
Number of organisms survive the heat treatment
Temperature [°C]
Voltage [volts]
Mean velocity [ms⁻¹]
Angular velocity [ms⁻¹]
Radial velocity [ms⁻¹]
Axial velocity [ms⁻¹]
Number of ⁰C required for the thermal death time curve to traverse one logarithmic cycle [⁰C]
Radial coordinate [m]
Axial coordinate [m]
Prandtl number $[\nu/\alpha = C_p \mu k^{-1}]$
Graetz number $[\rho V_m D^2 \beta k^{-1} L^{-1}]$
Grashof number for power law fluid $[g \rho^2 \Delta T \beta R^{1+2n} \nu_m^{-2n} k^{-2}]$
Grashof number, $[g \rho^2 \Delta T \beta D^3 \mu^{-2}]$
Electrical Grashof number $[E^2 \rho_m^2 \Delta T \beta D^2 \mu^{-2}]$
Reynolds number $[\rho v_m D \mu^{-1}]$
Reference density [kg m⁻³]
Density of liquid [kg m⁻³]
Apparent viscosity [Pa s]
Shear stress [Pa]
Thermal expansion coefficient [⁰C⁻¹]
Angular coordinate [m]
Kinematics viscosity [μm²]
Thermal diffusivity [k ρ⁻¹ C_p⁻¹]
Shear rate [s⁻¹]
Electrical conductivity [Sm⁻¹ or ohm⁻¹ m⁻¹]
Electrical conductivity of the fluid food at reference temperature [Sm⁻¹ or ohm⁻¹ m⁻¹]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔT</td>
<td>Difference between inlet and outlet temperature [°C]</td>
</tr>
<tr>
<td>μ</td>
<td>Newtonian viscosity [Pa s]</td>
</tr>
<tr>
<td>Subscripts</td>
<td>Description</td>
</tr>
<tr>
<td>ref</td>
<td>Reference value</td>
</tr>
<tr>
<td>El</td>
<td>Electrical</td>
</tr>
<tr>
<td>out</td>
<td>Outlet</td>
</tr>
<tr>
<td>pl</td>
<td>Power law</td>
</tr>
<tr>
<td>m</td>
<td>Averaged</td>
</tr>
<tr>
<td>e</td>
<td>Electrode</td>
</tr>
<tr>
<td>in</td>
<td>Inlet</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

Thermal processing is an important method to extend the shelf-life of foods. However, some sensory - discoloration, flavor and textural changes as well as other physical and chemical changes - over-cooking, liquefaction, vitamin loss, caramelization and Maillard reactions are undesirable effects of thermal processing. Therefore, it is necessary to achieve optimal thermal processing to ensure both quality and safety of processed food (Erdogdu, 2000; Lund, 1977; Ramesh, 1995).

Alternatively, technologies based on electric field treatments of a food product have attracted attention from both academic and industrial communities because of high durability of treated products, technical simplicity and the ability to minimize food quality deterioration (Jeyamkondan et al., 1999). These technologies include (1) ohmic heating (2) pulsed electric field treatment and (3) microwave processing.

The ohmic heating concept is not new and was widely used in the 19th century to pasteurize milk. Apparently due to the lack of inert materials for the electrodes this technology was abandoned (Mizrahi et al., 1975). However the technology has recently gained new interest because the treated products are of superior quality compared to those processed by conventional technologies. This is mainly