ASSOCIATION BEHAVIOUR AND PHYSICOCHEMICAL PROPERTIES
OF DIHYDROXYSTEARIC ACID AND OCTYL DIHYDROXYSTEARATE,
AND THEIR APPLICATIONS IN COSMETICS

By

MARISOL HAINNY BINTI MOHAMED Sopian

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfilment of the Requirement for the
Degree of Master of Science

June 2006
DEDICATIONS

Specially goes to:

My dad, Mohd Sopian Jusoh

My mom, Maria Abdullah

My Husband, Sheik Azrif Bux

My Brother, Mohd Bayani Affendy

‘Thank you for the support and strength’
ASSOCIATION BEHAVIOUR AND PHYSICOCHEMICAL PROPERTIES
OF DIHYDROXYSTEARIC ACID AND OCTYL DIHYDROXYSTEARATE,
AND THEIR APPLICATIONS IN COSMETICS

By

MARISOL HAINNY BINTI MOHAMED SOPIAN

June 2006

Chairman : Professor Anuar Kassim, PhD
Faculty : Science

The phase behaviour in ternary system had been studied at 85°C under visual observation by polarizing light and they were confirmed by polarization microscope. It was found spherulite and needles type of crystal for DHSA and Octyl dihydroxystearate respectively. The polymorphs were typically distinguished by differences in their X-ray spectra using X-ray diffraction spectroscopy. Polymorph DHSA and Octyl dihydroxystearate in MCT exist as beta prime (β’) and beta (β). The results also showed that mixture of DHSA/ Octyl dihydroxystearate in different type of third component (MCT and ethanol) may posses only stable β’ form, only stable β form or both β and β’ form.
A rheological analysis showed the deformation and flow behaviour of DHSA / Octyl dihydroxystearate and MCT respectively. From hysteresis value, the correlation between the crystal polymorph and decreasing of ratio DHSA plays an important role with the structure breakdown. Instability of polymorph gave vary and unpredictable viscosity value to the mixture of DHSA and Octyl dihydroxystearate. Study of frequency sweep gave idea viscoelastic properties of DHSA and Octyl dihydroxystearate in MCT. Most samples gave result of storage modulus was always higher than the loss modulus (\(G'>G''\)). Loss modulus higher than storage modulus (\(G''>G'\)) for 30:70 of DHSA/ Octyl dihydroxystearate at 85% MCT.

Their needle and spherulite microstructures, which confer a brittle or smooth feel, were useful in the formulation of concealer stick. The concealer sticks were prepared by adding DHSA, Octyl dihydroxystearate, and MCT as main components combined with fillers, pigment, binders and fragrance. The concealer stick with different ratios of DHSA and Octyl dihydroxystearate gave different results in its stability. The stability test included breaking point, heat test, hardness test, slip melting point, softening point and humidity.

Formulation at 20:80 DHSA/ Octyl dihydroxystearate was chosen as the best formulation due to the physical properties previously which consist of \(\beta\) polymorph densely packed spherulite crystal. When compared to commercial, this formulation showed a better result in terms of softness and strength effect of the sticks.
KELAKUAN PENYEKUTUAN DAN SIFAT FIZIK-KIMIA ASID DIHIDROKSISTEARIK DAN OKTIL HIDROKSISTEARAT DAN PENGGUNAANNYA DALAM KOSMETIK

Oleh

MARISOL HAINNY BINTI MOHAMED SOPIAN

June 2006

Pengerusi : Profesor Anuar Kassim, PhD
Fakulti : Sains

Kajian sistem tiga fasa telah dilakukan pada suhu 85°C dengan menggunakan cahaya berkutub dan mikroskop berkutub. Dua jenis kristal wujud bagi asid dihidroksistearik (DHSA) dan Oktيل dihydroksistearat iaitu sperulit dan jejarum. Polimorf DHSA dan Oktيل dihydroksistearat dapat ditentukan oleh pembelauan X-ray. Keputusan menunjukkan polimorf asid dihydroksistearik (DHSA) dan Oktيل dihydroksistearat dalam MCT wujud sebagai beta prime (β’) and beta (β). Campuran pelbagai nisbah asid dihydroksistearik (DHSA) dan Oktيل dihydroksistearat dalam kepekatan bahan ketiga (MCT dan etanol) mungkin wujud dalam β’ atau β sahaja dan mungkin juga β dan β’.

Kajian reologi menunjukkan sifat aliran dan pencacatan bagi asid dihydroksistearik (DHSA) dan Oktيل dihydroksistearat. Daripada nilai hysterisis,

Mikrostruktur sperulit dan jejarum yang memberikan ciri halus dan rapuh amat sesuai untuk kegunaan dalam konseler. Formulasi konseler ini disediakan dengan menggunakan DHSA, Oktil dihidroksistearat dan MCT sebagai bahan asas bersama dengan pigmen, pengisi, bahan pengikat campuran dan wangian. Keputusan menunjukkan kepelbagaian dalam ujian kestabilan. Ujian kestabilan tersebut adalah ujian titik pemecahan, ujian tahan haba, ujian kekerasan, ujian titik kelembutan, ujian titik pengelinciran pencairan dan ujian kelembapan.

Formulasi bagi 20:80 DHSA/ Oktil dihidroksistearat telah dipilih sebagai formulasi yang terbaik berasaskan kepada sifat kimia-fiziknya yang terdiri daripada sperulit \(\beta\) kristal yang padat. Apabila dibandingkan dengan produk komersial ianya lebih baik dari segi struktur yang lebih lembut dan kuat pada konselar tersebut.
AKNOWLEDGEMENTS

Bismillahirrahmanirrahim

Alhamdullilah, all praise goes to Allah for giving me the courage and patience to fulfill this task. I would like to take this opportunity to express my sincere thank you to Professor Dr. Anuar Kassim for his continuous supervision, support and encouragement during this study. A sincere appreciation goes to Dr. Zahariah Ismail for her suggestions, guidance, patience and willing to share her knowledge throughout the development of this project. I would like to thanks Dr. Roila and Associated Prof Dr. Abdul Halim for their co-operation and guidance toward the course of my study. Thank you Ministry of Science, Technology and Innovation Malaysia for research grant during this project.

Special thanks go to AOTD’s and Malaysian Palm Oil Board (MPOB) staff for their kind co-operation throughout my study and taking the time to share their expertise. Not to forget all the staff of Chemistry Department UPM, Infoport EM Department UPM and Nuclear Port UKM for their help and co-operation.

‘There is no me without you’, mummy and daddy, thank you for love and understanding. Big thanks goes to dearest friend who always give moral support during my study.-Lini, Zara, Zaihanif, Kak Zue, Kak Nah and Rahimi. Last but not least to person who are always be there when the bad circumstances comes along – Sheik Azrif Bux. Thank you and God bless you.
I certify that an Examination Committee met 16th June 2006 to conduct the final examination of Marisol Hainny Binti Mohamed Sopian on her Master of Science thesis entitled “Association Behaviour and Physicochemical Properties of Dihydroxystearic Acid and Octyl Dihydroxystearate and Their Application in Cosmetic” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Asmah Hj. Yahya, Ph.D.
Associate Professor
Chemistry Department,
Faculty of Science,
Universiti Putra Malaysia
(Chairman)

Zulkarnain Zainal, Ph.D.
Professor
Chemistry Department,
Faculty of Science,
Universiti Putra Malaysia
(Internal Examiner)

Mohd Zaizi Desa, Ph.D.
Associate Professor
Chemistry Department,
Faculty of Science,
Universiti Putra Malaysia
(Internal Examiner)

Hamdan Suhaimi, Ph.D.
Professor
Centre for Quality Assurance
University College of Science and Technology Malaysia
(External Examiner)

Hasanah Mohd Ghazali, Ph.D
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.
The members of the Supervisory Committee are as follows:

Anuar Bin Kassim, PhD
Professor
Chemistry Department,
Faculty of Science,
Universiti Putra Malaysia
(Chairman)

Zahariah Bt Ismail, PhD
Advance Oleochemical Technology Division
Malaysian Palm Oil Board
Malaysia.
(Member)

Abdul Halim Bin Abdullah, PhD
Associate Professor
Chemistry Department,
Faculty of Science,
Universiti Putra Malaysia
(Member)

Roila Bt Awang, PhD
Malaysian Palm Oil Board
Malaysia
(Member)

Aini Deris, Ph.D
Professor/Dean of
Graduate School
Universiti Putra Malaysia

Date: 8 FEBRUARY 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

__
MARISOL HAINNY BINTI MOHAMED SOPIAN

Date: 18 December 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>AKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Oleochemical Industry in Malaysia 2
 1.2 Palm Based Oleochemical 3
 1.3 Dihydroxystearic Acid and Its Derivatives 4
 1.3.1 Dihydroxystearic Acid 4
 1.3.2 Octyl dihydroxystearate 5
 1.4 Surfactants 8
 1.4.1 Crystallographic Structure of Fats 8
 1.4.2 Polymorphism 10
 1.5 Decorative Cosmetics 16
 1.6 Objective of the Study 20

2 LITERATURE REVIEW 21
 2.1 Crystal Characterization Techniques 21
 2.1.1 Microscopy 22
 2.1.2 Electron Microscopy 23
 2.1.3 X-ray Diffraction Spectroscopy 25
 2.1.4 Rheology 26
 2.2 Formulation of Stick Based 28
2.3 Polymorphism, Crystal Structure and Crystallization Behaviour of Fatty Acid

2.4 Applications of Ternary Systems in Formulation

2.5 Importance of Structure in Foods

3 MATERIALS AND METHODS

3.1 Materials

3.1.1 Medium Chain Triglyceride

3.1.2 Pigment

3.1.3 Fillers

3.1.4 Binder

3.1.5 Fragrance

3.2 Methods

3.2.1 Constructing the Ternary Phase Diagrams

3.2.2 Preparing Samples for Physicochemical Properties Analysis

3.3 Optical Microscopy Measurement

3.4 Crystal Polymorph Identification

3.4.1 X-ray Diffraction Analysis

3.5 Rheology Measurement

3.5.1 Thixotropy

3.5.2 Viscosity Measurement

3.5.3 Amplitude Sweep

3.5.4 Frequency Sweep

3.6 Scanning Electron Microscope

3.7 Preparing of the Concealer Sticks

3.8 Stability Test

3.8.1 Humidity Test

3.8.2 Breaking Point

3.8.3 Heat test

3.8.4 Slip Melting Point

3.8.5 Softening Point

3.8.6 Hardness Test
4 RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Ternary Phase Diagram</td>
<td>52</td>
</tr>
<tr>
<td>4.1.1 Ternary Phase Diagram of DHSA/ Octyl dihydroxystearate/ MCT</td>
<td>52</td>
</tr>
<tr>
<td>4.1.2 Ternary Phase Diagram of DHSA / Octyl dihydroxystearate/ Ethanol</td>
<td>56</td>
</tr>
<tr>
<td>4.2 X-ray Diffraction Analysis</td>
<td>61</td>
</tr>
<tr>
<td>4.2.1 X-ray Diffraction Analysis of DHSA/ Octyl dihydroxystearate/ MCT</td>
<td>61</td>
</tr>
<tr>
<td>4.2.2 X-ray Diffraction Analysis of DHSA / Octyl dihydroxystearate/ Ethanol</td>
<td>63</td>
</tr>
<tr>
<td>4.3 SEM analysis</td>
<td>69</td>
</tr>
<tr>
<td>4.3.1 SEM Analysis of DHSA/ Octyl dihydroxystearate / MCT</td>
<td>69</td>
</tr>
<tr>
<td>4.4 Rheology Analysis</td>
<td>73</td>
</tr>
<tr>
<td>4.4.1 Thixotropic Behaviour (Hysteresis Area) of DHSA / Octyl dihydroxystearate/ MCT</td>
<td>73</td>
</tr>
<tr>
<td>4.4.2 Viscosity Properties of DHSA/ Octyl dihydroxystearate/ MCT</td>
<td>77</td>
</tr>
<tr>
<td>4.4.3 Amplitude Sweep</td>
<td>81</td>
</tr>
<tr>
<td>4.4.4 Frequency Measurement</td>
<td>83</td>
</tr>
<tr>
<td>4.5 Stability Test of Concealer Stick</td>
<td>88</td>
</tr>
<tr>
<td>4.5.1 Breaking Point</td>
<td>88</td>
</tr>
<tr>
<td>4.5.2 Heat Test</td>
<td>89</td>
</tr>
<tr>
<td>4.5.3 Hardness Test</td>
<td>91</td>
</tr>
<tr>
<td>4.5.4 Slip Melting Point</td>
<td>92</td>
</tr>
<tr>
<td>4.5.5 Softening point</td>
<td>93</td>
</tr>
<tr>
<td>4.5.6 Humidity</td>
<td>94</td>
</tr>
<tr>
<td>4.6 Stability Test of Commercial Sample and Formulation of DHSA/ Octyl dihydroxystearate</td>
<td>94</td>
</tr>
</tbody>
</table>

5 CONCLUSION AND FUTURE WORK

REFERENCES | 101 |
APPENDICES | 106 |
BIODATA OF THE AUTHOR | 118 |