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Abstract

Background: Zingiber zerumbet (L.) is a traditional Malaysian folk remedy that contains several interesting bioactive
compounds of pharmaceutical quality.

Methods: Total flavonoids and total phenolics content from the leaf, stem, and rhizome of Z. zerumbet at 3
different growth stages (3, 6, and 9 months) were determined using spectrophotometric methods and individual
flavonoid and phenolic compounds were identified using ultra-high performance liquid chromatography
method. Chalcone Synthase (CHS) activity was measured using a CHS assay. Antioxidant activities were evaluated
by ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. The antibacterial
activity was determined against Gram-positive and Gram-negative bacteria using the disc diffusion method.

Results: Highest content of total flavonoid [29.7 mg quercetin equivalents (QE)/g dry material (DM)] and total
phenolic (44.8 mg gallic acid equivalents (GAE)/g DM) were detected in the rhizome extracts of 9-month-old plants.
As the plant matured from 3 to 9 months, the total flavonoid content (TFC) and total phenolic content (TPC)
decreased in the leaf, but increased significantly in the rhizomes. Among the secondary metabolites identified, the
most abundant, based on the concentrations, were as follows: flavonoids, catechin > quercetin > rutin > luteolin >
myricetin > kaempferol; phenolic acids, gallic acid > ferulic acid > caffeic acid > cinnamic acid. Rhizome extracts from
9-month-old plants demonstrated the highest CHS activity (7.48 nkat/mg protein), followed by the 6-month-old
rhizomes (5.79 nkat/mg protein) and 3-month-old leaf (4.76 nkat/mg protein). Nine-month-old rhizomes exhibited
the highest DPPH activity (76.42 %), followed by the 6-month-old rhizomes (59.41 %) and 3-month-old leaves
(57.82 %), with half maximal inhibitory concentration (IC50) of 55.8, 86.4, and 98.5 μg/mL, respectively, compared to
that of α- tocopherol (84.19 %; 44.8 μg/mL) and butylated hydroxytoluene (BHT) (70.25 %; 58.6 μg/mL). The highest
FRAP activity was observed in 9-month-old rhizomes, with IC50 of 62.4 μg/mL. Minimal Inhibitory Concentration
(MIC) of Z. zerumbet extracts against Gram-positive and Gram-negative bacteria ranged from 30 to >100 µg/mL.
Among the bacterial strains examined, Staphylococcus aureus was sensitive to the leaf extract of Z. zerumbet, with MIC
of 30.0 μg/mL and other strains were sensitive to the rhizome extracts.

Conclusions: Three- and 9-month-old plants are recommended when harvesting the leaf and rhizome of Z. zerumbet,
respectively, in order to obtain effective pharmaceutical quality of the desired compounds.
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Background
Plants with medicinal potentials and their secondary me-
tabolites have been identified and applicated in dishes
from the earliest annals of human habitancy. The prac-
tices of plant-based traditional medicine are founded on
hundreds of years of belief and observations, which pre-
date the development of modern medicine. Herbs are a
rich source of bioactive compounds, such as phenolic
acid and flavonoid, and are used as pharmaceutical inter-
mediates and chemical entities for the drug synthesis [1].
Flavonoids and phenolics are essential groups of phyto-
chemicals, which have demonstrated superoxide radical
scavenging activity, and therefore exhibit anticancer prop-
erties [2, 3]. Dietary phenolics have recently attracted sig-
nificant interest, owing to their antioxidant and possibly
anti-carcinogenic activities [4–6]. Flavonoids are common
constituents of plants used in traditional medicine to treat
a wide range of diseases [7, 8]. Chalcone synthases, is a
member of the plant polyketide synthase superfamily,
provide the starting materials for flavonoids production
in plants [9]. In fact, production of secondary metabo-
lites (flavonoids and phenolics) in herbs is related to
CHS activity which is strongly influenced by several pa-
rameters such as environmental conditions (light intensity,
temperature), nutrient, stress and plant age [1, 10]. Herbal
products are prepared from various parts of the plant
(including the leaves, stems, trunks, roots, flowers, fruits,
twigs, and seeds). To ensure the quality of the raw mater-
ial, careful preparation procedures are followed: harvesting
(herbs should be harvested at the optimum growth stage,
when their qualities are at its peak), cleaning, drying, siz-
ing, and storage. Furthermore, a number of factors, such
as environmental and cultivation conditions, management
practices (temperature, irradiance, fertilizer supply, and ir-
rigation), and the age of the plant (harvesting time) have
been considered to significantly affect the level of bio-
active compounds in herbs and crops [11, 12]. Zingiber
zerumbet (L.) Roscoe ex Sm., locally known as “lem-
poyang” in Malaysia and “shampoo ginger” in English, is a
plant that belongs to the Zingiberaceae family, under
which the ginger species are categorized. Z. zerumbet is a
perennial, tuberous root plant that grows naturally in the
damp and shaded parts of the lowland or hill slopes, as
scattered plants or thickets. This herbal plant is believed
to be native to India and the Malaysian Peninsula [13]. In
Malaysia, Z. zerumbet is one of the traditional folk remed-
ies that contain several interesting bioactive compounds
with anti-tumor [14], antioxidant [13], anti-pyretic and
analgesic activity [15], antibacterial activity [16] anti-
inflammatory, anti-alergic activity [17] and anti-
hypersensitive activity [18]. Due to the wide range of
beneficial effects of this herb, studies are necessary to
investigate the alteration in the production of phyto-
chemicals throughout the plant organs, in relation to

the age of the plant. It is important to gather relevant
evidence regarding herbs with high levels of potentially
beneficial components. A recent study conducted by
Chien et al. [19] reported that the rhizomes from 8-
month-old Z. zerumbet plants demonstrated the strongest
anti-inflammatory activity, compared to the maximum ac-
tivity of zerumbone. Currently, the production of second-
ary metabolites and the variation in the levels of bioactive
components during the maturation of Z. zerumbet remain
largely unexplored. The objective of the present study was
to evaluate the phytochemical production in different
parts of the Z. zerumbet plant, in relation to chalcone syn-
thase enzyme activity, and determine their antioxidant
and antibacterial activities at different stages of maturity.

Methods
Plant sampling
The rhizomes of Z. zerumbet were soaked in mancozeb
solution (0.3 %) for 30 min. The rhizomes were cut into
sections (3–5 cm) and contained two to three buds. The
rhizomes were germinated for two weeks in growing
pots (15 × 15 cm) filled with peat moss (each weighing
approximately 1 kg). The rhizomes were planted 6 cm
deep into peat moss with the buds facing upward. The
rhizomes were germinated under glasshouse condition.
After 2 weeks, when the young leaves of the seedlings
reached 5 cm in height, the seedlings were transplanted
into polyethylene bag (45 × 38 cm) and filled with a soil-
less mixture, which contained burnt rice husk and coco
peat at a 1 : 1 ratio (each weighing approximately 6 kg).
Water was supplied to individual plants (1.2 L/day) by
screwtype nozzles. Fertilizer in recommended dose [20]
was applied efficiently through the drip system. The ex-
periment was conducted at the glasshouse complex of
the University Putra Malaysia (UPM). The mean daily
temperature was 30 °C, mean relative humidity was
70–80 %, and the highest and lowest irradiance levels
were 1650 μmol/m2/s and 44 μmol/m2/s, respectively.
Plants were harvested at 3, 6, and 9 months after plan-
tation (seedling, young and mature stages). Rhizomes,
leaves, and stems were separated and washed with pure
water. Separated parts of the plant were freeze-dried
and kept at −20 °C. Samples were submitted to Insti-
tute of Bioscience (University Putra Malaysia) and
were identified as Z. zerumbet with voucher specimen
of SK622/07. Voucher specimens deposited at herbar-
ium of Institute of Bioscience, University Putra
Malaysia.

Extraction
Dried samples (50 g) were grounded into powder followed
by extraction with distilled water (1 L). Solutions were
refluxed for 2 h at 65 °C, then cooled and filtered through
Whatman filter paper (No. 1) in a filter funnel, followed
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by evaporation under reduced pressure in an Eyela rotary
evaporator to remove excess solvent. Residue was freeze
dried and dried extracts were kept at −20 °C for future
analysis.

Total phenolic content
The total phenolic concentration in the extracts of dif-
ferent parts of plant was determined as described by
Jayaprakasha and Patil [21], with some modification.
Crude extract of leaf, stem and rhizome (0.25 mg) was
dissolved in methanol (10 mL) and 200 μL of solution
were diluted in 20 mL of distilled water. Folin-Ciocalteu
reagent (10-fold diluted; 1 mL) was added and the mix-
ture was incubated in total darkness for 10 min at room
temperature. After this time, sodium carbonate 7.5 %
(1 mL) was added and incubated for 30 min, then the
absorbance of the solution was read at 765 nm using a
spectrophotometer (UV2550, Shimadzu, Japan). Different
concentrations of gallic acid were used to prepare a cali-
bration curve. Results were expressed as milligram gallic
acid equivalents (GAE)/g DM. Measurement was per-
formed in triplicate and values are the average of three
replicates.

Total flavonoid content
Crude extract of leaf, stem and rhizome (0.25 mg) was
dissolved in methanol (10 mL). Extracts of leaf, stem
and rhizome (1 mL) were mixed with NaNO2 solution
(4 mL, 1:5, w/v) and incubated at room temperature for
6 min. After this time, 0.3 mL of AlCl3 solution (1:10, w/v)
was added, the reagents were mixed well, and the reaction
was allowed to stand for another 6 min. Immediately after
that, 1 M NaOH solution (2.0 mL) was added to each ex-
tract and incubated for 10 min at room temperature. The
absorbance of the solutions was read at 510 nm using a
spectrophotometer (UV2550, Shimadzu, Japan). Different
concentrations of quercetin standard were used to prepare
a calibration curve [1]. Results were expressed as milli-
gram quercetin equivalents (QE)/g DM. Measurement
was performed in triplicate and values are the average of
three replicates.

Separation and analysis of flavonoids and phenolic acids
Ultra-high performance liquid chromatography (UHPLC,
1290 Infinity Quaternary LC System, Agilent, Santa Clara,
CA, USA) was used to separate and identify the phenolic
acids. The chromatographic system conditions were set as
follows: mobile phase, 0.03 M orthophosphoric acid (A)
and methanol HPLC grade (B); detector, UV 360 nm;
column, C18 column (5.0 μm, 4.6 mm inner diameter
[ID] × 250 mm); column oven temperature, 35 °C; and
flow rate, 1.0 mL/min. Gradient elution was performed
as follows: 0–10 min, 10 % B; 10–15 min, 50 % B; 15–
20 min, 100 % B; and finally 5 min for washing. All

standards (catechin, quercetin dihydrate, rutin hydrate,
luteolin, myricetin, kaempferol, gallic acid, ferulic acid,
trans-caffeic acid and trans-cinnamic acid were purchased
from Sigma-Aldrich (M) Sdn Bhd, Selangor, Malaysia)
were dissolved in methanol HPLC grade. Linear regression
equations were calculated using Y = aX ± b, where X is the
concentration of the related compound and Y the peak
area of the compound obtained from UHPLC. The lin-
earity was established by the coefficient of determin-
ation (R2). UHPLC analysis was performed in triplicate
and values are the average of three replicates.

Chalcone Synthase (CHS) assay
The CHS was extracted from 0.4 g of plant samples with
a solution of 1 mM 2-mercaptoethanol dissolved in 0.1 M
borate buffer (1 mL, pH 8.8) at 4 °C. Subsequently, Dowex
l × 4 resin (0.1 g) was added to the solution and the mix-
ture rested for 10 min. The solution was then centrifuged
at 15,000 rpm for 10 min to remove the resin. The
supernatant was transferred to a tube, and Dowex resin
(0.2 g) was added and the mixture left standing for
20 min. The resin was removed from solution after cen-
trifugation at 15,000 rpm for 15 min. The supernatant
(100 μL) was mixed gently with 10 mM potassium
cyanide and following that Tris-HCI buffer (1.89 mL,
pH 7.8) was added. Subsequently, chalcone (10 mg) was
added to ethylene glycol monomethyl ether (10 μL),
mixed with enzyme extract, and the reaction allowed to
proceed for 1 min at 30 °C. The absorbance was mea-
sured at 370 nm using spectrophotometer (UV2550,
Shimadzu, Japan).

In vitro evaluation of antioxidant activity
1,1-Diphenyl-2-picrylhydrazyl (DPPH) assay
The DPPH assay was used in order to evaluate the free
radical scavenging activity of Z. zerumbet extracts. DPPH
was dissolved in methanol at a concentration of 100 μM.
The DPPH solution (3 mL) was mixed with 3 mL of vari-
ous concentrations (10, 20, 40, 80 and 160 μg/mL) of Z.
zerumbet extracts and incubated in a dark room for
20 min at 27 °C. After incubation, the absorbance of the
samples was read at 517 nm. Butylated hydroxytoluene
(BHT) and α-tocopherol were used as a positive control
[22]. The scavenging activity was calculated using the
following formula:

% inhibition ¼ ½ absorbancecontrol– absorbancesample
� �

=absorbancecontrolÞ� � 100

ð1Þ

Ferric Reducing Antioxidant Potential (FRAP) assay
The stock solutions consisted of 10 volume of 300 mM
acetate buffer (PH = 3.6), 1 volume of 10 mM TPTZ
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(2,4,6-tripyridyl-S-triazine) solution in 40 mM HCl, and
I volume of 20 mM FeCl3 solution. Acetate buffer
(25 mL) and TPTZ (2.5 mL) were mixed (FRAP solu-
tion), and 2.5 mL FeCl3 added. Plant extracts (100 μL)
and deionized water (300 μL) was added to 3 mL of the
FRAP solution and incubated for 30 min at 37 C in the
dark water bath. The absorbance of the resultant solu-
tion was measured at 593 nm. Acetate buffer was used as
a blank reading. A standard curve was prepared using
various concentrations of FeSO4 × 7H2O. The difference
between sample absorbance and blank absorbance was
calculated and used to calculate the FRAP value [23].

Antibacterial activity
Preparation of plant extracts
Fifty grams of dried samples was extracted with 200 mL
ethanol using a soxhlet evaporator for 48 h. After complete
solvent evaporation, 50 mg of extracts were dissolved
in 1 mL of 10 % dimethyl sulphoxide (DMSO) (Merck,
Malaysia) to a final concentration of 50 mg/mL and
stored at 5 °C for further use.

Bacterial cultures and growth conditions
MDR clinical isolates of Gram positive bacterium (Staphylo-
coccus aureus, Bacillus subtilis, Listeria monocytogenes) and
Gram negative bacterium (Escherichia coli, Salmonella
typhimurium and Pseudomonas aeruginosa) with their
antibiotic resistance profiles were obtained from the labora-
tory of microbial culture collection, Institute Bio-sience,
University Putra Malaysia, Selangor, Malaysia. All the test
strains were maintained on nutrient agar slants at 4° and
sub-cultured on to nutrient broth for 24 h prior to testing.
These bacteria served as test pathogens for antibacterial
activity assay.

Antibacterial activity assay
Fifteen milliliters of the molten agar (45 °C) were poured
into sterile Petri dishes (90 mm). Cell suspensions were pre-
pared and 100 μL was evenly distributed onto the surface
of the agar plates of Mueller-Hinton agar. Once the plates
had been aseptically dried, 6 mm wells were punched into
the agar with a sterile Pasteur pipette. The different extracts
(50 mg/mL) were diluted with dimethylsulfoxide (DMSO):
water (1:9) to give concentration of 10 mg/mL and 80 μL
of diluted extracts were placed into the wells and the plates
were incubated at 37 °C for 24 h. Gentamicin and cipro-
floxacin (25 μL/wells at concentration of 4 μg/mL) were
used as positive control for bacteria. Antibacterial activity
was evaluated by measuring the diameter of circular inhib-
ition zones around the well. Tests were performed in tripli-
cate and values are the averages of three replicates. Data
were expressed as mean ± standard deviation.

Minimum Inhibitory Concentration (MIC)
Based on the previous screening the minimum inhibitory
concentration (MIC) of plant extracts was analyzed
through the agar-well diffusion method. A bacterial sus-
pension (105–106 CFU/mL) of each tested microorgan-
ism was spread on the nutrient agar plate. The wells
(6 mm diameter) were cut from agar, and 60 μL of each
plant extracts dissolved in dimethyl sulfoxide (DMSO):
water (1:9) at different concentrations (10–100 μg/mL)
were delivered into them. The plates were incubated at
37 °C for 24 h under aerobic conditions. After incubation,
diameter of the inhibition zone was measured. MIC was
taken from the concentration of the lowest dosed well
visually under light microscope (Y100, USA) showing no
growth after 24 h. All samples were tested in triplicates.

Statistical analysis
All data were analyzed using analysis of variance by
Statistical Analysis System (SAS version 9.2, SAS Institute
Inc.). Mean separation test between treatments was
performed using Duncanʼs Multiple Range Test and
P-value of < 0.05 was regarded as significant.

Results and discussion
Total flavonoid content and identification of flavonoid
compounds
Table 1 shows the total flavonoid content (TFC) and the
identified flavonoid compounds from leaf, stem and rhi-
zome extracts of Z. zerumbet . TFC was significantly af-
fected by the age of the plant and varied in different
plant parts. Nine-month-old whole plant samples (leaf,
stem, and rhizome) showed the highest TFC (49 mg QE/
g DM) followed by the 6-month-old (42.9 mg QE/g DM)
and 3-month-old (37.7 mg QE/g DM) plants. As the age
of the plant increased from 3 to 9 months, enhanced
TFC was detected throughout the plants. Among the
parts of the plant investigated, the highest TFC (29.7 mg
QE/g DM) was observed in the rhizomes of the 9-month-
old plants. The most striking result was that during plant
maturity from 3 to 9 months, TFC of the leaf decreased
significantly from 21.8 to 15.2 mg QE/g DM. On the
contrary, rhizomes showed different results to those of
the leaf. As the plant matured from 3 to 9 months, TFC
increased significantly in the rhizomes, from 11.2 to
29.7 mg QE/g DM. The TFC in the stems did not differ
significantly among the different growth stages. In the
present study, 6 flavonoid compounds, including quer-
cetin, rutin, kaempferol, catechin, luteolin, and myricetin
were identified. Quercetin is a flavonoid found in several
herbs and has shown potent anticancer and antioxidant
activity [24]. Different concentrations of quercetin have
been reported in different herbs. Levels of quercetin in Z.
zerumbet varied in different plant age and parts. The high-
est content of quercetin (3.94 mg/g DM) was observed in
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the rhizome extracts obtained from the 9-month-old
plant, followed by the 6-month-old rhizomes (2.49 mg/g
DM) and leaf extracts (2.43 mg/g DM) from 3-month-old
plants. Quercetin content in Z. zerumbet, when compared
with other plants, for example red chili (0.799 mg/g DM),
bird's eye chili (0.392 mg/g DM), bell pepper (0.448 mg/g
DM), black tea (1.107 mg/g DM), onion (1.49 mg/g DM)
[25] and ginger rhizome (0.86 mg/g DM) [4] was markedly
higher in the leaves and rhizomes. The results of the
present study are inconsistent with the findings of Behn et
al. [26], who reported that the lowest quercetin content
was observed in the young leaves of red leaf lettuce com-
pared to that observed in the older leaves. Further, rutin
content was influenced by the age of the plant and differed
in different parts of the plant. Similar to quercetin, the
highest content of rutin (2.79 mg/g DM) was observed in
the rhizome extract of 9-month-old plants, followed by 6-
month-old rhizome (2.19 mg/g DM) and 3-month-old
leaf (1.77 mg/g DM). Kaempferol is a rare flavonoid
compound and in this study, the highest concentration
of kaempferol (0.72 mg/g DM) was observed in the 9-
month-old rhizome. However, differing from the con-
centrations reported for green chili (0.039 mg/g DM),
white radish (0.0383 mg/g DM), asiatic pennywort
(0.0205 mg/g DM) [25], and ginger (0.06 mg/g DM) [4]. Z.
zerumbet showed high concentrations of kaempferol (0.12–
0.72 mg/g DM). Kaempferol was not detected in the stem
extracts of the 3 and 6-month-old plants. Catechin content
was significantly affected by the age and parts of the plant.
As the plant matured from 3 to 9 months, enhanced cat-
echin content was observed in the rhizome (2.69 to
6.12 mg/g DM) but decreased in the leaves (5.49 to
3.37 mg/g DM). Luteolin, is a flavonoid commonly found
in several types of fruits and vegetables but in varying con-
centrations. In this study, luteolin was detected in the leaf
and rhizome extracts at concentrations of 0.44–1.15 mg/g
DM. The highest concentration of luteolin was ob-
served in the 3-month-old leaf, followed by the 9-month-
old rhizome; however the concentration of luteolin did

not differ significantly between the 3-month-old leaf 9-
month-old rhizomes. Myricetin belongs to the flavon-
oid class of polyphenolic compounds, and has shown
antioxidant properties. Highest content of myricetin
was detected in the 9-month-old rhizome (1.19 mg/g
DM), followed by the 6-month-old rhizome (0.97 mg/g
DM). Kaempferol was not observed in the 3-month-old
leaf or the 3- and 6-month-old stem extracts.
Among the flavonoids identified in this study, the most

abundant according to the highest concentrations were as
follows: catechin > quercetin > rutin > luteolin >myricetin >
kaempferol. Generally, during the plant maturity from 3 to
9 months old, the concentration of flavonoid decreased in
the leaves (quercetin 25.1 %, rutin 62.7 %, kaempferol
29.5 %, catechin 38.6 %, and luteolin 60.8 %) and in-
creased in the rhizomes (quercetin 141.7 %, rutin
244.4 %, kaempferol 46.9 %, catechin 127.5 %, luteolin
140.9 %, and myricetin 101.6 %). A study on ginger
showed that the concentration of flavonoid compounds
decreased significantly in the leaf, but increased in the rhi-
zome during the growth of the plant [4]. evaluated the ef-
fect of harvesting time on the synthesis of flavonoid
compounds in Calendula officinalis, and reported that the
synthesis of 5 flavonoid compounds was influenced by the
time of harvest. On the basis of the previous results and
those of the current study, it is hypothesized that the dur-
ation of plant growth could have a significant impact on
the synthesis of flavonoids in Z. zerumbet.

Total phenolic content and identification of phenolic acid
compounds
The results obtained from the preliminary analysis of
phenolic compounds are shown in Table 2. TPC ranged
from 5.9 to 44.8 mg GAE/g DM. TPC was significantly
affected by the age of the plant and differed in different
parts of the plant. In the leaf samples, the lowest (22.4 mg
GAE/g DM) and highest (38.4 mg GAE/g DM) TPC were
observed with the 9- and 3-month-old leaf, respectively.
In the rhizome samples, the lowest (19.2 mg GAE/g DM)

Table 1 Total flavonoid content and individual flavonoid compounds from leaf, stem and rhizome extracts of Z. zerumbet

Plant age (month-old) Plant parts Total flavonoids Quercetin Rutin Kaempferol Catechin Luteolin Myricetin

3 leaf 21.8 ± 3.74b 2.43 ± 0.69b 1.77 ± 0.26c 0.71 ± 0.09a 5.49 ± 0.45b 1.15 ± 0.14a ND

stem 4.7 ± 0.68e 0.12 ± 0.05e 0.36 ± 0.07g ND 1.14 ± 0.10h ND ND

rhizome 11.2 ± 1.26d 1.63 ± 0.41c 0.81 ± 0.09e 0.49 ± 0.04b 2.69 ± 0.29f 0.44 ± 0.03c 0.59 ± 0.03c

6 leaf 19.1 ± 2.69b 2.26 ± 0.52b 1.28 ± 0.32d 0.51 ± 0.04b 4.12 ± 0.21d 0.82 ± 0.06b 0.25 ± 0.02e

stem 4.2 ± 0.65e 0.16 ± 0.05e 0.21 ± 0.04h ND 1.34 ± 0.11g ND ND

rhizome 19.6 ± 3.48b 2.49 ± 0.33b 2.19 ± 0.41b 0.68 ± 0.07a 4.68 ± 0.27c 0.76 ± 0.07b 0.97 ± 0.06b

9 leaf 15.2 ± 2.68c 1.82 ± 0.24c 0.66 ± 0.08f 0.50 ± 0.03b 3.37 ± 0.41e 0.45 ± 0.01c 0.33 ± 0.01d

stem 4.1 ± 0.66e 0.22 ± 0.06d 0.24 ± 0.07h 0.12 ± 0.01c 1.02 ± 0.06i ND 0.11 ± 0.02f

rhizome 29.7 ± 4.11a 3.94 ± 0.81a 2.79 ± 0.48a 0.72 ± 0.05a 6.12 ± 0.32a 1.06 ± 0.11a 1.19 ± 0.11a

Data are means of triplicate measurements ± standard deviation. Means not sharing a common single letter in each column for each measurement were significantly
different at P ≤ 0.05. The units of total flavonoids and flavonoid compounds are mg quercetin equivalents/g DM and mg/g DM, respectively. ND: not detected
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and highest (44.8 mg GAE/g DM) TPC were observed
with the 3- and 9-month-old rhizomes, respectively. Com-
pared to the TPC of the leaf and rhizomes, the stem sam-
ples demonstrated the lowest TPC (5.8–6.7 mg GAE/g
DM). Further, the TPC did not differ significantly between
the 3- and 6-month-old stems. In the present study, 4
phenolic compounds, including gallic acid, caffeic acid,
ferulic acid, and cinnamic acid were determined in Z. zer-
umbet at three different stages of growth. Gallic acid was
the most abundant (1.16 to 19.76 mg/g DM) among the
phenolic acids identified in Z. zerumbet extracts. The
highest and lowest concentrations of gallic acid were ob-
served in the stem extracts of the 3-month-old plant and
rhizome extracts of the 9-month-old plant, respectively.
Caffeic acid was detected in Z. zerumbet extracts at
concentration of 0.2–2.71 mg/g DM. The lowest and
highest concentrations of caffeic acid were observed in
the 3-month-old stem and 9-month-old rhizomes, re-
spectively. Romani et al. [27] reported that the levels of caf-
feic acid was higher in the lettuce leaves at the earlier
growth stage than at the later growth stages. In addition,
ferulic acid was detected in Z. zerumbet. Interestingly, the
highest concentration of ferulic acid (5.46 mg/g DM) was
observed in the 3-month-old leaf extracts, followed by the
9-month-old rhizome (3.73 mg/g DM) and 6-month-old
leaf (3.66 mg/g DM). Ferulic acid was not observed in the
3- and 6-month-old stems. Cinnamic acid and its deriva-
tives are potent phenolic acids and have shown various bio-
logical effects for the treatment of several diseases [28]. In
this study, cinnamic acid was detected in Z. zerumbet at
concentration of 0.16–2.61 mg/g DM. The lowest and high-
est concentration of cinnamic acid were observed in the 3-
month-old stem and 9-month-old rhizome, respectively.
Among the phenolic acids identified, the most abundant ac-
cording to the highest concentration were as follows:
gallic acid > ferulic acid > caffeic acid > cinnamic acid.
Similar to the results of the flavonoids, as plant age in-
creased from 3 to 9 months, the content of phenolic
acids decreased in the leaves (gallic acid 33.9 %, caffeic

acid 28.0 %, ferulic acid 42.4 %, and cinnamic acid 42.0 %)
and increased in the rhizomes (gallic acid 206.8 %, caf-
feic acid 243 %, ferulic acid 213.4 %, and cinnamic acid
137 %). Our results were consistent with previous stud-
ies and indicated that the synthesis and accumulation
of phenolic compounds were affected by the age of the
plant [1, 29, 30].

The Enzyme Chalcone Synthase (CHS, EC 2.3.1.74) Activity
Enzyme chalcone synthase (CHS, EC 2.3.1.74) has been dis-
covered and reported as a key enzyme for the metabolism
of flavonoid in plant cells [31]. Varied CHS activity was ob-
served in Z. zerumbet at different growth stages (Fig. 1).
CHS activity in the leaf samples decreased significantly as
the plant matured from 3 to 9 months (from 4.76 to 3.72
nkat/mg protein) and this reduction was approximately
13.6 % between 3 and 6 months and 9.4 % between 6 and
9 months. CHS activity in the stem enhanced approxi-
mately 11.7 % between 3 and 6 months and after that, de-
creased approximately 6.7 % between 6 and 9 months;
however, this alteration in CHS activity did not reach
statistical significance. A marked increased in CHS en-
zyme activity was observed in the rhizomes. CHS activ-
ity increased significantly (119.3 %) from 3 to 6 months
and approximately 34.3 % increase between 6 and 9 months.
Flavonoids are derived from 4-coumaroyl-CoA and
malonyl-CoA in the presence of CHS. This indicates
that CHS is an important enzyme in flavonoid synthe-
sis. According to the current results, it is hypothesized
that the increment of polyphenolic compounds in the
9-month-old rhizomes and 3-month-old leaves could
be attributed to an increase in CHS activity. Further-
more, it was reported that CHS could be considered as
a biochemical marker for evaluating the dynamic
changes in flavonoid synthesis in plants [32].

Antioxidant activity
Table 3, shows the antioxidant activity of the leaf, stem,
and rhizome extracts of Z. zerumbet at three different

Table 2 Total phenolic content and individual phenolic compounds from leaf, stem and rhizome extracts of Z. zerumbet

Plant age (month-old) Plant parts Total phenolics Gallic acid Caffeic acid Ferulic acid Cinnamic acid

3 leaf 38.4 ± 2.35b 11.62 ± 1.50b 1.46 ± 0.28b 5.46 ± 0.77a 1.88 ± 0.27b

stem 5.8 ± 0.37h 1.16 ± 0.53f 0.24 ± 0.06f ND 0.16 ± 0.06e

rhizome 19.2 ± 1.42f 6.44 ± 0.49e 0.79 ± 0.06d 1.19 ± 0.26e 0.89 ± 0.05d

6 leaf 30.4 ± 2.16c 9.27 ± 1.03c 1.08 ± 0.04c 3.66 ± 0.22b 1.26 ± 0.31c

stem 5.9 ± 0.33h 1.34 ± 0.64f 0.20 ± 0.05f ND 0.21 ± 0.05e

rhizome 26.7 ± 2.83d 9.86 ± 0.96c 1.73 ± 0.53b 2.66 ± 0.17d 1.73 ± 0.41b

9 leaf 22.4 ± 1.69e 7.61 ± 0.86d 1.05 ± 0.09c 3.14 ± 0.19c 1.09 ± 0.22c

stem 6.7 ± 0.52g 1.18 ± 0.66f 0.34 ± 0.03e 0.26 ± 0.09f 0.20 ± 0.07e

rhizome 44.8 ± 3.16a 19.76 ± 2.54a 2.71 ± 0.79a 3.73 ± 0.36b 2.61 ± 0.34a

Data are means of triplicate measurements ± standard deviation. Means not sharing a common single letter in each column for each measurement were significantly
different at P ≤ 0.05. The units of total phenolics and phenolic compounds are mg gallic acid equivalents/g DM and mg/g DM, respectively. ND: not detected
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growth stages, using a DPPH and FRAP assay. The anti-
oxidant activity of Z. zerumbet was significantly affected
by the age of the plant and parts of the plant (Table 3).
At concentration of 100 μg/mL, the highest DPPH activity
was observed with the 9-month-old rhizome (76.42 %),
followed by the 6-month-old rhizome (59.41 %) and 3-
month-old leaf (57.82 %), with IC50 (the half maximal
inhibitory concentration) of 55.8, 86.4, and 98.5 μg/mL,
respectively, compared to α-tocopherol (84.19 %, 44.8 μg/
mL) and BHT (70.25 %, 58.6 μg/mL). A lower IC50 indi-
cates a stronger free radical inhibition (strong free radical
inhibitors are active at low concentrations). Interestingly,
DPPH activity of the 9-month-old rhizomes was higher
than that observed with BHT (positive control). In this
study, IC50 was not observed in the stem extracts, which
suggests poor antioxidant activity in the stem. The FRAP
value of plant extracts was 113.6–581.8 μM of Fe (II)/g
and the highest FRAP activity was observed in the 9-

month-old rhizome, with IC50 of 62.4 μg/mL. Similar to
the results of the DPPH assay, IC50 of the FRAP assay was
not observed in the stem extracts. In the leaf extracts,
FRAP activity between 3 and 6 months decreased approxi-
mately 10.6 %, and 13.7 % between 6 and 9 months. In the
rhizomes extracts, FRAP activity increased (approximately
68.8 %) from 3 to 6 months and from 6 to 9 months (ap-
proximately 35.6 %). The reduction in antioxidant activity
in the leaf and enhancement in the rhizomes could be at-
tributed to the changes in the levels of phytochemicals,
such as flavonoids and phenolic acids. Previous studies
have reported that there was no significant correlation be-
tween phenolic compounds and antioxidant activity [33,
34]. However, the results of some studies demonstrated
that the antioxidant activity of herbs was positively corre-
lated and with the levels of flavonoids and phenolic
acids [35–37]. Our findings in the current study, cor-
roborate with the results of Yuting et al. [33], who

Fig. 1 CHS activity in Z. zerumbet extracts at different plant age. Means not sharing a common single letter were significantly different at P ≤ 0.05

Table 3 DPPH and FRAP scavenging activities (at concentration of 100 μg/mL) and IC50 value of Z. zerumbet extracts

Plant age (month-old)/positive
controls

Plant parts DPPH free radical scavenging
activity (%)

IC50 (μg/mL) Ferric reducing antioxidant
potential (μM of Fe (II)/g)

IC50 (μg/mL)

3 leaf 57.82 ± 3.29d 98.5 ± 4.35d 489.4 ± 20.16d 119.42 ± 4.55d

stem 15.46 ± 1.15h NO 117.7 ± 6.53i NO

rhizome 34.76 ± 3.31g 110.9 ± 3.67c 254.0 ± 16.42g 134.8 ± 5.21c

6 leaf 51.66 ± 3.55e 121.4 ± 5.16b 437.1 ± 18.73e 144.6 ± 4.19b

stem 16.37 ± 1.12h NO 113.6 ± 5.68i NO

rhizome 59.41 ± 3.68d 86.4 ± 4.19e 429.0 ± 19.42e 99.7 ± 3.55e

9 leaf 43.18 ± 2.49f 149.7 ± 5.48a 377.2 ± 15.27f 164.1 ± 4.79a

stem 16.48 ± 1.74h NO 127.2 ± 6.46h NO

rhizome 76.42 ± 3.29b 55.8 ± 4.26f 581.8 ± 22.18b 62.4 ± 3.28g

α-tocopherol 84.19 ± 4.68a 44.8 ± 4.33g 849.4 ± 24.16a 49.1 ± 2.77h

BHT 70.25 ± 2.69c 58.6 ± 4.75f 512.1 ± 17.54c 67.7 ± 3.86f

Data are means of triplicate measurements ± standard deviation. Means not sharing a common single letter in each column for each measurement were significantly
different at P ≤ 0.05. NO: not observed
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suggested that levels of flavonoid and phenolics corre-
sponds to the free radical scavenging ability of the
herbs. Based on our results, 3 and 9 months after plan-
tation are the most suitable harvesting time for the leaf
and rhizome, respectively, to obtain Z. zerumbet of high
pharmaceutical quality. To the best of our knowledge,
this is the first study that reported the alteration in the
pharmaceutical quality of Z. zerumbet at different plant
growth stages; thus, the results of the current study
could be useful for future studies.

Antibacterial activity
The antibacterial activity of Z. zerumbet extracts from
the leaf, stem, and rhizome against both Gram-positive
and Gram-negative bacteria is shown in Table 4. Three-
month-old leaves, 9-month-old rhizomes, and stems were
chosen for investigation of antibacterial activity, since they
showed the highest concentration of secondary metabo-
lites and highest antioxidant activity (DPPH and FRAP
activity). Leaf and rhizome extracts of Z. zerumbet
demonstrated good antibacterial activity against Gram-
positive and Gram-negative bacteria strains. Rhizomes
extract of Z. zerumbet showed potent antibacterial ac-
tivity than that of the leaf extracts, with the exception
of Staphylococcus aureus (Table 4). Antibacterial activ-
ities of the rhizome extract of Z. zerumbet against S.
aureus (7.3 mm), Bacillus subtilis (5.9 mm), and
Pseudomonas aeruginosa (7.0 mm) were higher than
those observed with gentamicin (S. aureus 6.5 mm, B.
subtilis 5.6 mm, and P. aeruginosa 6.2 mm), and cipro-
floxacin ( B. subtilis 4.8 mm, and P. aeruginosa
6.7 mm). The best antibacterial activity of the leaf ex-
tracts was against S. aureus (8.7 mm). The reason for
higher sensitivity of the Gram-positive bacteria than
Gram negative bacteria could be attributed to their dif-
ferences in cell membrane constituents. The outer
membrane found in the Gram-negative cell wall is
composed of structural lipopolysaccharides which ren-
der the cell wall impermeable to lipophilic solutes, un-
like Gram-positive bacteria which do not have this

outer membrane. This morphologic difference influences
their reaction to antibacterial agents. Stem extract of Z.
zerumbet exhibited weak antibacterial activity compared
to those of the leaf and rhizome extracts. In addition,
stem extract of Z. zerumbet did not show antibacterial
activity against Listeria monocytogenes, Escherichia coli,
Salmonella typhimurium, and P. aeruginosa bacterial
strains.
Minimal Inhibitory Concentration (MIC) of Z. zerum-

bet extracts ranged from 30 to 100 μg/mL (Table 5). A
lower MIC value indicates a stronger antibacterial activ-
ity (strong bacterial inhibitors are active at low concen-
trations). Therefore, the results indicated that among the
investigated bacteria strains, S. aureus was sensitive to
the leaf extract of Z. zerumbet, with MIC of 30.0 μg/mL
and others were sensitive to the rhizome extracts, with
MIC of 40–100 μg/mL. MIC of the positive controls
(gentamicin and ciprofloxacin) ranged from 0.20 to
1.00 μg/mL, which were lower than that of Z. zerumbet
extracts.
The rhizome extract of Z. zerumbet have previously

demonstrated antibacterial activity against E. coli, P. aer-
uginosa, Sarcina lutea, and B. cereus, with MIC of 128,
128, 128, and 256 μg/mL, respectively [16]. A study re-
ported that the oil of Z. zerumbet rhizome showed sig-
nificant inhibitory activity against bacteria strains,
Lactococcus lactis (80 mm), and S. aureus (120 mm)
and fungus, Fusarium oxysporum (100 mm) and Asper-
gillus awomori (150 mm) [38] using the disc agar diffu-
sion method. The major limitation of previous studies
was that the age of Z. zerumbet harvested was not re-
ported when antibacterial activity, antioxidant activity,
and phytochemicals were analyzed. This should be noted
in future studies. These findings may help us to determine
the optimum time of harvest for Z. zerumbet. It has been
surmised that the antibacterial activities of herbs are
focused on the structures and cellular membranes and
due to the presence of various bioactive compounds
and extensive phytochemical profiles, it is likely that
the antimicrobial potency is not just caused by one

Table 4 Antibacterial activity of Z.zerumbet extracts (three month leaf and nine month rhizome and stem) and antibiotics against
bacterial strains

Bacterial Strains Inhibition zone (mm)

Leaf Stem Rhizome Gentamicin Ciprofloxacin DMSO:water (1:9 v/v)

Staphylococcus aureus 8.7 ± 0.291a 1.4 ± 0.173d 7.3 ± 0.337b 6.5 ± 0.277c 7.3 ± 0.276b NO

Bacillus subtilis 5.1 ± 0.188c 1.2 ± 0.229e 5.9 ± 0.121a 5.6 ± 0.114b 4.8 ± 0.129d NO

Listeria monocytogenes 1.0 ± 0.164d NO 1.8 ± 0.367c 4.0 ± 0.127ab 4.2 ± 0.119a NO

Escherichia coli 1.5 ± 0.146c NO 3.5 ± 0.322b 5.4 ± 0.318a 5.5 ± 0.337a NO

Salmonella typhimurium 4.1 ± 0.267d NO 5.3 ± 0.379c 7.2 ± 0.272a 6.8 ± 0.252b NO

Pseudomonas aeruginosa 5.6 ± 0.218c NO 7.0 ± 0.381a 6.2 ± 0.365b 6.7 ± 0.322a NO

All analyses are the mean of triplicate measurements ± standard deviation. Means not sharing a common letter in each row were significantly different at P ≤ 0.05;
NO: not observed
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solitary mechanism but rather by several events at a
cellular level [39].

Conclusion
The purpose of the current study was to determine the
changes in phytochemical synthesis and pharmaceutical
quality of Z. zerumbet extracts at different growth stages.
This study has shown that during the plant maturity be-
tween 3 and 9 months, the production of flavonoids and
phenolic acids decreased in the leaf, and increased in the
rhizomes. Among the flavonoids and phenolic acids
identified in this study, catechin, quercetin, gallic acid,
and ferulic acid were present in large numbers. The re-
sults of the antioxidant activity indicated that the parts
of plants with high concentrations of flavonoids and
phenolic acids demonstrated the highest DPPH and
FRAP activity. Leaf and rhizome extracts of Z. zerumbet
showed antibacterial activity against both Gram-positive
and Gram-negative bacteria strains. This study suggests
that the optimum time for harvesting the leaves of Z.
zerumbet is 3 months after planting and for rhizomes is
9 months after plantation, to ensure a high level of second-
ary metabolites. This study has indicated the importance of
the age of the plant for the accumulation of secondary
metabolites and pharmaceutical quality in Z. zerumbet.
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