MICROBIAL GROWTH, ACIDIFICATION PROPERTIES AND
FORMATION OF METABOLITES IN FERMENTED MILK PRODUCTS
USING VARIOUS STARTER CULTURE COMBINATIONS

AREZOU AGHLARA

FSTM 2008 2
MICROBIAL GROWTH, ACIDIFICATION PROPERTIES AND FORMATION OF METABOLITES IN FERMENTED MILK PRODUCTS USING VARIOUS STARTER CULTURE COMBINATIONS

By

AREZOU AGHLARA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

January 2008
Dedicated to

my parents and my two brothers,

who have always stayed beside me despite the distance,

who received less of my attention while this project was being done,

for their unwavering support and encouragement during this time.
The present study investigated the microbial growth, acidification properties and changes in key metabolite compounds during fermentation of sterilized reconstituted skim milk. Fermentation was performed by using single and mixed cultures of *Lactobacillus acidophilus* LA5 (probiotic strain; A), *L. delbrueckii* subsp. *bulgaricus* LB12 (B), *Streptococcus thermophilus* TH4 (T) and *Kluyveromyces marxianus* subsp. *marxianus* LAF4 (M). Fermentation time, lag time and final titratable acidity ranged from 225 to 721 min, 2 to 31 min and 0.76 to 1.25 % (w/v) lactic acid, respectively. At the end of fermentation, the highest counts of *L. acidophilus* LA5, *L. delbrueckii* subsp. *bulgaricus* LB12, *S. thermophilus* TH4 and *K. marxianus* subsp. *marxianus* LAF4 were 8.42, 8.56, 8.91 and 8.69 log₁₀ cfu mL⁻¹, respectively. In all single and mixed cultures containing *L. acidophilus* LA5, the viable probiotic cell count met the minimum proposed effective level required to observe a positive health effect.
In this study, product fermented with traditional yoghurt culture (mixed culture of \textit{L. delbrueckii} subsp. \textit{bulgaricus} LB12 and \textit{S. thermophilus} TH4) showed the highest titratable acidity and the lowest pH during entire storage period. The most stable product in terms of the changing in titratable acidity during storage period was prepared with single culture of \textit{S. thermophilus} TH4. However, this strain was found likely the responsible of post-acidification when incorporated into the mixed cultures. Viable counts of all lactic acid bacteria and yeast in single and mixed cultures always remained higher than 7 log$_{10}$ cfu mL$^{-1}$, however, fluctuation in their counts was observed during 4 weeks of refrigerated storage.

Changes in lactose and total glucose and galactose were monitored during fermentation and cold storage by using high performance liquid chromatography (HPLC) coupled to refractive index (RI) detector. Lactose was utilized by all starter culture combinations during fermentation and storage time. The consumption of lactose during fermentation and storage was significantly ($P < 0.05$) higher in single culture of \textit{K. marxianus} subsp. \textit{marxianus} LAF4. The data obtained in this study showed that the changes in total content of glucose and galactose was not paralleled with the changes in lactose content during fermentation and storage.

Changes in concentration of citric, orotic, pyruvic, succinic, lactic, formic, acetic, uric, propionic, butyric and hippuric acids was carried out using HPLC coupled to ultraviolet (UV) detector. In general, variable amount of each organic acid was formed with different starter culture used in this study during fermentation process and storage.
However, lactic acid was found to be the most abundant organic acid in majority of the products at the end of fermentation and throughout the storage time. The final concentration of lactic acid at the end of fermentation was ranged between 1167 and 8895 mg L$^{-1}$. The most prominent organic acid in products fermented with single culture of *L. delbrueckii* subsp. *bulgaricus* LB12 and mixed culture of *L. delbrueckii* subsp. *bulgaricus* LB12 and *K. marxianus* subsp. *marxianus* was acetic and citric acid, respectively, followed by lactic acid.

Forty volatile compounds were detected using gas chromatography coupled to time-of-flight mass spectrometer (GC-TOFMS). The representative of the alcohols (i.e. ethanol), ketones (i.e. ethyl acetate and ethyl butyrate), esters (i.e. 2-butanone, acetone, 3-hydroxy-2-butanone or acetoin and 2,3-butanedione or diacetyl) and aldehydes (i.e. acetaldehyde) were considered for further analysis. The release of the corresponding volatile flavor compounds into the headspace was monitored during fermentation and 4 weeks of refrigerate storage, using GC coupled to flame ionization detector (FID). In fermented products devoid of *K. marxianus* subsp. *marxianus* LAF4, acetoin was seen to be the most prominent volatile flavor substance at the end of fermentation, ranging from 59.5 to 104.2 mg L$^{-1}$. While, in those co-inoculated with the yeast strain ethanol was observed to be the most abundant volatile flavor compound ranged between 964 and 6522 mg L$^{-1}$.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk ijazah

PERTUMBUHAN MIKROORGANISMA, PENGASIDAN DAN PEMBENTUKAN METABOLISMA SEJUK PRODUK SUSU TERFERMENTASI MENGGUNAKAN KOMBINASI PELBAGAI KULTUR PEMULA

Oleh

AREZOU AGHLARA

Januari 2008

Pengerusi : Profesor Mohd Yazid Abdul Manap, PhD
Fakulti : Sains dan Teknologi Makanan

Penyelidikan ini mengkaji tentang pertumbuhan mikrob, sifat pengasidan, dan perubahan dalam penentuan hasil sebatian metabolisma semasa fermentasi susu skim terbentuk semula disterilkan. Fermentasi dijalankan menggunakan kultur tunggal dan kultur campuran Lactobacillus acidophilus LA5 (strain probiotik; A), L. delbrueckii subsp. bulgaricus LB12 (B), Streptococcus thermophilus TH4 (T) dan Kluyveromyces marxianus subsp. marxianus LAF4 (M). Masa fermentasi, masa adaptasi, dan julat keasidan terboleh titrat akhir, masing-masing adalah 225-721 min, 2-31 min dan 0.76-1.25 % (w/v) asid laktik. Di akhir fermentasi, pengiraan tertinggi bagi L. acidophilus LA5, L. delbrueckii subsp. bulgaricus LB12, S. thermophilus TH4 dan K. marxianus subsp. marxianus LAF4, masing-masing adalah 8.42, 8.56, 8.91, dan 8.69 log_{10} cfu mL^{-1}. Dalam semua kultur tunggal dan kultur campuran yang mengandungi L.acidophilus LA5, pengiraan sel probiotik hidup telah mencapai tahap unjuran keberkesanan minimum yang diperlukan bagi memperlihatkan kesan positif keatas kesihatan.
Dalam kajian ini juga, produk terfermentasi dengan kultur yogurt tradisional (kultur campuran *L. delbrueckii* subsp. *bulgaricus* LB12 and *S. thermophilus* TH4) telah menunjukkan keasidan terboleh titrat yang paling tinggi dan pH yang paling rendah semasa keseluruhan tempoh penyimpanannya. Produk yang paling stabil dalam terma perubahan keasidan terboleh titrat semasa tempoh penyimpanan telah dicampurkan bersama kultur tunggal *S. thermophilus* TH4. Walaubagaimana pun, strain ini telah didapati berkemungkinan penyebab kepada post-pengasidan bila mana digabungkan dalam kultur campuran. Pengiraan sel hidup bagi LAB dan yis sentiasa kekal lebih tinggi dari 7 log$_{10}$ cfu mL$^{-1}$, walaubagaimana pun, dalam beberapa produk yang lain, setiap perubahan dalam pengiraannya diperhatikan semasa 4 minggu dalam penyimpanan berhawa dingin.

Perubahan pada laktosa dan jumlah glukosa dan galaktosa dipantau semasa fermentasi dan penyimpanan berhawa dingin dengan menggunakan kromatografi cecair berprestasi tinggi (HPLC) yang digabungkan bersama pengesan indeks biasan (RI). Penggunaan laktosa diperhatikan dalam semua produk dan *K. marxianus* subsp. *marxianus* LAF4 menunjukkan ia lebih tinggi secara signifikannya ($P < 0.05$) terhadap penggunaan laktosa dalam penyimpanan berhawa dingin. Ianya diperhatikan bahawa perubahan dalam jumlah kandungan glukosa dan galaktosa tidak berkait dengan asimilasi laktosa semasa fermentasi.

Penyaringan kepekatan asid sitrik, orotik, piruvik, suksinik, laktik, formik, asetik, urik, propionik, butirik dan hippurik, dijalankan menggunakan HPLC digabungkan bersama

Empat puluh sebatian mudah meruap telah dikesan pada mulanya menggunakan kromatografi gas dan digabungkan bersama spektrometer jisim ‘time-of-flight’ (GC-TOFMS). Beberapa kumpulan sebatian mudah merup yang berbeza iaitu, alcohol (etanol), keton (etil asetat dan etil butirat), ester (2-butanol, aseton, 3-hidroksil-2butanol atau asetoin dan 2,3-butanedion atau diasetil) dan aldehid (asetaldehid) dipartimbangkan untuk analisis selanjutnya. Pembubaran sebatian perasa mudah meruap yang setara ke kawasan “headspace” dipantau semasa fermentasi dan penyimpanan sejuk selama 4 minggu, menggunakan kromatografi gas (GC) yang digandeng bersama pengesan pengionan nyalaan (FID). Dalam produk fermentasi yang tidak menggunakan *K. marxianus* subsp. *marxianus* LAF4, asetoin dilihat sebagai bahan perasa mudah meruap yang paling menonjol sekali, di antara 59.5 dan 104.2 mg L^{-1}. Walaubagaimana pun, bagi produk fermentasi yang menggunakan strain yis sebagai
inokulat utama, etanol dilihat sebagai sebatian perasa mudah meruap yang paling banyak sekali, di antara 964 dan 6522 mg L⁻¹.
AKNOWLEDGEMENTS

First, I wish to thank God for all the opportunities given me and for allowing me to complete this thesis.

My deep sense of gratitude and respect to Prof. Mohd Yazid Abd Manap (Faculty of Food Science and Technology, Department of Food Service and Management) as a main supervisor of this thesis for his continuous guidance, support and advice.

I would like to say my deepest appreciation to Associate Prof. Dr. Shuhaimi Mustafa (Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology) as a co-supervisor of this project for his invaluable advice, suggestion, guidance and encouragement to complete this research.

Many thanks to Dr. Rosfarizan Mohamad (Faculty of Biotechnology and Biomolecular Sciences, Department of Bioprocess Technology), the other co-supervisor, for all she has done for this work.

My sincere gratitude and respect to my beloved parents and my two brothers for their immense love, patience, support, and understanding during not only this project but also my entire life.
I also wish to acknowledge to Ms. Tneh Yen Kiaw from Chr-Hansen (Kuala Lumpur, Malaysia) for donation of bacteria and yeast cultures. My special thanks to Mr. Halim (Faculty of Food Science and Technology) for his kindness and great advice while I was doing HPLC work. Many thanks to the staff of Faculty of Food Science and Technology, especially Mr. Azman and Ms. Raunah for their help.

Lastly, I would like to thank friends and Probiotic Laboratory members, especially Stephenie, Ruzaina, Barka and Anas for their assistance.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Yazid Abdul Manap, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Shuhaimi Mustafa, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Rosfarizan Mohamad, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at UPM or at any other institution.

AREZOU AGHLARA

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Starter Culture

2.1.1 Lactic Starter Culture

2.1.2 Lactic-yeast Starter Culture

2.1.3 Lactic-mold Starter Culture

2.2 Fermented Milk

2.2.1 Lactic Fermented Milk

2.2.2 Lactic-alcoholic Fermented Milk

2.3 Metabolism of LAB in Milk

2.3.1 Carbohydrate Uptake in LAB

2.3.2 Citrate Uptake in LAB

2.3.3 Formation of Secondary Metabolites in LAB

2.4 Metabolism of Yeasts in Milk

2.5 Microbial Interaction

2.5.1 Microbial Interaction in Dairy Products

3 MATERIALS AND METHODS

3.1 Preparation of Concentrated Starter Culture

3.1.1 Microorganisms

3.1.2 Media

3.1.3 Method of Preparation

3.2 Production of Fermented Milk and Sampling

3.2.1 Material

3.2.2 Fermentation Process

3.3 Enumeration of LAB and Yeast

3.3.1 Materials

3.3.2 Method of Enumeration
3.4 Measuring of Acidification Properties 48
 3.4.1 Chemicals and Reagents 49
 3.4.2 Fermentation Time and Lag Time 49
 3.4.3 Measuring of the pH and Titratable Acidity 49
3.5 Measuring of Carbohydrates 50
 3.5.1 Chemicals and Reagents 50
 3.5.2 Extraction and Separation of Carbohydrates 50
3.6 Measuring of Organic Acids 51
 3.6.1 Chemicals and Reagents 51
 3.6.2 Extraction and Separation of Organic Acids 52
3.7 Development of HS-SPME Procedure for Semi Quantification of Volatile Flavor Compounds in Fermented Milks 53
 3.7.1 Chemicals and Reagents 53
 3.7.2 HS-SPME Procedure 53
 3.7.3 Gas Chromatographic Conditions (GC-FID and GC-MS) 54
 3.7.4 Experimental Design and Statistical Analysis 55
3.8 Characterization of Volatile Flavor Compounds 59
3.9 Statistical Analysis 59

4 RESULTS AND DISCUSSION 60
4.1 Acidification Properties of the Starter Cultures 60
 4.1.1 Fermentation Time and Lag Time 60
 4.1.2 Development of Titratable Acidity during Fermentation 64
 4.1.3 pH Reduction and Post-acidification during Cold Storage 67
4.2 Growth and Survival of the LAB and Yeast during Fermentation and Cold Storage 73
 4.2.1 *L. acidophilus* LA5 73
 4.2.2 *L. delbrueckii* subsp. *bulgaricus* LB12 79
 4.2.3 *S. thermophilus* TH4 83
 4.2.4 *K. marxianus* subsp. *marxianus* LAF4 87
4.3 Changes in Carbohydrates during Fermentation and Cold Storage 91
 4.3.1 Glucose and Galactose 91
 4.3.2 Lactose 97
4.4 Formation of Organic Acids during Fermentation and Cold Storage 104
 4.4.1 Citric Acid 104
 4.4.2 Orotic Acid 109
 4.4.3 Pyruvic Acid 110
 4.4.4 Succinic Acid 115
 4.4.5 Lactic Acid 120
 4.4.6 Formic Acid 125
 4.4.7 Acetic Acid 125
 4.4.8 Uric Acid 131
4.4.9 Propionic Acid 135
4.4.10 Butyric Acid 140
4.4.11 Hippuric Acid 143

4.5 Formation of Volatile Compounds during Fermentation and Cold Storage 144
4.5.1 Development of the HS-SPME-GC-FID Method for Semi Quantification of Volatile Flavor Compounds in Fermented Milk 144
4.5.2 Monitoring of the Volatile Flavor Compounds during Fermentation and Cold Storage 171

4 CONCLUSION 213

REFERENCES 218
APPENDICES 234
BIODATA OF THE AUTHOR 252
LIST OF PUBLICATIONS 253

LIST OF TABLES 17
Table

2.1 Starter cultures used in different types of fermented milk

3.1 Codes for LAB and yeast strains combinations used for production of single and mixed DVS cultures and fermented milks

3.2 Factors and their levels used in 2^{5-1} fractional factorial design

3.3 Design matrix in the 2^{5-1} fractional factorial design

3.4 Factors and their levels used for the optimization of experimental conditions

3.5 Design matrix for optimization of experimental conditions

4.1 Lag time (mean ± SD, n = 3) of DVS cultures used for manufacture of fermented milks

4.2 Changes in count of *L. acidophilus* LA5 (mean ± SD, n = 3) during fermentation of milk with different DVS cultures

4.3 Changes in count of *L. acidophilus* LA5 (mean ± SD, n = 3) in milk fermented with different DVS starter culture during 4 weeks of storage at 4 °C

4.4 Changes in count of *L. delbrueckii* subsp. *bulgaricus* LB12 (mean ± SD, n = 3) during fermentation of milk with different DVS cultures

4.5 Changes in count of *L. delbrueckii* subsp. *bulgaricus* LB12 (mean ± SD, n = 3) in milk fermented with different DVS starter culture during 4 weeks of storage at 4 °C

4.6 Changes in count of *S. thermophilus* TH4 (mean ± SD, n = 3) during fermentation of milk with different DVS cultures

4.7 Changes in count of *S. thermophilus* TH4 (mean ± SD, n = 3) in milk fermented with different DVS starter culture during 4 weeks of storage at 4 °C

4.8 Changes in count of *K. marxianus* subsp. *marxianus* (mean ± SD, n = 3) during fermentation of milk with different DVS cultures

4.9 Changes in count of *K. marxianus* subsp. *marxianus* LAF4 (mean ±
SD, n = 3) in milk fermented with different DVS starter culture during 4 weeks of storage at 4 °C

4.10 Linear retention indices, similarity and FID peak area (%) of the representative volatile flavor compounds in kefir sample

4.11 ANOVA results obtained for central composite design: (a) P-value and (b) F-ratio

4.12 Performance characteristic of target volatile flavor compounds in fermented milk sample

4.13 RSD% of target volatile flavor compounds in fermented milk sample

4.14 Concentrations of target volatile flavor compounds in seven commercial fermented milk products in Malaysia

LIST OF FIGURES
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Carbohydrate uptake and metabolism by homofermentative lactic acid bacteria</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Generalized scheme for the fermentation of glucose in lactic acid bacteria</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Generalized scheme for the formation of important metabolic products from pyruvate in lactic acid bacteria</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>The time corresponding to the pH of sampling during fermentation of milk with (a) single starter cultures, (b) double starter cultures and (c) triple and quadruple starter cultures</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Development in titratable acidity during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>pH reduction in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Post-acidification in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Changes in total glucose and galactose content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Changes in total glucose and glucose content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C</td>
<td>96</td>
</tr>
<tr>
<td>4.7</td>
<td>Changes in lactose content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures</td>
<td>100</td>
</tr>
<tr>
<td>4.8</td>
<td>Changes in lactose content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C</td>
<td>103</td>
</tr>
<tr>
<td>4.9</td>
<td>Changes in citric acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and</td>
<td></td>
</tr>
</tbody>
</table>
4.10 Changes in citric acid content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.11 Changes in pyruvic acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.12 Changes in pyruvic content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.13 Changes in succinic acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.14 Changes in succinic content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.15 Changes in lactic acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.16 Changes in lactic acid content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.17 Changes in acetic acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.18 Changes in acetic acid content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.19 Changes in uric acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.20 Changes in uric acid content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures...
cultures during 4 weeks of storage at 4 °C

4.21 Changes in propionic acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.22 Changes in propionic content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.23 Changes in butyric acid content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.24 Changes in butyric content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.25 Peak area of (a) each volatile flavor compound and (b) total peak area, in stirring and static conditions

4.26 Effect of salt type on (a) peak area of each volatile flavor compound and (b) the total peak area

4.27 Effect of different SPME fiber coating on (a) peak area of each volatile flavor compound and (b) total peak area

4.28 Pareto chart of the main effects in the factorial design for the volatile compounds in fermented milk

4.29 Fitted response surfaces: peak area of volatile compounds vs. statistically significant interaction effects

4.30 Changes in acetaldehyde content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.31 Changes in acetaldehyde content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.32 Changes in acetone content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.33 Changes in acetone content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures
cultures during 4 weeks of storage at 4 °C

4.34 Changes in ethyl acetate content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.35 Changes in ethyl acetate content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.36 Changes in 2-butanone content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.37 Changes in 2-butanone content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.38 Changes in ethanol content during fermentation of milk with (a) single starter cultures of LAB, (b) single starter culture of the yeast, (c) double starter cultures of LAB, (d) double starter culture of LAB and the yeast, (e) triple and quadruple starter cultures

4.39 Changes in ethanol content in milk fermented with (a) single starter cultures of LAB, (b) single starter culture of the yeast, (c) double starter cultures of LAB, (d) double starter culture of LAB and the yeast, (e) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.40 Changes in 2,3-butanedione content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.41 Changes in 2,3-butanedione content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.42 Changes in ethyl butyrate content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures

4.43 Changes in ethyl butyrate content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C

4.44 Changes in 3-hydroxy-2-butanone content during fermentation of milk with (a) single starter cultures, (b) double starter cultures, (c)
Changes in 3-hydroxy-2-butanone content in milk fermented with (a) single starter cultures, (b) double starter cultures, (c) triple and quadruple starter cultures during 4 weeks of storage at 4 °C