UNIVERSITI PUTRA MALAYSIA

ANTI-MALARIAL ACTIVITY OF GONIOthalamus ScorTechinII KING

NOOR AZIAN BT. MD YUSUF

IB 2006 15
ANTI-MALARIAL ACTIVITY OF GONIOTHALAMUS SCORTECHINII KING

By

NOOR AZIAN BT. MD YUSUF

Thesis Submitted to the School of Graduates Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

February 2006
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Master of Science

ANTI-MALARIAL ACTIVITY OF *GONIOTHALAMUS SCORTECHINII* KING

By

NOOR AZIAN BT. MD YUSUF

February 2006

Chairman: Associates Professor Khozirah Shaari, PhD

Faculty: Institute of Bioscience

Malaria remains the most devastating infectious parasitic disease, inflicting both death and economic loses on at least half the world population. Numerous attempts have been made to control the disease by using vector control measures or/and chemoprophylaxis, but they have had limited success. Immunoprophylaxis hold promises but effective vaccines are still not available. Presently, the most effective way of dealing with malaria is the administration of chemotherapeutic agents. Although drugs treatments of malaria are currently the best means of disease management, there is an urgent need for the development of effective anti-malarial drugs.

Earlier assessment of *Goniothalamus scortechinii* King showed to possess significant anti-malarial properties, *in vitro*. A phytochemical study of *G. schortechinii* King was thus carried out and has led to the isolation and
characterization of two compounds, goniothalamin and pinocembrine, from the bioactive chloroform fraction. Both compounds were assayed for anti-malarial activity using the pLDH method. Both exhibited anti-malarial activity against *P. falciparum* in different degrees, goniothalamin gave an IC$_{50}$ value of 4.0824 µg/ml while pinocembrine gave 19.308 µg/ml.

Goniothalamin was evaluated for its anti-malaria activity *in-vivo* using 4-Day Suppressive Test against *Plasmodium berghei* ANKA strain in *Swiss Albino Mice*. The 4DT was carried out by inoculating the clean mice with *P. berghei* ANKA strain and the infected mice were then treated orally and subcutaneously with goniothalamin. The suppression of parasite parasitemia and the ED$_{90}$ value of goniothalamin were determined. Control drug used in this study was Chloroquine. Results showed that goniothalamin when given orally at a dose of 90 and 120 mg/kg mice body weight, exhibited suppressions of *P. berghei* infection of 98% and 99.7%, respectively. Meanwhile, goniothalamin given subcutaneously at a dose 120 mg/kg mice body weight gave 90.5% suppression of *P. berghei* infection.

Ex vivo assay was carried out to investigate the effect of goniothalamin towards *P. falciparum in vitro* using the mouse serum treated with goniothalamin. This was done to prove that goniothalamin reaction toward *P. falciparum* should same as reaction towards *P. berghei* in *in vivo*
reaction. *Ex vivo* test was carried out using pLDH assay with serum of mice given goniothalamin orally and subcutaneously. A graph to determine the 90% inhibition of drugs-serum towards *P. falciparum* was plotted for each treated mice serum. Results showed the IS$_{90}$ of mice serum given goniothalamin orally was ranging from 0.050 to 4.00 µg/ml, for subcutaneous route the IS$_{90}$ was ranging from 0.009-4.750 µg/ml. A graph for estimating the length of time goniothalamin can remain in the blood was plotted. This gave the estimated time of goniothalamin both given orally and subcutaneously can remained a minimum of 6 hours in the blood.

In conclusion, goniothalamin does strongly inhibit *P. falciparum*, although it is not as potent as the standard drugs in use. More investigations such as drug combination, cytotoxicity, mechanism of action and toxicology studies, need to be carried out in order to determine its full potential as an anti-malarial.

Penyelidikan fitoubatan secara in-vitro ke atas pokok Goniothalamus scortechinii King telah manunjuk bahawa ia mempunyai khasiat sebagai

Pengujian keatas aktiviti goniothalamin sebagai ubat anti-malaria secara in vivo telah dijalankan dengan kaedah “4 Day Suppressive Test” terhadap P. berghei strain ANKA di dalam mencit Swiss Albino. Khlorokuin telah digunakan sebagai kawalan dalam kajian ini. Keputusan telah menunjukkan bahawa pada dos 90 mg/kg dan 120 mg/kg yang diberikan secara oral, goniothalamin telah menindas peningkatan parasitemia parasit masing-masing sebanyak 98% dan 99.7%. goniothalamin apabila diberikan secara ‘subcutaneous’, telah menindas peningkatan parasitemia parasit sebanyak 90.5% apabila diberikan dos 120 mg/kg.

Kajian ex vivo pula dijalankan bagi melihat keberkesanan goniothalamin terhadap parasit P. falciparum secara in-vitro dengan menggunakan serum mencit yang telah diberikan goniothalamin. Ujian ini dijalankan bagi
membuktikan bahawa tindakbalas goniothalamin terhadap *P. falciparum* secara *in vitro* ini adalah sama kesannya apabila dijalankan secara *in vivo*. Goniothalamin telah diberikan secara oral dan ‘subcutaneous’, dan assai pLDH digunakan untuk menentukan 90% penyekatan serum-dadah terhadap peningkatan parasitemia *P. falciparum*. Graf untuk menentukur 90% penyekatan diplotkan bagi melihat tindakkan serum dadah ini terhadap *P. falciparum*. Keputusan menunjukan IS90 goniothalamin apabila diberikan goniothalamin secara oral telah menyekat peningkatan parasitemia pada kepekatan yang berbeza bermula daripada julat kepekatan 0.050 hingga 4.00 µg/ml, manakala untuk ‘subcutaneous’ IS90 berjulat daripada 0.009- 4.750 µg/ml. Graf untuk melihat berapa lama serum-dadah boleh bertahan didalam dadah turut plotkan. Minimum masa untuk serum-dadah bertahan didalam darah dianggarkan selama 6 jam.

Kesimpulannya, goniothalamin telah menunjukan keupayaannya untuk menyekat *P. falciparum* walaupun keupayaannya tidak sekuat standard dadah yang digunakan. Kajian lanjut perlu dilakukan seperti kombinasi dengan dadah lain, sitotoksisiti, mekanisma tindakan, kajian keracunan (toxicology) demi menentukan keupayaan sebenarnya sebagai agen anti-malarial.
ACKNOWLEDGEMENTS

In the name of Allah S.W.T., the merciful and the beneficent

First of all, I would like to express my gratitude and thanks to all my supervisors, Prof. Madya Dr. Khozirah Shaari, Dr. Noor Rain Abdullah, Dr. Lokman Hakim Sulaiman and Prof. Madya Dr. Gwendoline ECL for all the guidance and advice throughout the course of the study.

I would like to take this opportunity to thank the Director of the Institute for Medical Research (IMR) for allowing me to conduct my study at the Institute. A warm and special thanks to all my friends at the Parasitology Lab, IDRC, namely Hj. Yusri Mohd Yusof, Dr. Shamilah Hisam, Gan CC, Malkith Kaur, Aishah mahmood, Mohd Azam Abu Bakar and Bioassay Lab, HMRC namely, Rohaya Chomel, Rosilawati Mohamad, Ahmad Napi, Khairudin Husin and not forgetting all friends for sharing the bad and good times together and supporting me throughout this study. I also would like to express my special thanks to the staff of Institute of Bioscience and Graduate school, UPM for their assistant in completing this study.
And last but not least to my big beloved family, Allahyarham Md Yusuf Hj Awang and Allahyarhamah Rubiah Ismail, my beloved and caring stepmother Rokiah Md Noor, my Sisters and brothers, Umi Kalsum, Umi Sofian, Md Amran, Noriza, Noor Zila, Noor Zurawati, Noor Ziana, Nurul Ashikin, Mohd Amirul Azdi, Azrul Hisyam, Mohd Fikry Affendi and in-laws, Suhaimi, Razif, Rohaida, Dunian, Amir, Rosli and Azmir for their moral and financial support.

Noor Azian Bt Md Yusuf

Sik, Kedah

February 2006
I certify that an Examination Committee met on 24 February 2006 to conduct the final examination of Noor Azian Bt. Md Yusuf on her Master of Science thesis entitled “Anti-malarial Activity of *Goniothalamus Scortechinii* King” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Irmawati Ramli, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Manaf Ali, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohd Aspollah Sukari, PhD
Associates Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Zainal Abidin Abu Hasan, PhD
Professor
Faculty of Life Science
Universiti Kebangsaan Malaysia
(External Examiner)

Hasanah Mohd Ghazali, PhD
Professor/Deputy Dean
School of Graduates Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The member of the Supervisory Committee are as follows:

Khozirah Shaari, PhD
Associate Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Noor Rain Abdullah, PhD
Bioassay Units
Herbal Medicine Research Centre
Institute for Medical Research
(Member)

Lokman Hakim Sulaiman, PhD
Medical Consultant
Infectious Disease Research Centre
Institute for Medical Research
(Member)

Gwendoline EE Cheng Lian, PhD
Associates Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

AINI IDEGIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NOOR AZIAN BT MD YUSUF

Date: 10 May 2006
ABSTRACT

ABSTRACT

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

APPRAV

APPRAV

DECLARATION

DECLARATION

LIST OF TABLES

LIST OF TABLES

LIST OF FIGURES

LIST OF FIGURES

LIST OF ABBREVIATION

LIST OF ABBREVIATION

CHAPTER

CHAPTER

I INTRODUCTION

Malaria

Epidemiology

The need for new anti-malarial drugs

II LITERATURE REVIEW

Morphology of the malaria parasite

Human malaria parasite: Plasmodium falciparum

Murine Malaria Parasite: Plasmodium berghei

The Life Cycle of Malaria Parasite:

P. falciparum

P. berghei

Mechanism of malaria infection

Clinical malaria

Clinical sign and symptom

Severe malaria

Hypnozoite and relapse and recrudescence

Chemotheraphy

Drug in used

Mechanism of drug action

Definition and classification of drugs resistance

Challenges in chemotherapy

The genus Goniothalamus Hook.f. & Thomson

Distribution and botany

Medicinal uses

Chemical constituents of Goniothalamus spp.

Goniothalamus scoetechinii King

Previous work on G. scoetechinii King
III METHODOLOGY

General:
- Instrumentation: 45
- Chromatography: 45

Plant material:
- Preparation and extraction of plant material: 48

Isolation of compound:
- Physical and spectral properties of goniothalamin (G1): 50
- Physical and spectral properties of pinocembrine (G2): 50
- Resourcing of goniothalamin (G1) from *G. andersonii* for *in vivo* and *ex vivo* assay: 51

Parasite Lactate Dehydrogenase (pLDH) assay:
- Malstat test: 54
- Determination of IC\textsubscript{50} values: 55

Determination of blood schizonticidal activity *in vivo* and *ex vivo*:
- *In vivo* assay: 55
 - Infection of donor mice with *P. berghei* and calculation of % parasitemia: 57
 - Preparation of test and standard drugs: 58
 - Preliminary four day suppressive test (Pre-4DT): 58
 - Full four day suppressive test (4DT): 60

- *Ex vivo* assay: 62
 - Calculation of IS\textsubscript{50} values: 64

IV RESULTS AND DISCUSSION

Extraction and isolation of compound from crude chloroform extract of *Goniothalamus scortechinii* King: 66
- Characterization of G1 as goniothalamin: 66
- Characterization of G2 as pinocembrin: 78

Inhibition of pLDH activity by test compound: 95
- *In-vivo* evaluation of anti-malarial effect of goniothalamin: 96
- *Ex-vivo* evaluation of anti-malarial effect of goniothalamin: 100

V SUMMARY AND CONCLUSION: 104

REFERENCES: 106

APPENDICES: 112

BIODATA OF THE AUTHOR: 128
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Malarial cases in Malaysia according to the infecting species for the year 2001 and 2002</td>
</tr>
<tr>
<td>2.1</td>
<td>Available anti-malarial drugs</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design for 4DT</td>
</tr>
<tr>
<td>4.1</td>
<td>1H-13C correlation based on HMBC experiment on G1</td>
</tr>
<tr>
<td>4.2</td>
<td>1H-13C correlation based on HMBC experiment on G1</td>
</tr>
<tr>
<td>4.3</td>
<td>IS$_{90}$ of mice given goniothalamin orally</td>
</tr>
<tr>
<td>4.4</td>
<td>IS$_{90}$ of mice given goniothalamin subcutaneously</td>
</tr>
<tr>
<td>D.1</td>
<td>ED${50}$ and ED${90}$ of several standard compounds (used as references to validate the blood schizonticidal activity obtained in the in vivo study)</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Regions of the world at risk of malaria Infections</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>The life cycles of the malaria parasite</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of sensitivity and resistance to ant-malaria</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Goniothalamus scortechinii King</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Treatment regime of mice serum sample for ex-vivo assay</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>EIMS Spectrum of G1; C_{13}H_{12}O_{2}</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>1H NMR spectrum for G1</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>13C NMR spectrum for G1</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>COSY spectrum for G1</td>
<td>73</td>
</tr>
<tr>
<td>4.5</td>
<td>HSQC spectrum of G1</td>
<td>74</td>
</tr>
<tr>
<td>4.6a-c</td>
<td>Summarized of HMBC experiment on G1</td>
<td>75</td>
</tr>
<tr>
<td>4.7</td>
<td>Full assignment and selected HMBC correlation of goniothalamin</td>
<td>78</td>
</tr>
<tr>
<td>4.8</td>
<td>EIMS Spectrum of G2; C_{15}H_{11}O_{4}</td>
<td>82</td>
</tr>
<tr>
<td>4.9a-b</td>
<td>1H NMR Spectrum of G2</td>
<td>83</td>
</tr>
<tr>
<td>4.10</td>
<td>COSY spectrum of G2</td>
<td>85</td>
</tr>
<tr>
<td>4.11</td>
<td>13C NMR spectrum of G2</td>
<td>86</td>
</tr>
<tr>
<td>4.12a-b</td>
<td>HSQC Spectrum of G2</td>
<td>87</td>
</tr>
<tr>
<td>4.13a-f</td>
<td>HMBC Spectrum of G2</td>
<td>89</td>
</tr>
<tr>
<td>4.14</td>
<td>The ED$_{90}$ of goniothalamin (G1) given orally</td>
<td>95</td>
</tr>
</tbody>
</table>
4.15 The ED$_{90}$ of goniothalamin (G1) given Subcutaneously

4.16 Blood schizonticidal activity of parasite in mouse after treatment with chloroquine (CQ)

4.17 Blood schizonticidal activity of parasite in mouse after treatment with goniothalamin (G1)

4.18 Availability of mice drug-serum in blood when given goniothalamin orally

4.19 Availability of mice drug-serum in blood when given goniothalamin orally

4.20 Availability of mice drug-serum in blood when given goniothalamin subcutaneously

D.1 Graph of Probit Analysis for 4-DT carried out using $P. yoelli$ N strain, standard drug Naartesunate, via oral route.

E.1 % Parasitemia in blood serum of Mouse A (Oral Route)

E.2 % Parasitemia in blood serum of Mouse B (Oral Route)

E.3 % Parasitemia in blood serum of Mouse C (Oral Route)

E.4 % Parasitemia in blood serum of Mouse D (Oral Route)

E.5 % Parasitemia in blood serum of Mouse A (SC Route)

E.6 % Parasitemia in blood serum of Mouse B (SC Route)

E.7 % Parasitemia in blood serum of Mouse C (SC Route)

E.8 % Parasitemia in blood serum of Mouse D (SC Route)
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APAD</td>
<td>Analog 3 acetyl pyridine dinucleotide</td>
</tr>
<tr>
<td>BC</td>
<td>Before Century</td>
</tr>
<tr>
<td>BH</td>
<td>Beta-haematin</td>
</tr>
<tr>
<td>CQ</td>
<td>Chloroquine</td>
</tr>
<tr>
<td>CM</td>
<td>Culture Medium</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlated Spectroscopy</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxynucleic Acid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl-sulphate</td>
</tr>
<tr>
<td>dHFR</td>
<td>Dehydrofolate Reductase</td>
</tr>
<tr>
<td>dHPS</td>
<td>Dehydropteroate Synthase</td>
</tr>
<tr>
<td>ED₉₀</td>
<td>Effective Dose at 90%</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EIR</td>
<td>Erythrocyte Infection Rate</td>
</tr>
<tr>
<td>EIMS</td>
<td>Electrospray Ionization Mass Spectrometry</td>
</tr>
<tr>
<td>FPIX</td>
<td>Free ferrisoporphyrin IX hydroxide</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>HMRC</td>
<td>Herbal Medicine Research Centre</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear Multiple Quantum Correlation</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear Single Quantum Correlation</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond Correlation</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>HS</td>
<td>Human Serum</td>
</tr>
<tr>
<td>IRBC</td>
<td>Infected Red Blood Cell</td>
</tr>
<tr>
<td>IMR</td>
<td>Institute for Medical Research</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Inhibition Concentration at 50%</td>
</tr>
<tr>
<td>IS<sub>50</sub></td>
<td>Inhibition of Serum Concentration at 50%</td>
</tr>
<tr>
<td>ICR</td>
<td>Swiss Albino Mice</td>
</tr>
<tr>
<td>IV</td>
<td>Intra-veneous</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilo-base</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate Dehydrogenase</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>MQ</td>
<td>Milipore Quality water</td>
</tr>
<tr>
<td>ml</td>
<td>Mili-liter</td>
</tr>
<tr>
<td>mg/kg</td>
<td>Mili-gram per kilo-gram</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitroblue Tetrozolium</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natrium Hydroxide</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natrium Chloride</td>
</tr>
<tr>
<td>N<sub>2</sub></td>
<td>Nitrogen</td>
</tr>
<tr>
<td>O</td>
<td>Oral Route</td>
</tr>
<tr>
<td>O<sub>2</sub></td>
<td>Oxygen</td>
</tr>
<tr>
<td>PRBC</td>
<td>Peripheral Red Blood Cell</td>
</tr>
<tr>
<td>PABA</td>
<td>p-amino Benzoic Acid</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
</tbody>
</table>
PES Phenazine ethhiosulphate
Pre-4DT Preliminary Four Day Test
pLDH Parasite Lactate Dehydrogenase
RBCs Red Blood Cells
SC Subcutaneous Route
SP Sulfadoxine/ Phyrimethamin
TLC Thin Layer Chromatografi
WHO World Health Organisation
\(0^\circ\)C Degrees Celcius
µl Micro-liter
4DT Four Day Test
\(\lambda_{max}\) In UV spectroscopy, the wavelength at which maximum absorption occurs
Malaria

Malaria continues to exact a substantial toll of human life and sufferings, particularly in the tropic and sub-tropic regions of the world. Human malaria has been recognized since the earliest period of man’s recorded history, and the discovery of mosquitoes trapped in amber suggests its prevalence in pre-historic times. A variety of names have been used to describe the disease such as the shakes, March, Roman, jungle, intermittent fever and ague chills. It was earlier thought that there was an etiological relationship between swamps and this fever. The name malaria is a misnomer and has originated from the Italian words *mala* (bad) and *aryia* (air) since in earlier days it was believed to be caused by breathing bad air (Ichpujani and Bathia, 1998 and Smyth, 1976).

Malaria is caused by single celled protozoa of the genus *Plasmodium*. *Plasmodium* does not only infect man but also apes, monkeys, birds and other vertebrate hosts. Four species of *Plasmodium* pathogenic to man are *P. falciparum* (malignant tertian or falciparum malaria), *P. vivax*
(benign tertian or vivax malaria, 48 hours cycles), P. malariae (quartant malaria, 72 hours cycles) and P. ovale (mild tertian or mild malaria).
Species parasitic to birds are P. gallinaceum (chicken), P. elongatum, P. reticulum and P. cathemerium. Simian malaria includes P. knowlesi, P. cynomolgi, P. inui, P. simium and P. lophure, while species parasitic to murine rodents are P. bergei, P. vinckei, P. chabaudi and P. yoelii (Ichpujani and Bathia, 1998; LaPage, 1963; Rosenthal, 2001).

Epidemiology

In 1955, WHO launched a program to eradicate malaria. This effort produced some important successes, but, for the most part, it has been a major disappointment. Indeed, over recent decades, morbidity and mortality caused by malaria have increased in many parts of the world with a large proportion of the world’s population remaining at risk of contracting this disease (Fig. 1.1). Hundred of millions of clinical episodes of malaria occur each year and it was estimated that 1.5-2.7 million deaths resulted from these infections. Numerous factors contribute to the persistence of the malaria problem and annually these include, among others:-
• efforts to control mosquito vectors, which were quite successful in some areas many years ago, have been limited by financial constraints and insecticide resistance

• programs to treat and control malaria, especially in highly vulnerable young children and pregnant women, are limited by poverty in most endemic regions

• despite many efforts, an effective malaria vaccine is not yet available and is unlikely to be available to those most at need in the near future

• malarial parasites have consistently demonstrated the ability to develop resistance to available drugs

• although great progress have been made in our understanding of malaria in recent years, our ability to develop new strategies to control the disease remain significantly limited by an incomplete understanding of the biology of the parasite and of the host’s response to parasite infection (Rosenthal, 2001)

Malaysia is no exception from the risk of malaria. Up to the days of the Malacca Sultanate, settlements had to be largely restricted to river mouths to avoid risks of malarial infections, thus curtailing population growth. In 1829, forty years after Penang Island was first occupied, one third of the deaths were caused by malaria (Lim, 2001).
Table 1.1 shows the number of malarial cases reported in 2001 and 2002 according to the infecting species in Malaysia. In 2001, *P. falciparum* and *P. vivax* account for just below 50% of malarial cases but in 2002, the cases increased to more than 50% for *P. falciparum* and 50% for *P. vivax*. In Sabah, malarial cases for 2001 were 54.87% and this increased to 64.2% in 2002. Malarial cases in Sarawak in 2001 and 2002 remained under 20% (MOH Annual Report, 2002).

![Figure 1.1: Regions of the world at risk of malarial infections.](image)

(The shrinking range of malaria is depicted by overlaying WHO maps for malaria risk for the year 1946 (yellow), 1966 (brown) and 1994 (red).)