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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

 

AN ADAPTIVE ERROR CORRECTION SCHEME FOR SYNCHRONOUS 

DIGITAL HIERARCHY-BASED WAVELENGTH DIVISION 

MULTIPLEXED OPTICAL NETWORK 

 

By 

CHEAH CHENG LAI 

November 2007 

Chairman : Professor Mohamad Khazani Abdullah, PhD 

Faculty : Engineering 

 

In optical communications there are a variety of noise and distortion sources which 

can cause errors. These errors become essential and more intense in the high-capacity 

and long-haul wavelength-division multiplexing (WDM) systems. Therefore, the 

development of a forward error correction (FEC) technique to mitigate errors in 

WDM optical networks is very relevant and important.  

 

The existing FEC techniques for optical communications are based on fixed codes, 

which consume unnecessary overhead bandwidth even when there are no errors. This 

thesis proposes an adaptive forward error correction (AFEC) scheme for 

synchronous digital hierarchy (SDH)-based WDM optical networks, referred to as 

the SDH-AFEC. The scheme supports adaptive codes because it uses a dedicated 

WDM channel for transmission of different sizes of FEC redundancy for the 

payloads. Unlike most previous adaptive FEC techniques which change to a stronger 

code after an error has occurred, the SDH-AFEC is able to do so before an error 

occurs. This is achieved by using the combination of B2 error and corrected error 
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count as the input parameters for the algorithm. Then the algorithm is designed in 

such a way that it adaptively assigns a suitable value of error correction capability, t 

for error correction, and the number of corrected errors is maintained not exceeding 

t/2. 

 

The SDH-AFEC adopts Bose–Chaudhuri–Hocquenghem (BCH) and Reed–Solomon 

(RS) codes for correcting random and burst errors respectively. A new technique is 

also proposed for estimation of the error pattern so that a suitable type of code can be 

assigned accordingly. This technique is based on the analysis of the corrected error 

locations, referred to as the error location analysis (ELA).  

 

Simulation results show that the SDH-AFEC is able to use different values of t 

adaptively for error correction. It assigns stronger t with increasing channel bit error 

rate (BER) or average burst length (ABL) to maintain the output BER below the 

target BER of 10
-9
, until the strongest value of t is assigned. The SDH-AFEC uses 

the maximum FEC overhead for high BER or long ABL. However, the FEC 

overhead requirement reduces with decreasing BER or ABL. Hence, in addition to 

the adaptive BER performance, the SDH-AFEC also provides a way to use the FEC 

overhead efficiently. Lastly, the results also show that by using ELA, the 

performance of the SDH-AFEC is further improved that it is able to correct about 

three times more random errors and three times longer burst length. Meanwhile, the 

average FEC overhead reduction after ELA is about 38% and 36% for random and 

burst errors respectively. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

SUATU SKIM PEMBETULAN RALAT MENYESUAI UNTUK RANGKAIAN 

OPTIK PEMULTIPLEKSAN PEMBAHAGIAN PANJANG GELOMBANG 

BERDASARKAN HIERARKI DIGITAL SEGERAK 

 

Oleh 

CHEAH CHENG LAI 

November 2007 

Pegerusi : Profesor Mohamad Khazani Abdullah, PhD 

Fakulti : Kejuruteraan 

 

Di dalam komunikasi optik terdapat pelbagai sumber hingar dan herotan yang 

menyebabkan ralat. Ralat ini menjadi lebih jelas dan hebat di dalam sistem 

pemultipleksan pembahagian panjang gelombang (WDM) yang berkapasiti tinggi 

dan berheretan panjang. Oleh kerana itu, pembinaan suatu skim pembetulan ralat 

depan (FEC) untuk meringankan ralat di dalam rangkaian-rangkaian optik WDM 

adalah sangat sesuai dan memainkan peranan yang amat penting. 

 

Skim-skim FEC untuk komunikasi optik yang sedia ada berdasarkan kod tetap, 

dimana mereka menggunakan overhed lebar jalur yang tidak diperlukan walaupun 

tiada ralat. Tesis ini mencadangkan suatu skim penyesuaian FEC (AFEC) untuk 

rangkaian-rangkaian optik WDM berdasarkan hierarki digital segerak (SDH), 

dinamakan sebagai SDH-AFEC. Skim ini menyokong kod penyesuaian kerana ia 

menggunakan satu saluran WDM khusus untuk menghantar lebihan-lebihan FEC 

yang berlainan saiz untuk beban-bebannya. Berbeza dengan kebanyakan skim-skim 

penyesuian FEC yang terdahulu, dimana penukaran kepada suatu kod yang lebih 
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kuat terjadi hanya selepas ralat telah berlaku, SDH-AFEC boleh melakukan perkara 

seperti ini sebelum ralat berlaku. Ini dapat dicapai dengan menggunakan kombinasi 

ralat B2 dan bilangan ralat yang dibetulkan sebagai parameter input untuk 

algroritmanya. Kemudian mencorakkan algroritma ini supaya ia boleh menugaskan 

suatu nilai keupayaan pembetulan ralat, t yang sesuai secara penyesuaian untuk 

pembetulan ralat, dan bilangan ralat yang dibetulkan dikekalkan supaya tidak 

melebihi t/2. 

 

SDH-AFEC menggunakan kod Bose–Chaudhuri–Hocquenghem (BCH) dan Reed–

Solomon (RS) untuk membetulkan ralat-ralat rawak dan letusan masing-masing. 

Suatu teknik baru juga dicadangkan untuk penganggaran corak ralat supaya jenis 

code yang sesuai boleh ditugaskan seperti yang telah dinyatakan. Teknik ini adalah 

berdasarkan analisa lokasi-lokasi ralat yang telah dibetulkan, dinamakan sebagai 

analisa lokasi ralat (ELA). 

 

Keputusan-keputusan simulasi menunjukan bahawa SDH-AFEC berupaya untuk 

menggunakan nilai t yang berlainan secara penyesuaian untuk pembetulan ralat. Ia 

menugaskan nilai t yang lebih kuat dengan kenaikan kadar ralat bit (BER) saluran 

atau purata panjang letusan (ABL) untuk mengekalkan BER keluaran dibawah BER 

sasaran, iaitu 10
-9
, sehingga nilai t yang terkuat ditugaskan. SDH-AFEC memakai 

overhed FEC yang maksimum untuk BER yang tinggi atau ABL yang panjang. Akan 

tetapi, keperluan overhed FEC menurun dengan penurunan BER atau ABL. Justeru 

itu, tambahan daripada keupayaan pembetulan ralat secara penyesuaian, SDH-AFEC 

juga memperuntukan suatu cara menggunakan overhed FEC yang cekap. Akhir 
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sekali, keputusan-keputusan juga menunjukkan bahawa dengan menggunakan ELA, 

keupayaan SDH-AFEC adalah ditingkatkan lagi, iaitu ia boleh memperbaiki tiga kali 

ganda lebih ralat-ralat rawak dan tiga kali lebih panjang letusan. Semenatra itu, 

keturunan overhed FEC purata selepas ELA adalah lebih kurang 38% dan 36% untuk 

ralat-ralat rawak dan letusan masing-masing. 
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LIST OF ABBREVIATIONS / NOTATIONS 

 

List of Abbreviations 

2.5G-PLS  2.5 Gb/s Power Limited System. 

10G-PLS  10 Gb/s Power Limited System. 

ABL   Average Burst Length. 

ACK   ACKnowledgement. 

AD   Averaging Duration. 

AFEC   Adaptive FEC. 

AFECCC  Adaptive FEC Code Control. 

ANSI    The American National Standard Institute. 

ARQ   Automatic Repeat-reQuest. 

ASE   Amplified Spontaneous Emission. 

ATM   Asynchronous Transfer Mode. 

AU-n   Administrative Unit-level n. 

B2   A BIP-N × 24 code using even parity.  

BBSG   Bernoulli Binary Signal Generator. 

BCH   Bose–Chaudhuri–Hocquenghem. 

BCHt   BCH (4320+13t, 4320). 

BER   Bit Error Rate. 

BIP   Bit Interleaved Parity. 

BSC   Binary Symmetrical Channel. 

BTC   Block Turbo Code. 

CD   Chromatic Dispersion. 
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CEA   Corrected Errors Analysis. 

CEC   Corrected Error Count. 

CW   Continuous Wave. 

DDD   Drop-Down Delay. 

DED   Double Error Detecting. 

DLC   Data Link Control. 

DSF   Dispersion Shifted Fiber. 

DS-n   Digital Signal-level n. 

E/O   Electrical-to-Optical Signal Converter. 

E2E   End-to-End. 

ECC   Error Correcting Coding. 

EDFA   Erbium-Doped Fibre Amplifier. 

ELA   Error Location Analysis. 

ELN   Explicit Loss Notification. 

FEC   Forward Error Correction. 

FWM   Four Wave Mixing. 

GUI   Graphical User Interface. 

GVD   Group Velocity Dispersion. 

HARQ   Hybric ARQ. 

INC   INcreased Acknowledgement. 

IP   Internet Protocol. 

ITU-T  The International Telecommunication Union- 

Telecommunication Standardization Sector. 

 

LAN   Local Area Network. 

LDPC   Low-Density Parity Check. 
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MAC   Medium Access Control. 

MAN   Metropolitan Area Network. 

MA-FEC  Multicast adaptive FEC. 

MSOH   Multiplex section overhead. 

M-DABL  Mean of Detected ABL. 

NAK   Negative AcKnowledgement. 

NG-SDH  Next Generation SDH. 

NRZ   Non-Return to Zero. 

NZ-DSF  Non-Zero Dispersion Shifted Fiber. 

O/E   Optical-to-Electrical Signal Converter. 

OOB FEC  Out-Of-Band FEC. 

QoS   Quality of Service 

OTN   Optical Transport Network. 

PC   Personal Computer. 

PC-WDMC  Product-coded WDM coding. 

PER   Packet Error Rate. 

PMD   Polarization Mode Dispersion. 

PRBS   Pseudo-Random Binary Signal. 

PTCM   Pragmatic Trellis Coded Modulation. 

RCPC   Rate Compatible Punctured Convolutional. 

RS   Reed–Solomon. 

RSt   RS (180+2t, 180). 

RSE   RS Erasure. 

SDH   Synchronous Digital Hierarchy. 
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SDH-AFEC  SDH-based Adaptive FEC. 

SD-DABL  Standard Deviation of Detected ABL 

SEC   Single Error Correcting. 

SES   Severely Errored Second. 

SNR   Signal-to-Noise Ratio. 

SOH   Section overhead. 

SONET  Synchronous Optical Network. 

SSMF   Standard Single Mode Fiber. 

STM-N  Synchronous Transport Module-level N. 

STS-n   Synchronous Transport Signal-level n. 

TCP   Transmission Control Protocol. 

TDM   Time Division Multiplexing. 

WAN   Wide Area Network. 

WDM   Wavelength Division Multiplexing. 

WLAN  Wireless local area network. 

W-WBRM  Wireless Web-Based Reliable Multicast. 

 

List of Notations 

ABL   Average Burst Length. 

ABLd   Detected ABL. 

ABLmin   Minimum ABL. 

B   Bad state. 

BL    Burst Length. 

b   The number of bits. 


