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Abstract In this article, we defined the generalized frac-
tional differential Tremblay operator in the open unit disk
that by usage the definition of the generalized Srivastava—
Owa operator. In particular, we established a new operator
denoted by ®f” based on the normalized generalized
fractional differential operator and represented by convo-
lution product. Moreover, we studied the coefficient crite-
ria of univalence, starlikeness and convexity for the last
operator mentioned.
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Introduction
Let A(m) denoted the class of functions ¥(z) of the form:

Y(z) =z+ Z a,Z" (1)

which are analytic and univalent functions in the open unit
disk
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U:={zeC:|z <1}

and we set A(1) = A when m = 1. Let S(m) denoted the
subclass of A(m) representing of all the univalent functions
(or schlict or one-to-one) in U for y(0) = 0 and y'(0) = 1.
The functions Y(z) € A(m) are said to be the starlike
functions of order 4 (0 <A< 1) in U, if it satisfies the form

Zlﬁ'(Z)}
93{ >7 (ze ), (2)
TGN R

we note that S;(m) C Sg(m) = S*(m) C S(m). Otherwise,
The functions y/(z) € S(m) are said to be convex functions
of order/ (0 < A< 1), if it satisfies the form

W' (z)
R—F——=+1,>1 (zel) (3)
{ ¥ (2) }

which symbolized by K;(m) C Ko(m) = K(m)  and
KC;(m) C S;(m). The classes S;(m) and KC;(m) have been
discussed by many researchers (see [1, 2]). For m = 1, the
classes /C;(1) and S;(1) of order A (0 < A< 1) were studied
before by Robertson [3], and by setting A = 0, they are
represented as equivalent form:

Ki(1) =K, CKy=K and S;(1)=85,CS=S".

Theorem 1 (Bieberbach’s Conjecture [4, 5]) The func-
tions Y (z) which is defined in (1), is the univalent function
in class S(1), if |ax| <k for all k>2 and its convex
functions in the class K(1) if |a,| < 1.

Next, the concept of convolution (or Hadamard product)
for two analytic and univalent functions (z) given by (1)
and h(z) =2+ > o, b2, m = {1,2,3,...} defined by

Yo+ h(z) =2+ zoc: abyZ". (4)

K=m+1

’r @ Springer
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Let us here recall some the well known geometric prop-
erties for the convolution (or Hadamard product) due to
Ruscheweyh (see [6]).

Lemma 1 From [6, 7], we have

(1)  For the functions y(z) and h(z) € A(m), and c a
constant, then we have

c(¥*h)(z) = c¥xh(z) =y *ch(z).

(2)  The derivative convolution of two functions belong
to the class A(m) is defined as:

2hx ) (z) = hxz)/'(z)
z+ Z Ka, b7~

K=m+1

(3) Let the functions Y(z) € S*(m) and h(z) € K(m),
then (Y * h)(z) € S*(m).
(4)  For each functions y(z) and h(z) € K(m), then
(Y + h)(z) € K(m).
In [8, 9], Srivastava and Owa defined the fractional

integral and differential operators in the complex z-plane C
as the formula:

Definition 1 The fractional integral of order ¢ is defined,
for a function f(z) by:

1°f(2) / 1O

where 0 < o<1, and the function f(z) is analytic in simply-
connected region of the complex z-plane C containing the

_CUIC (5)

origin and the multiplicity of (z — ()7
requiring log(z — {) to be real when (z —

is removed by
{)>o0.

Definition 2 The fractional derivative of order o is
defined, for a function f(z), by

D) = Fr e, S0 =07 (©)

where 0 < ¢ <1, and the function f(z) is analytic in simply-
connected region of the complex z-plane containing the
origin and the multiplicity of (z — {)™°
the Definition (1) above.

is removed, same in

Tremblay defined one of the successful fractional
operators in [10]. Recently, some geometric properties and
applications for Termblay’s operator flf 7 in complex plane

and in particular on the open unit disk U, studied and
discussed by [11-13].

Definition 3 For 0<f<1,0<t<1l and 1 > f—1>0.
The Tremblay operator T7%f(z) of function f(z) € A(1),
for all z € U is defined as:

’r @ Springer

T (2) = L) eppeyg f(2), (zel). (7)

T'(p)
Example 1 We find the fractional derivative Termblay
operator T/7f(z) in Definition 3, where the function f(z) =
Z#, and pu € R.

cpn _ LOTw+p)
) = r e ¢
if u =1, we have
Y F@r{+p)
=i
and, if §,7 =1, then
T = {2 (8)

Ibrahim defined a generalization of the fractional dif-
ferential and integral Srivastava—Owa operators in the open
unit disk U as follows [14]:

Definition 4 If 0 <a <1, 1 >0, then defined the gener-
alized fractional integral Srivastava—Owa operator of order
o such as

(n+ D"
()
where f(z) function is analytic in simply-connoted region of
the complex z-plane C containing the origin, and the

T2f(z) = /0 @ =t erdz, (9)

™1™ is removed by requiring
_ Cn—o—l) > 0.

Definition 5 If 0<a<1, >0, then defined the gener-
alized fractional derivative Srivastava—Owa operator of
order « such as

(’7+ 1)0( d ¢ i/ 1\—o
T [ @ =y

multiplicity of (/™! —
log(z"*! — C”“) to be real when (7!

DIf(2) :=
(10)

where 0<a<1, # >0 and f(z) function is analytic in
simply-connoted region of the complex z-plane C con-
taining the origin, and the multiplicity of (z"*! — (")~ is
removed , as in Definition 4 above.

Lemma 2 Let f(z) € A; forall ze U, p e R, 0<a<1
and n >0, then

1+ 1" (G +1)

L)1) p=1
l—‘<t7+l +1- O()

DM} =

and
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+ 1 Oil—*(pr)]Jrl)
(’1 ) n+l1 Za(”+1)+p.

T2 =
t +1+1
o)

Next, we included the Fox—Wright function, which is one of
the special functions that generalize hypergeometric functions
(see [10]), let denoted this function by ,A, and defined as:

(pl7Al)a SRS (ppaAp);
A, Z
(/llvBl)a' (/lquﬂl);

- Z p17KA (p[”KA) ¢
—0 F ll,KBl ()»q,KB ) (l)h

P
H F(pHKA) ZK

p

I
-

; Iy, w8) (Vs

:»Q

~.
Il

In particular, A; =---=A, =B =
they turn into (see [15, 16])

-=B; =1, then

(plvl)""v(ppvl)Q
pAq z
(A1, 1),..., (4g, 1);
p
{16
= l:ql— pFa(P1s e Ppi Aty s Ag)s
[1T(%)

where p;, 4; are parameters in complex plan C. A; > 0,
Bj > Oforallj=1,...,gandi=1,...,p,suchthat0 <1 +

1 Bj — Y7, A;forfitting values |z <1.Forall z € Cand
k € {2,3,4,...}, the Pochhammer symbol (z),. defined as:

(2 =1 and (), =z(z+1)...(z+x—1) (K€EN).

(11)

L4 and the formula I'(z) is the well known

where (z), = e

gamma function. In fact, this function have many
remarkable properties in complex plan, we here review
some of them. For z € C, then

C(z+1):=zI(z). (12)
and
A(z—1):=T(z) (z>0). (13)

Moreover, we consider the Bloch space B(U) of all
functions analytic and univalent functions f in A which is
defined as [17]:

s =sop(1= 12 P) IF )| <00, 2(€L). (1a)
In the present paper, the generalized Tremblay operator
with univalent function S(1), which is considered as the
generalized fractional derivative operator in Definition 5,
was defined. After ward, we utilized the normalized
generalized Tremblay operator in a class of analytic
functions A(m), with subclasses S(m),S;(m) and fC;(m)
in the open unit disk. Furthermore, we performed some
applications to prove the bound coefficient for the last
operator.

Results

In this section, we defined the generalized fractional dif-
ferential of the Tremblay operator in Definition 6 according
to definition of the generalized fractional derivative of the
Srivastava—Owa operator in complex plane C, for the
special case, m = 1 in classes .4 and S. Examples of power
function in complex z-plane and some boundedness prop-
erties in Bloch space for the operator mentioned were
presented as well.

Definition 6 Let 0<f<1, 0<7t<1 and y>0. The
generalized fractional differential Tremblay operator of
two parameters, is defined as

r(ﬂ)r(l _ﬁ_ T) (Z dZ) A (Z}’+1 _ C}'+1)ﬂfrd€7
(15)

where the function f{(z) is analytic and univalent in simple-
connected region of the complex z-plane C containing the
_ Cy+l)—/ﬁ+r

() =

origin, and the multiplicity of (/! is removed

by requiring log(z’t! — {"*') to be non-negative when

(@ =y > 0.

Next, we provided a survey of the interest operator Zf o
to satisfy a boundedness property in the open unit disk and
gave an example by using Definition 6. Note that proving
the boundedness operator on Bloch space requires using
expression (1), when m = 1.

Example 2 Letf(z) =7 z€ Uandk e N.If0<f <1,
0<t<1,9>0,and 0 < — 7<1, then the generalized of
Termblay operator with power function satisfy

(r+ 17T (S5 + 1))

zfﬁr,y{zlc} —
(S5 41— p+<)T(p)

A=Bee

note here, if ¥ = 1, we obtain

’r @ Springer
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+ 1)/ (1) po_ 1 1,
zfﬂﬂ{z}:::(y N ( )z“‘ﬁ+ﬂv+1, (T 5
T(h+1-+7)0(p) 21 () =24 r

now go back to Example 1, we see that, if y = 0, then

w0 L@ T+ )
U = T

andif f=1,t=1,y=0, we get
Z;,I,O{ZK} — {ZK}.

{}

In next theorem, we considered the form of definition of
the power series to prove the operator Zf’w is bounded

with the univalent function S on Bloch space B(U) in the
open unit disk.

Theorem 2 Let the function f € S(1) = S belongs to U.
Then the operator Zf 7. 8 — 8 is bounded on the Bloch
B(U), if

| T s <M || f g
where

_ AP+ 1))
rp)

Proof By supposing f(z) in class of S, we employ
Lemma 1 and Example 2, we obtain

2A1(r)

15 ()l
= (1= P)|(3F1 ()
— (-1 ( ﬁ((;))z“fD?*“'fz/f*‘f(z))'
= (1-z) (Ilj((;)’)) zl’Dﬁfr"‘/‘z/fl{i(l)uaxil{,})
k=0 :
| (TO e e or (R 1) g Y
= (1—1z) (F(ﬁ)% r(“j’%+l+rfﬁ) (1)KZ

since |z| <r, for all z € U, then

I T2f(2) e

r(lJrr—/S)*,-(AlY + ])/f*fr(r) i I'(k+ I)F(M + l)a r !
I(h) <),

= F("*" ‘+1+17/3)

(e /T

<1 =)

— (1 Py A *f(r)>

rp)
=By, (e

= (1= ) A s )

= Ml

=B (p- 1) (¢
where M := %2/\10) and

ﬁ @ Springer

B 1
l—B+t+————, ;
( d yH1 p+17y+1

Normalized operator

In this section we defined a new operator in Theorem 3,
which is normalized for the generalized Tremblay operator

i”tf’r’""f(z) with an analytic function in the class A(m).
Theorem 3 Let the following conditions to be realized:

0<p—1<1, 3>0. (16)

Then the normalized of generalized Tremblay operator in

Definition 6 is denoted by OF 2"7f(2) and defined as:

OFf(z)=z+ Z Dpey(K)as me{1,23,...}. (17)
K=m+1
For all f(z) € A(m) and |z| <1, where

(L 1-p+o) (2 4 1)
WWWV—F(ﬁ+QrCW4+1—ﬁ+Q'
7+1 y+1

(18)

Proof From Definition 6, and by considering the function

T (1= B+ )T ()

h(z) =

S e (L)
we have
h(z) TVf(2)

AWFWFG%+1—3+QFw)

o+ 10T (L + 1))

g
then

K=m+1
L= 1);1“( +1—ﬁ+f>r(ﬂ)
= (y+1yrr<%4+1)r@)
{ (y+ 1)13471“1)1“(1'4_51Jr 1) (1-p+1)p+1
Z /
r(ﬁ)r(/ﬂ +1 _ﬁ—i_f)

. p—1—1 K+p—1
G+ )" T (S +1)aKZ(1—/f+T>7+K}
W DO (41— p+c)

+
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which equals to

= Pl per(sie )

agZ
G T (i + (S5 41— pt )

z+ Z 79/51,, aKz

K=m+1

= z+

(20)

Thus, the normalized for the generalized Tremblay opera-
tor is represented as the power series and preserves the

class A(m) with their subclasses, where m = 1,2, ... in the
open unit disk U, as
OLf(2) = WA TLF(2).

O

Lemma 3 Let the operator ®%7f(z) defined in the class
S(m), m € N\{0}, for all z € U. Then

r= (Jim fayl¥9c,(0) ) < 1

Proof By employing the Cauchy—Hadamard formal, we
find the radius of convergence of the series function in
@ﬁf’f(z) Supposing the function f(z) € S(m) then the
coefficient |a.| <k for ke N={2,3,4,...} through
Theorem 1, we see that

11m |a,€| V¥ < lim K <1,

K—00
and

Jim [0, ()]

= lim (r(ﬂ%* ! _/HT)) " (r( ()

1/x
r(:L+1) “jfl'ﬂﬁﬂ))
By using the property of gamma function, we have

1
I+ +1)

F(y-’lc—l+
. <( K >l/»«>"‘f
= lim —
K—00 y+1

=1

NK:/}_‘C

, K— 00

ﬁ—&-l—/f—i—‘c)

thus follows r < 1. O
Criteria for Hadamard product
In this section, the operator in (17) is represented as the

convolution product of two univalent functions in class of
S(m) € U, in particular, when m = 1.

Theorem 4 Let f € S(1)
in U. Then we appear the operator G)ﬁ “ as the convo-
lution of two functions in S,

=S be an univalent function

O f(z) = g(z) *f(z)
where g(z) := %2/\1(1)-

Proof By equality (20), we have

x T( 41— o) T (2L 4 1)
Gf,n}f(z) =zt Z . ﬁKJr/}—l = achK

K=2 F(% +

~ T( K+1)F(%+1*[5+T>r(%+l) ~

- aYC )

e
F()ﬁﬁ—l)
po_ 11,
(171)7<1+y+1_'y+17'}/+1)7
A z | xf(2)
et
(1 Pt T 1)
(21)
hence
. r(m+1—ﬂ+f)
NI =y e
r(d+1)
by letting
F(Li+1-p+7)
g(z 8 2Ai2) -
r(+1)

Then the proof is completed. []

Based on the results, the following observations were
obtained. Let f(z) € A(1) C U.

1. If B,t=1,7 =0, then O "% (z) := f(z) defined in
(1), for m = 1.
2. If y =0, then ©/f(2) := T/7f(z) defined in (7),

form = 1.
3. Itis clear that the operator ®%/f(z) is generalized
of Carlson—Shaffer operator, when y = 0 and % =

in (21), while the linear operator of Carlson and
Shaffer defined as [18]:

L(a,c)f (z2) = p(a,c;2) xf(2),f € A
where  ¢(a,c;2) =D Ef; 7 zeUa€eRrR
ce{l1,2,3,...}.

Y
ﬁ @ Springer
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Note here the proof of the following Theorems comes
immediately from Eq. (20) and Lemma 1.

Theorem 5 Let 0<f<1,0<t<1 and the condition
(16). If the function f(z) given by (1) in the class S*(m) and
the function g(2) defined by (22) in IC(m). Then

f(2) xg(z) € S"(m).
Theorem 6 Ler 0<f<1,0<t<1 and the condition

(16). If the functions f(z) given by (1) and g(z) defined by
(22) in K(m). Then

f(z2) * g(z) € K(m).

Univalency of the operator @f’”’

We discussed the initialization of a univalent criteria and
convexity by employing the normalized Tremblay operator
in the open unit disk, in particular when m = 1.

Theorem 7 Let f € S(1). If the following conditions
satisfied

i) forO0<fp<1,0<t<1 suchthat 0<pf—rt<l.
i) O<p;,i=1,..,p and 0</i,j=1,...,¢q
p<q+1,

then the operator @f " (z) € S in open unite disk U.

B 11
31),( 1+ + ; ;
( )< y+1 y4+19+1
2A 1
B 1 1 >
1-B+t+ - , ;
( b y+1 9417741
1
y+17y+1
+2A 1
B 1 )
1-f+1+ )
( Pt

!
(L +1)

r(Li+1-p+1)

<2

Proof By supposing the function f € S with equality
(17), we have

O f(z) =24 i,
K=2

where w, := ¥g.,(x)a, and the function ¥4, (x) defined
in (18) satisfied the following condition in class S as
follows:

00 o0

G =Y rlwel = K pey(x) fa] <1,

K=2 K=2

Y4
ﬁ @ Springer

By using Theorem 1, we give the estimate for the coeffi-
cients of an univalent function belong to S in U also, by
employ this estimate, we can get another estimate for ¢; in
S as follows,

00
b= Z K0p,c.p ]
K=2

<3 00 = 3 B ) = 32 pr) <1
k=2 :

where

F(+1-p+7) T(SEE 1)),
r(}%ﬂ) F(Mﬂ—ﬁﬂ)

y+1

(K) =

(24)

The series in (23) is transformed into a sum of twice the
terms by employing the following relation:

K2 K 1 1

(ORI @)

Depending on (1), = x! and (1),
mate (23) becomes the next form:

22 S LY oy S 09| £
“Szm‘z((l) +<1>K_2)“) 20

x—1 k=2

rtten) ),
(%H) F(%H—ﬁﬂ)(l)m
CIRARAL) RN Grinas) BN
(,/,fﬁl) F(%H—ﬂqw)(l)xfz
r%“"”f)(m T

K:lr<¢/‘+1_[3+¢> (1),

7+

| = (k— 1), the esti-

K)

K—2

K+p+1 +1

> F( y+1 ) (1);c
+;r(@%+l—/3+r) (1):2)

by considering some properties of the gamma function in
(13) and (12), we have

_ F(%+1—/3+T)(§:F(K+2)r<”j—.ﬁ+1) 1

F(?,%+1) =1 F(;14;+1*ﬂ+f>(17)n

+§:F(K+3)F(Kjfl“+1)1>

por F(%+1—[3+r) (1),

and by using the Fox—Wright function, we can transform
the estimate ¢; at z — 1,
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p 1 1 >
31), [ 1+ + . ;
( )< y+1 y+1y+1
=/ 1
p 1 1 >
1-p+1+ + , ;
( P y+1 yp+1"7+1
p 1
2717 l+—7—a
( )< y+179+1
+2A4 1
p 1
l-f4+v+——, ;
( b y+17v4+1
i)t
<

F(y%—kl—ﬁ—kr) F(yfl—kl—ﬁ—l—r).

We conclude from the above theorem that the operator
@f’f"’f (z) maps preserve the property (univalent function)
in class f € S from a linear space to another. Further, the
operator @f’f""’f(z) is univalent for f € S for all z€ U in
the open unit disk and @f‘” :S—S.

Theorem 8 Let the condition i as in the Theorem 7 is
satisfied, then

p 1
2,1, | 1+ ——,——|;
( )< y+17y+1
2A 1

p 1
l-f+14+—7, ;
( b y+1'9+1

r(y%+1)

r(i+1—[f+r)

7+l

<2

then the operator maps a convex function f(z) into a uni-
valent function that is @f K= S.

Proof Presume that f(z) € K, z€ U and the operator
(17), such that
@f"""f(z) =z+ Z Wy Z*

K=2

where
Wi i= Vg y(K)ay

and the function ¥ ., is defined in inequality (18), satisfied
the following condition in class S as follows:

o0 o0
by = z; Klw,| = z; KUy (K)|ac] <1.
K= K=

We know That the coefficient of a convex function belong

to S is |a,|< 1. So we can get another estimate for ¢, as
follows,

62 = Z Kﬂﬁ.r,y|aic| S Z Kzﬂﬂ_r’},(;g)
=2 k=2
00 Kj)z 00 K)2 (26)
E Z;T (19/)’,1 y(K)K!) = Z;TK(K) <1
where

r(y%Jr | —ﬁ—i—r) r("j%jL 1)(1)K
r(}%jL 1) r(—Kjf;‘ +1 —ﬁ—|—r>

where a, is Pochhammer symbol defined in (11),with the
following relation

k) =

F(K+ﬁ_] +17ﬁ+f

y+1
F(y%+1—ﬁ+r)io: F(’;%{Url) (1)
F(%+l) x:lr<%f+l—ﬁ+f) (1

N—
—
—
~—
a2
|
—_

+1

)

employ the properties of gamma function, we have

F(Li+1-p+c) o T+ 2T(5+1)

B
F(y+l + 1)

then with the Fox—Wright function, we transform the
estimate ¢, at z = 1,

=1 F(K+ﬂ+ 1 *,BJFT) (1),

y+1

r(i+1—[3+r)

. 7+l
r(L+1)
p 1
2a17 1+7a7a
@1 < y+17y+1
2/\1 1 —1<1
B 1 )
l=ptrt————);
( p n+1'n+1

hence

Y
ﬁ @ Springer



174 Math Sci (2016) 10:167-175
ek . K = 8. -
¢ Y (= 1) gy (i) lad
We conclude from the above theorem that the maps pre- Ke=m+1
serve the property (univalent function) in class S from a -
erve the propery | ) <Opegm+1) Y (k= Dlad
linear space to another. O S

Coefficients bound

Now, we study the coefficient bounds for the operator
@f "*7f(z), which is defined in (20), where the function f(z)
is in the class A(m), for all z € U. We also discuss the
bounded coefficient in two subclasses S;(m) and KC;(m),
(m=1,2,...) of order A in the open unit disk U. In the
first step, we are looking to prove that the operator
@f "7f(z) in S;(m), and that by finding a coefficient bound.

Theorem 9 Let f(z) € A(m) given by (1) satisfy the
condition (16). If

e 1—4
_ < =
3 (k=2 fau < 5w ©

K=m+1

IN
~
A
—_

S~—

—

(V]

~
S~—

where
i m+f
FG%+1—B+QFG%+1)
m+ '
r(L+1)r(ed+1-p+x)

Then the operator ®f "f(z) € S (m) and satisfy the sharp
result.

Vpey(m+1) =

Proof By assuming that the function f € S;(m), we
obtain

2(01f(2) ‘
“obrn
0:"f(2)

2(01°71(2) — O1f(2)
o7 (2)

_ ‘Zho-ozm+1 (k= 1) Vpy()arz”

et g (R)aner

et (8 = D) [y () ] 21"

< —, |7 <1
1- Z;\C)-C:mﬂ [9p,0,5(1) | a| (4 :
St (6= 1) ()
T = [P () la|
(28)

we see in inequality (28) is bounded by (1 — 1), if it satisfy

o0

Z (1 = 1) [Ipe (1) | |atic]
K=m+1
<a-9(1- 3 ).
K=m+1

By use the inequality 0 < g ., (k) <Vp.,(m + 1); for each
m+ 1<k and for all m = 1,2, ..., we have

Y4
ﬁ @ Springer

<(1-2) <1 - Z |19/fﬁf,7(K)||aK|>v
K=m+1

which is on a par with

- 1

—A
- Mlae| £ ————, 29
K;H(K JJal Dpon(m+1) (29)
hence
Bty /
R(M) Y
®lf(2)

From Theorem (9), we have a special case compared
with the well-known results, which are reviewed in the next
corollary.

Corollary 1 Let @f’f”f(z) € S;(m), for all z € U, with

> (k- Dad< —
Kk=m+1 v TV(m+ 1)

G IfA=0,p=1l,1=1,m=1andy=0, we get

o0

ZK|(JK| <1

K=2

then f(z) € Sy(1) = 8" (see [19]).
) Ifp=1l,r=1,m=1andy=0, we get

o0

S (= Dlag < (1 7)

K=2

then f(z) € S;(1) = S; (see [20]).
(i) IfA=0, we get
= 1
K lag| < . 30
K:zm;l Vpy(m+1) (30)
then ®Ff(z) € Sy(m), (see [21]).
All these results are sharp.

Corollary 2 Let the operator ®f’f’"f(z) € §;(m). Then
p B m+f
(=T (L +D)r(ed+1-p+7)
(m— 2+ )T (L + 1= p+o)r(2f+1)
(31)

|am+l| S
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for m ={1,2,3,...}.

Example 3 The function belongs to the class S;(m), is

defined as
m+f
A (e —pee)
.

(m— 2+ DT (41 o) T (2 41)

gi1(x)=z+

We prove a bound coefficient in Theorem (10) by using
similar methods in the starlike class.

Theorem 10 Let the function f(z) €
the condition (16). If

EOC: k(i — 2) |ag| < _t=r
T pey(m+1)

K=m+1

A(m) and satisfied

m=1,2,....

(32)
Then f € K,(m), A(0<A<1), this result is sharp.
Corollary 3 Let the operator ®F Y0 (z) € Ky(m) . Then
(1= T+ DI +1-p+1)
(m+1)(m =2+ D+ 1—p+ )T +1)

|am+l|S

forx € {2,3,...}.

Example 4 The equality (32) is realized by the function
(1—1)1‘(7%“)1"(7’1{%1—/3“)

(m+1)(m—1+1)r(7%+1—ﬁ+f)r((f7+f+1)

m+1

g(2)=z+

Conclusion

All results of the present work are valid in open unit disk U
with respect to the fractional calculus in a complex domain.
We defined a normalized fractional differential operator in
the concept of the generalized Tremblay operator. More-
over, we assumed sufficient conditions for this operator to
become starlike and convex functions. Finally, univalency
and convolution properties are discussed.
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