EFFECTS OF DIETARY INCLUSION OF MICROALGAE *Arthrospira platensis* ON THE GROWTH PERFORMANCE AND CARCASS QUALITY IN JAPANESE QUAILS (*Coturnix japonica* TEMMINCK & SCHLEGEL)

DANNY CHEONG SWEE WENG

FP 2014 45
EFFECTS OF DIETARY INCLUSION OF MICROALGAE *Arthrospira platensis* ON THE GROWTH PERFORMANCE AND CARCASS QUALITY IN JAPANESE QUAILS (*Coturnix japonica* TEMMINCK & SCHLEGEL)

By

DANNY CHEONG SWEE WENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
In recent years, quail meat has been gaining much popularity among consumers in Malaysia and quail rearing is expected to increase to meet the high demand for local and international market. Although a series of researches had been carried out to determine the optimum level of Arthrospira platensis inclusion for fast growing commercial broiler and layer chicken diet but not in Japanese quail diet. Hence, two experiments were conducted to study the effects of feeding microalgae Arthrospira platensis on the growth performance and carcass quality of Japanese quails. In the first experiment, three hundred 14 days old quails were randomly subjected to 5 treatments consisted of basal diet-control (C), diet with 1% Arthrospira platensis inclusion, diet with 2% Arthrospira platensis inclusion, diet with 4% Arthrospira platensis inclusion and diet with 8% Arthrospira platensis inclusion. Each treatment was replicated three times, consisting of 20 birds. The feeding experiment period lasted for 21 days. Basal diet was based on corn and soybean meal. In the first experiment, dietary of Arthrospira platensis inclusion significantly improved weekly body weight gain (BWG) and feed conversion ratio (FCR) in quails. Also, Mortality rate (MR), carcass yield, meat colour values and meat tenderness were significantly improved by Arthrospira platensis diet. These results concluded that Arthrospira platensis was suitable as a supplement in quails’ feed for improving growth performance and carcass quality. In this experiment, 4% Arthrospira platensis inclusion was identified to be the most suitable level considering most parameters showed positive observation. In the second experiment, three hundred 14 days old quails were randomly allocated into 5 dietary treatment groups, consisting basal diet-control group, groups with 4% Arthrospira platensis diet at different starting age of 15 days old, 22 days old and 28 days old and group fed with commercial diet. Each treatment was replicated three times, consisting 20 birds. The feeding experiment lasted for 21 days. Body weight gains (BWG), feed conversion ratio (FCR) and mortality rate (MR) were significantly improved from the time of Arthrospira platensis inclusion into diet. Also, carcass yield, meat colour test and meat tenderness were also significantly improved when introduced Arthrospira platensis diet at earlier growing stage. The results demonstrated that at starting age from day 15 to as later as day 22 were found to be the best time of Arthrospira platensis inclusion into quail diet to achieve positive growth performance and improve carcass quality.
KESAN MIKROALGA *Arthrospira platensis* KE ATAS PRESTASI KADAR TUMBESARAN DAN KUALITI DAGING PADA BURUNG PUYUH (*Coturnix japonica* TEMMINCK & SCHLEGEL)

Oleh

DANNY CHEONG SWEE WENG

Oktober 2014

Pengerusi: Profesor Madya Azhar Kasim, DVM, MS, PhD
Fakulti: Pertanian

berlainan dan lebih ketara apabila diet 4% \(A. \textit{platensis} \) diberi pada usia 15 hari. Hasil karkas and bahagian daging, nilai warna daging dan kelembutan daging juga jauh berbeza antara kumpulan yang diujikaji. Eksperimen ini menunjukkan bahawa burung puyuh yang diberi diet 4% \(A. \textit{platensis} \) seawal usia 15 hari atau selewat-lewatnya 22 hari memberikan kesan positif kepada kadar tumbesaran disamping meningkatkan kualiti daging.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to the chairperson of the supervisory committee, Assoc. Prof. Dr. Azhar Kasim not only for his endless support but guided me to the appropriate channel of resource for my research. Not forgetting Dr. Hishamuddin Omar for his remarkable opinion and constructive suggestion. I would also like to extend my heartfelt appreciation to Dr. Awis Qurni Bin Sazili for his positive comments, support on the research and for his time and advice.

My deepest appreciation also goes to the laboratory assistants from the Laboratory of Nutrition, Department of Animal Science whom I have spent long hours and shared memorable experience. Thank you for making a pleasant working atmosphere and for your assistance. I am also grateful to NextGene Scientific for their supply of chemicals and consumables. Their kind dedication in delivering my chemicals on time helped my research go smoothly.

Finally, special thanks are extended to my family for their endless support, for being understanding, for encouraging me to pursue this study and being there when I needed them. Thank you very much.
I certified that a Thesis Examination Committee has met on 28 October 2014 to conduct the final examination of Danny Cheong Swee Weng on his thesis entitled “Effect of Dietary Inclusion of Microalgae *Arthrospira platensis* on the Growth Performance and Carcass Quality in Japanese Quails (*Coturnix japonica* Temminck & Schlegel)” in accordance with the Universities and University Colleges Act 971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Ridzwan bin Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Che Roos bin Saad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Andrew Alek Tuen, PhD
Associate Professor
University Malaysia Sarawak
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 December 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azhar Kasim, DVM, MS, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Hishamuddin Omar, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Awis Qurni Sazili, DVM, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

· this thesis is my original work;
· quotations, illustrations and citations have been duly referenced;
· this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
· intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
· written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
· there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:
· the research conducted and the writing of this thesis was under our supervision;
· supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _______________________

Name of Chairman of Supervisory Committee: _____________________________

Signature: _______________________

Name of Member of Supervisory Committee: _____________________________

Signature: _______________________

Name of Member of Supervisory Committee: _____________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1

2 LITERATURE REVIEW

2.1 Consumer perception in poultry meat 3
2.2 Status of poultry production in Malaysia 4
2.3 Quail production in Malaysia 4
2.4 Japanese quail 5
2.5 Quail husbandry 6
2.5.1 Space and brooding management 6
2.5.2 Rearing management 6
2.5.3 Feeding management 7
2.6 Nutritional requirement of Japanese quail 7
2.7 Energy 8
2.8 Feed intake and feed conversion efficiency 9
2.9 Carcass Characteristic of Japanese quail 9
2.10 Chemical analysis of quail meat 10
2.10.1 Moisture and ash 10
2.10.2 Protein and fat 10
2.11 Benefits of production and eating quail meat 11
2.12 Factor Affecting Meat Quality 12
2.12.1 Water Holding Capacity (WHC) 12
2.12.2 Drip Loss 13
2.12.3 Cooking loss 14
2.12.4 pH 14
2.12.5 Colour 15
2.12.6 Tenderness 15
2.13 Improvement of animal production quality using Spirulina 16
2.14 Spirulina 16
2.15 The Uses of Spirulina 17
2.16 Nutritional Benefits in Spirulina 17
2.17 Spirulina as protein supplement in poultry and livestock feeds 18
2.18 Source of Spirulina for animal production 19
3 GENERAL APPROACH OF THE STUDY AND EXPERIMENTAL PROCEDURE

3.1 General research approach ... 20
3.2 Chronological Scheduling of Experiments 20
3.3 Animals and Diets .. 21
3.4 Animal Housing and Management 21
3.5 Slaughtering Procedure .. 21
3.6 Measurements of Carcass pH 22
3.7 Chemical Composition Analysis 22
3.7.1 Dry matter .. 22
3.7.2 Ash .. 23
3.7.3 Crude protein .. 23
3.7.4 Ether Extract (Crude Fat) .. 24
3.7.5 Neutral Detergent Fiber (NDF) 24
3.7.6 Acid Detergent Fiber (ADF) 25
3.7.7 Gross Energy (GE) ... 26
3.8 Meat Quality Determination 27
3.8.1 Water Holding Capacity ... 27
3.8.1.1 Drip Loss .. 27
3.8.1.2 Cooking Loss .. 27
3.8.2 Color Value Determination 28
3.8.3 Texture Analysis ... 28
3.9 Statistical Analysis .. 29

4 EFFECTS OF DIFFERENT LEVEL OF SPIRULINA INCLUSION IN FEED ON GROWTH PERFORMANCE AND CARCASS YIELD OF JAPANESE QUAILS

4.1 Introduction ... 30
4.2 Materials and Methods ... 31
4.2.1 Animals, Diets and Management 31
4.2.2 Feed Sampling ... 31
4.2.3 Growth performance and mortality sampling 32
4.2.4 Slaughter and Carcass Sampling 34
4.3 Statistical Analysis ... 34
4.4 Results .. 35
4.4.1 Growth Performance .. 35
4.4.2 Meat Yield ... 40
4.4.3 Meat Quality Characteristics 43
4.4.3.1 The effects of different level of Spirulina inclusion on meat pH, drip loss (%), cooking loss (%) and shear force value of cooked meat. 43
4.4.3.2 Data presented on Mean CIE lightness (L*), red/green axis (a*), yellow/blue axis (b*), Chroma and Hue-angle colour parameters of breast pectoralis major of quails on different inclusion levels of Spirulina and effect on the different gender of Japanese quail. 44
4.4.4 Chemical Analysis of Meat 45
4.5 Discussions ... 46
4.5.1 Growth Performance .. 46
5 EFFECTS OF DIFFERENT STARTING AGE OF SPIRULINA INCLUSION IN FEED ON GROWTH PERFORMANCE AND CARCASS YIELD OF JAPANESE QUAILS

5.1 Introduction 50
5.2 Materials and Methods 51
5.2.1 Quail’s Housing and Management 51
5.2.2 Experimental Diet and Schedule 51
5.2.3 Growth performance and mortality sampling 51
5.2.4 Slaughter, Carcass Sampling and Analysis of Meat Tissue Sampling 52
5.3 Result 53
5.3.1 Growth Performance 53
5.3.2 Meat Yield 58
5.3.3 Meat Quality Characteristics 60
5.3.3.1 The effects of different starting age of 4% Spirulina diet inclusion and gender on meat pH, drip loss (%), cooking loss (%) and shear force value of cooked meat. 60
5.3.3.2 Data presented on Mean CIE lightness (L*), red/green axis (a*), yellow/blue axis (b*), Chroma and Hue-angle colour parameters of breast pectoralis major of quails on different starting age of 4% Spirulina diet inclusion and gender. 61
5.3.4 Chemical Analysis of Meat 62
5.4 Discussion 63
5.4.1 Growth Performance 63
5.4.2 Meat Yield 64
5.4.3 Meat Quality Characteristics 64
5.4.4 Chemical Analysis of Meat 65
5.4.5 Chemical Analysis of Meat 65
5.5 Conclusion 66

6 GENERAL CONCLUSION AND FUTURE DIRECTION FOR RESEARCH AND DEVELOPMENTS

6.1 General conclusions 67
6.2 Recommendation for future research and development 68
6.2.1 Tackling short supply of Spirulina in poultry farming 68
6.2.2 Recommendation for future study 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>70</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>84</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>87</td>
</tr>
<tr>
<td>LIST OF PUBLICATION</td>
<td>88</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Nutrient composition of A. platensis (Spirulina)</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Nutrient composition of experimental diets</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>The effect of Spirulina inclusion level on the body weight gain, feed consumption and feed conversion ratio of quails in week 3</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>The effect of Spirulina inclusion level on the body weight gain, feed consumption and feed conversion ratio of quails in week 4</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>The effect of Spirulina inclusion level on the body weight gain, feed consumption and feed conversion ratio of quails in week 5</td>
<td>37</td>
</tr>
<tr>
<td>4.6</td>
<td>The effect of Spirulina inclusion level on the total body weight gain, total feed consumption and feed conversion ratio of quails at the end of experiment</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>The effect of Spirulina inclusion level on quail's weekly mortality and total mortality in percentage</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>The effects of treatment levels on the live body weight (g) and relative weights (%) of organs of quails</td>
<td>40</td>
</tr>
<tr>
<td>4.9</td>
<td>The effects of different level of Spirulina inclusion on relative weights (%) of quail’s carcass</td>
<td>41</td>
</tr>
<tr>
<td>4.10</td>
<td>The effects of treatment levels on the dressing weight (g), breast weight (g) and leg weight (g) of the quails</td>
<td>42</td>
</tr>
<tr>
<td>4.11</td>
<td>The effects of treatment level on mean pH, drip loss (%), cooking loss (%) and shear force value of quails</td>
<td>43</td>
</tr>
<tr>
<td>4.12</td>
<td>Mean CIE lightness (L*), red/green axis (a*), yellow/blue axis (b*), Chroma and Hue-angle colour parameters of breast pectoralis major of quails at different treatment levels</td>
<td>44</td>
</tr>
<tr>
<td>4.13</td>
<td>Proximate analysis of quail’s meat from different treatment levels of supplementation of Spirulina</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Body weight gain of quails from Day 15 until Day 35</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Feed conversion ratio of quails from Day 15 until Day 35</td>
<td>55</td>
</tr>
<tr>
<td>5.3</td>
<td>Mortality rate across treatments</td>
<td>56</td>
</tr>
</tbody>
</table>
5.4 The effect of different starting age of 4% Spirulina diet inclusion on the total body weight gain, total feed consumption and feed conversion ratio of quails 57

5.5 The effects of different starting age of 4% Spirulina diet inclusion on live body weight (g) and relative weights (%) of organs of quails 58

5.6 Carcass dressing weight, breast and whole leg weight of quails 59

5.7 The effects of different starting age of 4% Spirulina diet inclusion on relative weights (%) of quail’s carcass part 59

5.8 Mean pH, drip loss (%), cooking loss (%) and texture analysis of quail’s meat on different starting age 60

5.9 Difference in mean CIE lightness (L*), red/green axis (a*), yellow/blue axis (b*), Chroma and Hue-angle colour parameters of breast *Pectoralis major* of quails among different starting age 61

5.10 The effects of different starting age of 4% Spirulina diet inclusion on moisture, ash, crude protein and crude fat in quail’s meat 62

5.11 Estimation cost of control feed production and 4% Spirulina diet production 63
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Cumulative weights gain of quails from day 14 until end of the trials on day 35</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Feed conversion ration of different treatment quails on each week of trial</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid Detergent Fiber</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha-linolenic acid</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>Atm</td>
<td>Atmosphere</td>
</tr>
<tr>
<td>BWG</td>
<td>Body Weight Gain</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>Cal</td>
<td>Calorie</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>cm²</td>
<td>Centimeter square</td>
</tr>
<tr>
<td>cm³</td>
<td>Centimeter cube</td>
</tr>
<tr>
<td>CP</td>
<td>Crude Protein</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DM</td>
<td>Dry Matter</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of United Nation</td>
</tr>
<tr>
<td>FC</td>
<td>Feed Consumption</td>
</tr>
<tr>
<td>FCR</td>
<td>Feed Conversion Ratio</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram per liter</td>
</tr>
<tr>
<td>GE</td>
<td>Gross Energy</td>
</tr>
<tr>
<td>GLA</td>
<td>Gamma-linolenic acid</td>
</tr>
<tr>
<td>GLM</td>
<td>General Linear Model</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulphuric Acid</td>
</tr>
<tr>
<td>Kcal</td>
<td>Kilo Calories</td>
</tr>
<tr>
<td>Kcal/g</td>
<td>Kilo Calories per gram</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LA</td>
<td>Linoleic acid</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolizable Energy</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mg/g</td>
<td>Milligram per gram</td>
</tr>
<tr>
<td>MR</td>
<td>Mortality Rate</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Sodium Carbonate</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral Detergent Fiber</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>PSE</td>
<td>Pale, soft, exudative</td>
</tr>
<tr>
<td>ppm</td>
<td>Part Per Million</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>SDA</td>
<td>Stearidonic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>Sec</td>
<td>Second</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>WHC</td>
<td>Water Holding Capacity</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The Malaysian poultry industry had undergone remarkable changes and also growth over the last five decades attaining self sufficiency in meat and eggs since the early 80’s (Ferket et al., 2005). Poultry meat and eggs are the two most popular and still being the cheapest source of animal proteins. Most of the poultry meats are from chickens. However, other poultry species such as ducks, geese and quails are gaining in popularity. The local poultry industry can be considered a value added industry since the source which produce the commercial-type birds are imported and raised by feeding with feeds comprising mainly of imported ingredients.

Commercially formulated feeds paved the way to mass production of poultry. Efficiency in production is further enhanced through management and nutritional means. Due to the increasing demand of raw material to meet commercial poultry production, it is of interest to know the other available raw material sources can be used in Malaysia. The industry should not depend totally on imported feed ingredients since there are potential local sources of ingredients that can partially replace the conventionally corn-soybean meal-based diets. To be a good ingredient, it should be able to provide sufficient protein or energy. It will be an added advantage if the ingredient can contribute towards improving the quality of the end products despite increasing the efficiency of feed conversion into meat (Sharifi et al., 2011).

Recently there is an interest of using microalgae to save world problem from global warming, climate change, soil depletion, crop failure and using microalgae biomass for food, feed and fuel (Macfarlane, 2009; Gurierrez, 2009). In the past, multiple studies done by researchers to investigate the incorporation of microalgae in diet for poultry production. However, such studies on Spirulina in literature are minimally available. The preference of raw material for poultry feed productions varies with respect to major sources like corn, soybean and fishmeal. Hence, an attempt is made to study whether Spirulina can be as one of raw materials supplying adequate nutrient in poultry diet.

Incorporations of microalgae into the feed formulation for a wide variety of animals ranging from aquacultures, pets and farm animals, have been studied to a certain extent (Spolaore et al., 2006). The use of microalgae as a supplementation has been recommended to benefit poultry involving growth, survival, feed utilization and carcass quality. In fact, 30% of the current world algal production is sold for animal feed applications (Becker, 2004). But before commercialization, microalgae strain has to meet various criteria. It has to be easily cultured and nontoxic. It also needs to be of the correct size and in physical forms to be easily ingested despite having high nutritional qualities and a digestible cell wall to make nutrients available (Brown et al., 1999; Renaud et al., 2002; Priyadarshani, 2012).
Studies have suggested a role for microalgae in broiler for good growth and feed efficacy (Ross and Dominy, 1990), and eventually resulting in satisfactory improvement in growing chicken (Becker and Venkataraman, 1982; Brune, 1982). Similar results were obtained when microalgae were fed to laying hens (Nazarenko et al., 1975; Sauveur et al., 1979). A Japanese patent (Sakakibara et al., 1994) describes the use of *Spirulina* to reduce the death rate in quail. More recently has attributed to significantly higher growth rate and lower non-specific mortality rate in turkey fed with *Spirulina*, further support earlier findings in broilers and white leghorn type chickens (Qureshi et al., 1994).

To date, extensive research had carried out to determine the optimum level of *A. platensis* (henceforth referred as Spirulina) inclusion for mainly fast growing commercial broiler and layer chicken. However, not many information in the literature especially on performance parameters, carcass yields and meat characteristic of Japanese quail fed corn soybean meal diet with Spirulina inclusion. Also, the previous studies were conducted to investigate the effect of Spirulina on limited numbers of parameters such as feed efficiency, mortality and egg production in quail. Hence it is worthwhile to gather information and conduct analysis from the quails in experiment to evaluate the suitability of Spirulina in Japanese quails to assess the effect of nutritional levels of microalgae on several parameters in quails as well as to identify the best inclusion time of Spirulina into diet to achieve marketable weight of quail.

Thus, the objectives of the present study were:

1. To compare and determine the effects of different level of Spirulina inclusion in feed on growth performance and carcass yield of Japanese quails and,

2. To identify the effects of different starting age of Spirulina inclusion in feed on growth performance and carcass yield of Japanese quails.
REFERENCES

Bouton, P.E and Harris, P.V. (1972) The effect of cooking temperature and time on some mechanical properties of meat. J. Food Sci. 37: 140-144

